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HSI-IPNet: Hyperspectral Imagery Inpainting by
Deep Learning With Adaptive Spectral Extraction

Rong Wong

Abstract—Feature representation is the key to the hyperspectral
images (HSI) inpainting. Existing works mainly focus on using
spectral and temporal auxiliary images to inpainting the corrupted
region, which were proved to be low robust for all bands missing
and high requirements for image acquisition. In this work, we
propose an end-to-end inpainting framework for HSI based on
convolutional neural networks, which does not require auxiliary
images and makes full use of both spectral characteristics and spa-
tial information. For spectral characteristics, a channel attention
mechanism is proposed to reduce the redundancy of hyperspectral
channels and model the correlation between channels. For spatial
information, a local discriminative network is able to cope with
the structural continuity of the corrupted regions, and a gradient
consistency loss function is proposed to maintain the texture consis-
tency of HSIs. Experimental results in the Airborne Visual Infrared
Imaging Spectrometer Indians Pines public dataset and Feicheng
Hyperspectral datasets show that our proposed method can provide
competitive results compared with state-of-the-art methods.

Index Terms—Channel attention mechanism (CAM), global
and local discriminators, gradient consistency (GC), hyperspectral
remote sensing, image inpainting.

1. INTRODUCTION

YPERSPECTRAL remote sensing has been applied to
H all aspects of earth science and has become an effective
technical means in the fields of geological mapping [40], vegeta-
tion survey [41], ocean remote sensing [42], agricultural remote
sensing [43], atmospheric research [44], and environmental
monitoring [45]. However, the problems of instrument instabil-
ity, slit contamination, and atmospheric interference seriously
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affect the quality of the hyperspectral image (HSI), appearing
as the lack of various stripes types [12], [13], [14] and the cloud
cover [10]. Thus, HSI inpainting is an essential computer vision
task in the field of remote sensing [26], [27], [30].

Image inpainting can be described as the process of filling
missing data in a specified area of visual input. For the inpainting
of grayscale and RGB images, it can be classified into three
categories: diffusion-based methods, exemplar-based methods,
and learning-based methods.

Diffusion-based methods are developed to fill small or narrow
holes by propagating adjacent image pixels into the corrupted
region [24], such as partial differential equations (PDE) [15] and
total variation (TV) [16]. The core of the PDE method is to fill
corrupted regions by spreading information around the area to
be repaired along the direction of the illumination line. The TV
model used the Euler—Lagrange equation [33] and anisotropic
diffusion to maintain the direction of the geometry consistent
with the image. These techniques cannot correctly restore texture
information, result in less effectiveness in handing large missing
areas, and blurring often exists. Chen et al. [34] propagated the
structure by estimating missing values in the visual tensor to fill
the corrupted region by tensor decomposition and completion
methods.

Exemplar-based methods try to capture textures with a repet-
itive pattern and complete the corrupted region with similar
neighborhoods [18]. PatchMatch [35] model is a fast-nearest
neighbor patch search algorithm and reshuffles the image to
make the output more authentic. Huang et al. [36] used the
mid-level structural cues for automatically guiding patch-based
image completion. Owing to the self-similar redundancy in
natural images, He and Sun [37] believed that the existed sparsity
in the offset between patch blocks and constraints on offsets can
produce better results.

Learning-based methods are currently mainly based on Gen-
erative Adversarial Network (GAN) [28]. GAN made the sam-
ples generated by the generative network obey the real-data
distribution as much as possible through adversarial training.
Pathak et al. [2] developed Context Encoder, proposing the pos-
sibility to predict the missing structure with convolutional neural
networks (CNNss) and to train the model with the combination of
l> and adversarial loss function. Based on this work and reducing
visible artifacts around the border of the hole, Yu et al. [8]
proposed a novel contextual attention layer to explicitly attend
on related feature patches at distant spatial locations. lizuka et al.
[9] proposed a globally and locally consistent adversarial train-
ing approach. Liu et al. [11] demonstrated that substituting
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convolutional layers with partial convolutions and mask updates
can achieve state-of-the-art inpainting results. Afterward, some
methods [1], [7] employed two-level GAN to achieve a coarse-
to-fine inpainting strategy.

For multispectral and HSIs inpainting, partial algorithms for
grayscale and RGB images are still applicable, such as diffusion-
based methods [21], [22] and exemplar-based methods [52],
[53]. These kinds of spatial-based methods take advantage of
the relationship between different pixels in the spatial dimension
and do not require any other spectral and temporal auxiliary
images, so it is impossible to reconstruct a large corrupted re-
gion. In addition, there are some spectral-based, temporal-based,
and hybrid methods. Spectral-based methods refer to relevant
information of other spectral data to reconstruct the corrupted
region [18], [48], [54], [55]. The basic idea of this method is
to estimate the relationship between the known regions and
incomplete bands and then reconstruct the missing regions with
this relationship. Due to the redundancy and correlation (RAC)
of the remote sensing image, Kang et al. [58] used the tensor
decomposition to obtain global RAC in the spectral domain.
However, the corrupted region caused by detector damage or
cloud cover affects all bands in remotely sensed images. In
this case, the spectral-based methods fail in getting a promising
result. Temporal-based methods replace the missing area with
the same area of different periods [56], [57]. RAC characteristics
also exist in the temporal domain. He et al. [59] introduced
tensor decomposition into the analysis of time-series remote
sensing datasets and proposed a tensor ring completion method
for missing information reconstruction. However, such methods
increase the complexity of data collection and consumed human
and material resources. Some hybrid methods [22], [S1] achieve
better results to some extent. Ji ef al. [51] proposed an improved
tensor decomposition method to consider the RAC characteris-
tics of spatial, spectral, and temporal domains while reconstruct-
ing the underlying patterns. However, the above problems have
not been solved.

To date, by treating the HSI as 3-D cube data, many different
algorithms use a 3-D CNN [60], [61] to automatically extract
the spatial-spectral feature from HSIs. Li et al. [60] proposed a
lightweight 3-D CNN and viewed the HSI cube data altogether
without relying on any preprocessing or postprocessing, ex-
tracting the deep spectral spatial-combined features effectively.
Sellami et al. [61] proposed a novel approach based on adaptive
dimensionality reduction and semi-supervised 3-D CNN for
the spatial-spectral feature extraction of HSIs. Although the
GAN [28] accurate learning methods have been brilliant in
the field of RGB image completion, they are not available to
obtain large datasets for specific scenes due to the complexity
of hyperspectral data collection. At the same time, due to the
complex spectral relationship of HSI, using GAN to generate
artificial data for learning a better inpainting model is also
challenging. Ulyanov et al. [4] proposed that prior information
can be obtained from the structure of the neural network itself to
guide image inpainting. Oleksii and Hardeberg et al. [3] applied
this method to HSTinpainting tasks and achieved good inpainting
results subsequently.
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A. Contribution

In order to solve the above problems, we propose an end-to-
end inpainting framework of HSIs based on CNN to address the
corrupted region of all bands. Our proposed method predicts
large areas missing without any other spectral and temporal
auxiliary images by a deep learning framework [2], [9], [28].

We take full advantage of the RAC characteristics in spectral
channels and the texture richness in the spatial dimension. The
main contributions can be generalized as follows.

1) The dependence of the HSI channels is fully utilized
by a channel attention mechanism (CAM) of assigning
different adaptive weights to different channels, to achieve
the role of reducing the redundancy.

2) We believe that channel hyperspectral remote sensing
images have rich texture features in the spatial dimension.
A local discriminative network is added to determine
the authenticity of the image in the corrupted regions
for structural continuity, and a gradient consistency loss
(GC-loss) function is designed to focus on the GC between
generated HSI and ground truth.

3) Since there are no large public datasets for precise learn-
ing, we develop an HSI dataset named Feicheng Hyper-
spectral (FCH) containing a total of 3000 HSIs and 3
scenes including farmland, highway, and tenement scenes.

The rest of this article is organized as follows. Section Il intro-
duces the materials and the proposed architecture in detail. The
experimental results of the proposed FCH dataset and the public
dataset are provided in Section III. In Section IV, we discuss the
results. Section V briefly summarizes the methodology of our
work.

II. PROPOSED METHOD

Our method is based on the GAN [28] for HSI inpainting
process, in which we simultaneously train two networks: a
generative network G to capture the data distribution and a
discriminative network D to estimate the probability that a
sample comes from the training data or G. Once the training
is stable, that is, D cannot judge whether the image is true
or fake and G also cannot generate a more realistic image to
deceive the D, we get the optimal generator G*. However, due
to the particularity of spectral and spatial information of HSI,
adaptive improvement of ordinary GAN is needed. In order to
make the network pay more attention to the bands with large
structural differences, the CAM SE-Net is added by the method
of [17] and assigns adaptive weights to different channels during
the generative network training. In the discriminator section,
similar to the method of [9], we use the global discriminative
network to determine the overall characteristics of the image
and the local discriminative network to focus more attention
on the missing region. In order to ensure that the texture of
the generated HSI is more authentic and abundant, we design a
GC-loss function to constrain the GC between the generated HSI
and the ground truth image. Finally, we combine the GC-loss
with reconstruction loss, adversarial loss, and TV loss as the final
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Fig. 1. Overall framework of the proposed HSI inpainting method.

optimization function to joint training. The overall framework
of our inpainting system is shown in Fig. 1.

A. Generative Network

The input of generative network Ij;, is a 63 x 256 x 256 HSI
with some black missing parts. The structure of our network is
similar to the generative network in [5], which is composed of
the encoder part, middle part, and decoder part. In the encoder
part, a 7 x 7 convolution kernel is used to obtain an initial
feature map, on that basis, SE-Net is added to gain the weight
values of each layer. Then, in order to generate nonblurred
texture in the corrupted regions, we down-sample twice with 4
x 4 convolutions. Symmetrical on the encoder part, the decoder
part up-samples images back to the original size. In the middle
part, we have eight residual blocks with dilated convolutions
[31] instead of regular convolutions to gain a larger receptive
field, while still using the same amounts of parameters and
computational power. An overview of the generative network
model architecture can be seen in Table I.

CAM: The number of HSI bands can reach tens or even
hundreds, and there is a strong correlation among adjacent
channels. However, these very similar channels have no extra
effect on HSI inpainting tasks, and repairing only one can
achieve the goal of repairing multiple adjacent channels. By
assigning different weight coefficients to the respective channels
of the HSI, the purpose of eliminating channel redundancy can
be achieved. We use SE-Net [17] to implement the CAM . In
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TABLE 1
ARCHITECTURE OF THE HSI GENERATIVE NETWORK
Type Kernel Dilation Stride Outputs

conv. 7x7 1 1x1 64
conv. 4x4 1 2X2 128
conv. 4x4 1 2x2 256
dilated conv. 3x3 2 Ix1 256
dilated conv. 3x3 2 1x1 256
dilated conv. 3x3 2 1x1 256
dilated conv. 3x3 2 1x1 256
dilated conv. 3x3 2 1x1 256
dilated conv. 3x3 2 1x1 256
dilated conv. 3x3 2 1x1 256
dilated conv. 3x3 2 1x1 256
deconv. 4x4 1 2x2 128
deconv. 4 x4 1 2x2 64
conv. 7x7 1 1x1 63

order to take advantage of global contextual information, the
squeeze function maps global spatial information to 1-D channel
descriptors.

Assuming that the squeeze function is represented by F, the
input feature maps U € RA*W*C where

1 H W
Ze :qu (uc) = mzzuc(la])

i=1 j=1

ey

where U = [uy, ug, ..., ucl,c=1,2, ..., C, z is the cth
element of z. A rectified linear unit (ReLU) [30] function and
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TABLE II
ARCHITECTURE OF THE HSI GENERATIVE NETWORK

Type Kernel Stride Outputs
conv. 4 x4 2x2 64
conv. 4 x4 2x2 128
conv. 4x4 2x%x2 256
conv. 4 x4 2x%x2 512
conv. 4 x4 2x2 1

a sigmoid activation with two fully connected (FC) layers are
opted to fully capture channel-wise dependencies. Then we can
write the activate output as F'.,.

S¢ = Fep (2) = 0 (W20 (Wi2)) )

where s, is the cth element of s. § and o refer to the ReLLU func-
tion and sigmoid activation, respectively. W; € R¢*¢, W, €
RE*¢ and C' = €. The FC layer including dimensionality
reduction process reflected in the setting of reduction ratio r,
so as to reduce the parameters in the training course. The final
output of the CAM can be described as

Te = Sc Ue 3)

where X = [z1, w2, ..., x¢]is the final weight vector.

B. Global and Local Discriminative Network

A global discriminative network and a local discriminative
network have the objective of discerning whether an HSI is real
or fake (HSI from generative network output). The networks are
based on CNNs that squeeze the HSI into small feature maps.
An overview of the networks can be seen in Table II.

The global discriminator takes as an input of the entire image
rescaled to 256 x 256 pixels. Then, we use a 70 x 70 PatchGAN
[5] [49] [50] architecture which consists of five convolutional
layers with the size of the final outputs feature map is 70 x 70.
All the convolutional layers, except the last one, employ a stride
of 2 x 2 pixels to decrease the HSI resolution while increasing
the number of output channels. The last layer keeps the space
size constant and compresses the channel dimension to one. In
contrast with the generative network, all convolutions use 4 x
4 kernels. The global discriminator looks at the entire image to
assess if it is coherent as a whole, but cannot pay good attention
to the consistency of the missing part. Thence, we design the
local discriminator looks only at a small corrupted area at the
completed region to ensure the local consistency of the generated
patches. The local discriminator has the same pattern except the
input is the missing part that needs to be fixed. The missing area
of HSIs caused by instrument instability and slit contamination
is usually striped, so we consider various striped masks during
the training process. We also consider the issue of cloud cover
and add a cloud-like irregular mask.

C. Loss Function

The HSI generative network uses the incomplete HSI & =
x® (1 — M) as input, where x refers to the complete HSI,
and M refers to the binary mask with the value 1 inside regions
to be filled-in and 0 elsewhere. G(-) denotes the output of the
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generative network and D(-) denotes the combined discrimina-
tive network in a functional form. In order to make the network
generate more realistic HSI, four loss functions are jointly used:
a proposed GC-loss to constraint gradient differences between
generated images and ground-truth, a reconstruction (L1 ) loss to
capture the overall structure of the generative HSI, an adversarial
loss to make the final network output look more realistic, and a
TV loss refers to the gradient diffusion concept in the TV model
[16] to make the adjacent pixel values of the output as similar
as possible. We now introduce each loss function in detail.

GC-Loss: Gradient reflects high-frequency information of the
image. For image inpainting tasks, especially remote sensing im-
ages, texture information reflected by gradient is very important.
There are also some image inpainting methods or networks [5],
[6] using edge information to assist image inpainting, but they
use the GC of neighboring pixels to smooth the output image.
We use the gradient loss function to focus on the required gra-
dient information and maintain the consistency of the gradient
between the generated images and the ground truth images. Then
we can describe the gradient loss as Lg;aq

Loma= |T@)~T@G@o QA-M)), @

where T'(-) represents the function used to extract and select
gradients. In this article, we use the canny operator to achieve
this part.

Reconstruction Loss: We use the L1 distance as the recon-
struction loss function to measure the difference between the
generator’s output and the ground truth HSI, L,

Lrec (1) = [z — G(z © (1= M))|, (5)

where © is the element-wise product operation. Reconstruction
loss is the most commonly used loss function for general image
reconstruction. However, this loss function can only obtain
the approximate structural information of the corrupted region,
some high-frequency parts cannot be well reconstructed. Nev-
ertheless, it is a good choice to use it to get the initial structural
information.

Adversarial Loss: The adversarial loss reflects the adversarial
process of GAN [28]. In order to learn the generative distribution
Pg(x), GAN proposed a discriminator D to continue adversarial
learning with the aim to measure the difference between Pg(z)
and true distribution Pyat, (). We can find the optimal generator
G* as follows:
mén max B pynn(e) 108D (X)] + Egpg (2) [log (1 — D (Z))]

(6)
where Z refers to the output of generator G. We first train the
discriminator and learn the probabilities that belong to the real
data or the false data, respectively. When this probability reaches
the maximum, we can get the optimal discriminator D*. Then we
start training the generator, hoping that the fake data generated
canfool the D*. Fix the parameters of the discriminator, optimize
the generator through back-propagation, and make the data
obtained by the generator after the discriminator closer to one.
Then we can describe the adversarial loss as L4+

Eadv = mgx Ex~Pdam(z) [lOg (D (.’L‘))

+log(1-D(G(z © (1-M)). (D
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(b)

(

Fig. 2.

We use optimizer Adam [38] to optimize G and D jointly. It
is worth noting that the adversarial loss makes the overall gen-
erative images more realistic, not just in the corrupted regions.

TV loss: TV loss is evolved from the traditional image inpaint-
ing method TV model. It was originally used for denoising and
deblurring tasks. However, due to the diffusion performance of
the TV model, it can also be used in the field of image inpainting.
We use the TV loss as follows:

Lov =Y (@i —2ig)" + (@it1; — i5)°
i

®)

where ¢ and 7 are the coordinate position of a pixel in the images.
We use the TV loss to make the output image smoother, as well
as increase the authenticity of the image.

Joint Loss: We define the overall loss function as

L= )\gcgrad + )‘recﬁrec + )‘-advﬁadv + )\TV‘CTV- (9)

For our experiments, we choose Ayec = 1,Aqqv = 0.1, Apy =
1, kg =5.

III. RESULTS
A. Proposed Datasets

Since there is no large hyperspectral dataset for accurate train-
ing of HSI inpainting tasks, we collected a hyperspectral dataset
on June 23, 2018, from Feicheng, Shandong Province, China,
and named FCH dataset. The spectroscopic equipment used for
acquisition is the new-generation airborne hyperspectral imager
instrument of China, named Wide Swath and High-Resolution
Airborne Pushbroom Hyperspectral Imager, which contains 63
spectral channels with 0.4—1.0 pm spectral resolution and the

c)
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Class representatives of the FCH dataset: (a) farmland; (b) highway; (c) tenement.

spatial resolution is about 12.5 cm per pixel. The size of the
HSI we captured is 262748 x 10983. However, due to the
camera shooting angle, there are some black borders above the
image. After cropping these black areas, we retain valid areas.
Subsequently, the big HSI is randomly cropped to a size of 256
% 256, and 3000 HSIs are obtained. These HSIs mainly include
three scenes: farmland, highway, and tenement. As shown in
Fig. 2, the pseudocolor image is formed with bands (5, 10, and
30).

B. Experimental Setup

The overall network architecture is designed using the Py-
torch framework. On the FCH dataset, 80% of the samples are
randomly selected as the training set and 20% of the samples
are used as the test set. In order to expand the training samples,
the method of random cropping is used to make the samples
of each epoch different, so as to achieve the purpose of data
augmentation. In our experiments, we use three types of image
masks: single band, multiple bands, and irregular patterns. For
the single band and multiple bands masks, the size is fixed and
the width is equal to the width of the image. The single mask
takes up 1/8 of the total image pixels with the random location.

Multiple masks have multiple stripes of different sizes. For
the irregular mask, we use a cloud mask for the case of cloud
cover.

Our network is trained 256 x 256 HSI as input with the joint
loss function defined in (10). The hyperparameter settings during
training are as follows. We use the stochastic gradient descent
solver Adam [38] to optimize the model and set 5; = 0 and
B2 = 0.9. The generative network G is trained with learning rate
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Fig. 3.
HSIs, and generator output HSIs.

1072 which is ten times higher than the discriminative network
D. The batch size and the maximum number of iterations are
set as 8 and 30 000, respectively. It is worth noting that we use
the pretrained inpainting model in the normal image from the
Places2 dataset. When we add the SE-Net to assign channel
weight, the pretrained inpainting model with no SE-Net model
in the FCH dataset will be used. In all experiments, the filter
weights of the generator and the discriminator are initialized by
Gaussian distribution with 0 mean and 0.2 variances.

C. Comparative Experiment

First, we observe the experimental results on the developed
FCH dataset, selecting 80% of the samples to train and 20% to
test. Fig. 3 shows some experimental results under the random
single mask. Fig. 4 shows some experimental results under the
fixed multiple masks. Fig. 5 shows some experimental results
under the fixed cloud mask. The experimental images are all
from the proposed FCH dataset, and the 30th channel is taken
for visualization. We observed that most of the corrupted regions
can be well reconstructed, but there are still obvious borders
and blurs on some images, as shown in Figs. 3(c) and 4(f).
After analysis, we found that these blurred images usually have
higher pixel values. For example, the average pixel of the ground
truth image of the missing areas in Fig. 4(f) is 60, while the
average pixel of the ground truth image of the missing part in
Fig. 4(a) is only 29. We can easily observe that Fig. 4(f) has
more information than Fig. 4(a) needed to be restored because
of the initial value of the missing areas is zero. Overall, the
inpainting results of multiple masks are better than the single

Inpainting results for FCH dataset with random single band mask. For each subpicture like (a), from left to right are ground truth HSIs, generator input

TABLE III
OVERALL QUANTITATIVE INDICATORS OF DIFFERENT METHODS ON
INDIANS PINES DATASET

Mumford

Methods Input Shah TV-H™!  FastHyln Ours
MPSNR 17.75 24.74 27.68 28.08 28.39
MSSIM 0.722 0.890 0.911 0.920 0.930

mask. This is because the single band mask has a larger corrupted
area compare with one single band in the multiple bands mask
having smaller corrupted regions.

Then, we perform comparative experiments on the Airborne
Visual Infrared Imaging Spectrometer (AVIRIS) Indians Pines
dataset. The size of the dataset is 145 x 145 x 200, which is
collected by the AVIRIS with the imaging wavelength range,
and the spatial resolution is about 0.4-2.5 pm and 20 m per
pixel, respectively. Fig. 6 compares images generated by the
proposed inpainting method with three traditional methods:
Mumford-Shah [25], fourth-order TV (TV-H ~1) [39] 2-D meth-
ods and the state-of-the-art HSI inpainting method FastHyIn
[18], and uses the result from [3]. To measure the quality of our
results, we use two indicators: signal-to-noise ratio (PSNR) and
structural similarity (SSIM). The specific quantitative indicators
are described in Table III.

Although the proposed method has improved in quantitative
indicators, the phenomenon of ambiguity still exists in Fig. 6(f).
Through analysis, we believe that it is caused by the difference
between training and testing data. The training set uses the
proposed FCH dataset and the spatial resolution is 0.25 cm per
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(a)
(©)
(e)

Fig. 4. Inpainting results for FCH dataset with fixed multiple bands mask. For each subpicture like (a), from left to right are ground truth HSIs, generator input
HSIs, and generator output HSIs.

0

Fig. 5. Inpainting results for FCH dataset with cloud mask. For each subpicture like (a), from left to right are ground truth HSIs, generator input HSIs, and
generator output HSIs.

Fig. 6.  Comparison of HSI inpainting results with existing models in AVIRIS Indian Pines dataset; band 150. (a) Ground truth. (b) Ground truth with mask.
(c) Mumford-Shah [25]. (d)TV-H 1 [39]. (e) FastHylIn [18]. (f) Ours.
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Fig. 7.
3D [3]. (d) (d) Deep-HS-prior 2D [3]. (e) Ours.

TABLE IV
OVERALL QUANTITATIVE INDICATORS OF DIFFERENT METHODS ON THE
FCH DATASETS

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 13, 2020

(@

Comparison of HSI inpainting results with existing models in FCH datasets; band 30. (a) Ground truth. (b) Ground truth with mask. (c) Deep-HS-prior

TABLE V

OVERALL QUANTITATIVE INDICATORS OF ABLATION EXPERIMENTS ON THE

FCH DATASET

Deep-HSI-prior ~ Deep-HSI-prior

Methods Input iD D Ours
MPSNR 13.32 29.54 33.21 33.49
MSSIM 0.342 0.936 0.959 0.963

pixel. Even though the problem of insufficient scene information
caused by the high spatial resolution is considered and use 3 x
3 convolutional fuzzy processing, comparing to the 20 m per
pixel spatial resolution of the AVIRIS Indians Pines dataset, the
difference is still huge. There are also discrepancies between
the training scene and the testing scene. We test on the AVIRIS
Indian Pines public dataset and the image scene is urban data,
but there are only about one hundred HSI of urban scenes in our
developed dataset.

Finally, we compare the deep-HSI-prior 3-D and deep-HSI-
prior 2-D methods proposed in [2] on the FCH dataset. The
visual results are shown in Fig. 7, and the quantitative indicators
are given in Table IV. It can be seen that our proposed method
is better than the deep-HSI-prior methods on the proposed FCH
dataset.

D. Ablation Experiments

To evaluate the effectiveness of our proposed method, ablation
experiments are conducted by using no CAM, no local discrim-
inator, and no GC-loss function on the proposed FCH dataset.
When we add the CAM, a network with no CAM should be
pretrained. Table V shows all experimental results and we can
draw the following conclusions.

Methods No-CAM No-Local-D ~ No-GC-loss All
MPSNR 20.94 32.65 29.18 33.49
MSSIM 0.748 0.943 0.922 0.963

1) Results from no no-CAM experiments are the worst be-

2)

3)

4)

cause of the RAC of HSI. HSI have many spectral chan-
nels, for example, 63 channels in the proposed FCH dataset
and 200 channels in the AVIRIS Indians Pines public
dataset. Such multichannel characteristics not only in-
crease the distinguishability of materials but also generate
a certain degree of redundancy. Therefore, it is very im-
portant to establish the dependence relationship between
channels for the HSI.

If the local discriminative network is not added, the exper-
imental results are slightly reduced. Simplify experiments
without the local discriminative network as No-Local-D.
The reason is that the global discriminator looks at the
entire image to assess if it is coherent as a whole, but cannot
pay good attention to the consistency of the missing part.
The results of no-GC-loss function experiments prove that
the validity of the texture consistency idea. Since HSI are a
type of remote sensing images with rich scene information,
the texture information represented by the gradient is very
important for the inpainting task of HSIL.

Our proposed method achieves the best performance com-
pared to the three situations mentioned above, which is a
result of combining CAM, local discriminator, and gradi-
ent consistency loss function (All). The CAM adaptively
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TABLE VI
INVESTIGATE THE EFFECT OF DIFFERENT POOLING LAYERS IN THE SQUEEZE
OPERATOR ON THE RESULTS OF HST INPAINTING

Squeeze Average-pooling Max-pooling
MPSNR 33.28 33.49
MSSIM 0.960 0.963

selects the required channels and establishes the depen-
dency relationship between channels. The local discrim-
inative network strengthens the judgment on the authen-
ticity of the image of the corrupted region. The gradient
consistency loss function guarantees the consistency of
the corrupted region texture between the generated image
and the ground truth.

IV. DISCUSSION

In this section, we mainly explore how to maximize the bene-
fits of SE-Net in the generative network and draw corresponding
conclusions. In all experiments, the training set and the testing
set use the developed FCH dataset to analyze the above factors.
Details are as follows.

A. Evaluation of Squeeze Operator

The squeeze operator squeezes a 3-D image cube into a 1-D
channel descriptor and the pooling layer plays an important role.
The result of pooling is to reduce features and parameters, but the
purpose of pooling is not only that. The purpose of pooling is to
maintain some invariance, such as rotation, translation, scaling,
etc. Average-pooling and max-pooling are commonly used.
Average-pooling can reduce the error caused by the increase
in the variance of the estimated value and the limited size of
the neighborhood, which retain more background information
of the image. Max-pooling can reduce the bias of the estimated
mean caused by the error of the convolution layer parameters
and retain more texture information. We study the effect of
these two pooling layers on the image inpainting results, and
the quantitative analysis results are shown in Table VI. While
both the max-pooling and the average-pooling are effective, the
performance of the max pool is slightly better, which shows that
it is reasonable to choose it as the basis of squeeze operation.
However, we also notice that the performance of the SE block is
quite robust to the choice of a particular aggregation operator.

B. Evaluation of Excitation Operator

Next, we evaluate the nonlinear selection of the excitation
operator. The role of the excitation operator is to assign atten-
tion weights and establish a dependency relationship between
channels. The operator is mainly implemented by a nonlinear
activation function. In this section, we explore the effects of
Sigmoid function, Tanh function, and ReLU function on the
results of HSI inpainting. The quantitative analysis results are
reported in Table VII. We can see that replacing sigmoid with
the Tanh intersection will slightly reduce the performance while
using ReLLU will significantly worsen and actually cause the
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TABLE VII
INVESTIGATE THE EFFECT OF DIFFERENT POOLING LAYERS IN THE EXCITATION
OPERATOR ON THE RESULTS OF HST INPAINTING

Excitation ReLU Tanh Sigmoid
MPSNR 32.98 33.28 33.49
MSSIM 0.950 0.959 0.963

TABLE VIII

OVERALL QUANTITATIVE INDICATOR OF DIFFERENT NUMBER OF SE-NET
WITH THE TEST RESULTS

Numbers of

the SE-Net 0 ! 2 3
MPSNR 20.94 33.34 33.41 33.49
MSSIM 0.748 0.960 0.961 0.963
Params 47.2M 50.1M 52.5M 54.2M

The bold values in represents the optimal result.

inpainting performance to drop below the baseline (Deep-HS-
prior 2D [3]). This suggests that the excitation operator must be
carefully selected to make the SE block valid.

C. Evaluation of the Number of SE-Net

We explore the influence of the different numbers of SE-
Net blocks by integrating SE-Net blocks into the generator
G. Specifically, we add SE-Net blocks to the encoder stage:
stage_1, stage 2, and stage_3, and the quantitative analysis
results in Table VII. We observe that the quality of HSIis steadily
improved as the number of SE-Net blocks is gradually increased.
In the stage_1, the main role of SE-Net block is to eliminate the
redundancy on the HSI spectrum and establish the dependency
between channels. By comparing the second column with the
third column in Table VIII, we can observe the obvious improve-
ment of the picture quality evaluation indicators. At the same
time, it is also proved the necessity to establish a dependency
relationship between channels for multichannel images such as
HSI. In the stage_2 and stage_3, the SE-Net blocks work on
the feature maps generated by the forward propagation of the
CNN and establish the dependency relationship on the channel
dimensions of the feature maps. It can be seen from the fourth
and fifth columns of Table VIII that with the increasing of
the number of SE-Net layers introduced, the quality of HSI
is also continuously improved. We believe that the benefits of
SE blocks at different stages are complementary and can be
effectively combined to further improve network performance.
Both MPSNR and MSSIM indicators have obvious upward
trends. The third row in Table VIII shows that with the increase of
SE-Netblocks, the parameters of the network are also increasing.
Hence, it is needed to make a tradeoff between performance and
efficiency. It may not be optimal to use the same ratio in the
entire network (due to the different roles played by different
layers) in practice. In order to reduce the complexity of network
parameters, we reduce the layer by layer four times the ratio to
meet the needs of the infrastructure.
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Fig. 8. SE-Net block location designs explored in the discussion.
TABLE IX
OVERALL QUANTITATIVE INDICATOR OF DIFFERENT POSITION OF SE-NET
WITH THE TEST RESULTS ON THE FCH DATASETS

Position of

the SE-Net Initial Encoder Middle Decoder
MPSNR 33.40 33.49 33.39 33.25
MSSIM 0.962 0.963 0.958 0.956

The bold values in represents the optimal result.

D. Evaluation of the Position of SE-Net

We remark that the performance of the network is improved
with the increase in the number of SE-Net, which cannot only
establish the dependence relationship between the spectral chan-
nels of HSIs but also establish the channel connection of the
3-D feature map after convolution. Since it can establish the
dependency relationship between the feature maps, learning
which part (our generative network consists of Encoder, Middle,
and Decoder) of the generative network to add is also important.
Next, we study the impact of SE-Net on network performance
in various parts of the generation network. In the experiment,
SE-Net is added to the initial layer in each subexperiment, and
then a comparison test is performed at the end of the encoder
part, the end of the middle part, and the end of the decoder part.
The specific experimental method is shown in Fig. 8 and the
results are reported in Table IX. While all kinds of experiments
are effective, the performance of the Encoder is slightly better
and the performance of the decoder is slightly worse. However,
we also notice that the performance of the SE block is quite
robust to the choice of specific placement.

V. CONCLUSION

Our proposed method uses a deep learning framework to
predict large areas missing without any other spectral and tem-
poral auxiliary images. We design an end-to-end inpainting
framework HSI-IPNet and make full use of both spectral char-
acteristics and spatial information. For spectral characteristics,
we employ SE-Net to the adaptive extraction of the spectral
dimension, reducing the redundancy of hyperspectral channels
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and modeling the correlation between channels. For spatial
information, a local discriminative network is introduced in the
discriminator to determine the structural continuity of the cor-
rupted region images, and a gradient consistency loss function
to focus the texture consistency between the generated images
and the ground truth images.

We test with three kinds of masks and prove that HSI-IPNet
can solve the lack of various stripes types caused by instrument
instability and slit contamination, as well as the lack of irregular
graphics caused by cloud occlusion. To test the performance of
our method, we experiment on the AVIRIS Indians Pines public
dataset and the proposed FCH dataset. Extensive experimental
results consistently show that our architecture is superior to
current state-of-the-art methods. In future work, we will pay
more attention to the fusion of HSI with different spectral
resolutions and the methods to expand HSI datasets, such as
using style transfer to expand the limited HSI datasets.
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