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Leveraging High-Resolution Satellite Imagery and
Gradient Boosting for Invasive Weed Mapping

Yuri Shendryk , Member, IEEE, Natalie A. Rossiter-Rachor, Samantha A. Setterfield, and Shaun R. Levick

Abstract—An introduced pasture grass (Andropogon gayanus -
gamba grass) is spreading through the tropical savannas of north-
ern Australia, with detrimental ecosystem consequences including
increased fire intensity. In order to monitor and manage the spread
of gamba grass, a scalable solution for mapping its distribution over
large areas is required. Recent developments in machine learning
have proven useful for distinguishing vegetation types in satel-
lite imagery in an automated manner. In this study, we collected
field data for supervised learning of very high-resolution (0.3 m)
WorldView-3 satellite imagery and tuned the hyperparameters of
an extreme gradient boosting classifier to produce a viable solution
for detecting the probability of gamba grass presence. To evaluate
the performance of WorldView-3 imagery in discriminating gamba
grass, we tested the utility of predictors derived from: 1) spectral
bands; 2) textural features; 3) spectral indices; and 4) all predictors
combined. Our results suggest that gamba grass presence can be
mapped from space with an accuracy of up to 91% under optimal
environmental conditions.

Index Terms—Extreme gradient boosting (XGBoost), gamba
grass, high resolution, machine learning, remote sensing, weed,
WorldView-3.

I. INTRODUCTION

Andropogon gayanus (gamba grass) is an introduced peren-
nial grass that has invaded northern Australia’s tropical savan-
nas, including large areas in Queensland, the Northern Terri-
tory, and small infestations in Western Australia [1]. Gamba
grass produces more biomass each year than the native savanna
grasses, resulting in increased fuel load and fire intensity, and
consequently, reduced biodiversity, tree cover, and carbon stores
[2], [3]. Fire frequency is high across the region, with an average
of one fire every two years [4]. Gamba grass is fire resistant [5],
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regenerating quickly from the established tussocks [6], [7] and
resulting in a substantially increased fire risk [3], [8]. Due
to the detrimental environmental and socioeconomic impacts
following invasion, gamba grass has been recognized as one of
Australia’s 32 weeds of national significance (WoNS), and a
key threatening process under Australian federal legislation [1].
Critical to the effective management of this weed is knowledge
on its distribution and spread. However, to date, comprehen-
sive mapping of the gamba grass has been limited by the vast
spatial extent of the current and potential invasion, and limited
on-ground access to much of the region.

In 2015, gamba grass cover was successfully mapped over a
30-km2 area in Australia’s Northern Territory using a point cloud
obtained from airborne light detection and ranging (LiDAR) [9].
The authors defined a method for extracting a two-dimensional
mask from the point cloud with a voxel-based approach that
utilizes height and connectivity information. Airborne LiDAR
is a powerful landscape-scale mapping tool but is relatively
expensive compared to alternatives such as satellite imagery and
is less scalable across large regions, particularly because high
point densities dictate a low-speed flight plan.

Airborne and satellite-derived multispectral and hyperspec-
tral imagery offer alternative avenues for mapping of invasive
weeds [10]. Airborne hyperspectral imagery has been used to
map multiple invasive weeds with accuracies of 57%–97% [11]–
[13]. However, as the acquisition of airborne imagery is usually
prohibitive for large-scale studies, in recent years, there has been
an increase in research focus on the use of very high-resolution
(VHR) multispectral satellite imagery [14]–[18]. The applica-
tion of VHR satellite imagery [ground sample distance (GSD)
of ≤0.5 m] has confirmed its ability to map weed species with
accuracies of 68–93%. The large spread in reported accuracies
could be attributed to the presence of multiple classes of weeds
and nonweeds in the classification task.

The comparable accuracies in mapping invasive weeds using
airborne hyperspectral and VHR multispectral satellite imagery
suggest that the latter is a promising tool for mapping gamba
grass and may be comparatively cost-effective for systematic
mapping of large areas. Indeed, the majority of airborne-based
studies have considered a mapping area of less than 30 km2,
and indicated that high accuracies of weed detection has much
to do with the higher spatial and spectral resolution of im-
agery [11]. While both airborne hyperspectral and VHR satellite
multispectral sensors can generate imagery with similarly high
spatial resolutions (i.e., GSD of ≤0.5 m), the latter are limited
by spectral resolution with current sensors usually providing
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4-band imagery in red, green, blue (RGB) and near-infrared
(NIR) wavelengths. At present, the most advanced, publicly
available VHR satellite sensor is WorldView-3 having 17 bands
[including panchromatic (PAN) band] in visible/NIR (VNIR)
and short-wave infrared (SWIR) wavelengths (450–2365 nm)
[19]. The benefit of these additional spectral bands of VHR
satellite multispectral sensors for mapping invasive weeds re-
quires investigation. It was previously reported that imagery
with additional spectral bands beyond RGB+NIR wavelengths
did not improve the discrimination of invasive weeds [15], [17].
While textural features extracted from VHR satellite imagery
have been previously reported to capture the components of veg-
etation structure [20], no research has investigated the benefits
of textural features for classifying invasive weeds.

The aim of this study was to test the suitability of VHR
WorldView-3 imagery for mapping the presence of gamba grass
over large landscapes (>200 km2). To evaluate the sensitivity of
WorldView-3 imagery in discriminating gamba grass, we tested
the utility of the following.

1) Spectral bands.
2) Textural features.
3) Normalized difference spectral indices (NDSIs).
4) All predictors in combination.
We also investigated whether the additional 12 spectral bands

that WorldView-3 offers beyond standard RGB+NIR wave-
lengths improves the discrimination of invasive weeds.

In this study, an extreme gradient boosting (XGBoost) clas-
sification algorithm [21] was employed to take advantage of
the data dimensionality. To date, the most popular classification
algorithms for mapping invasive weeds were random forest [12],
[16], maximum likelihood [11], [15], and spectral angle mapper
[11], [13]. However, in this study, we explored a decision tree
boosting algorithm, which has showed good potential in multiple
classification benchmarks [22], [23]. The main advantages of
XGBoost are as follows:

1) high computational speed due to parallel processing of
data;

2) generally better performance in comparison to other de-
cision tree-based models (if hyperparameters are tuned
properly);

3) nonreliance on missing value imputation, scaling, and
normalization of the input data; and

4) in-built regularization terms that can be used to control the
complexity of the model and avoid overfitting [24].

II. METHODOLOGY

A. Study Area

The 205-km2 area of interest (AOI) was located near the
township of Batchelor, which is approximately 100 km south of
Darwin, in the Northern Territory of Australia (see Fig. 1). The
study area is largely under private ownership for pastoral lease
or semirural development, with other significant areas owned by
local communities or under government ownership [9]. This area
experiences a tropical climate with distinct wet and dry seasons.
The annual rainfall is 1535 mm with the heaviest falls occurring
during November to April [25]. The major vegetation type

Fig. 1. WorldView-3 image of (a) AOI in relation to the extent of Australia
with a (b) zoom-in area #1 in true-color (5, 3, 2) and (c) zoom-in area #2 in
false-color (8, 4, 1) (see Table II for spectral band notations).

Fig. 2. Examples of live gamba grass (Andropogon gayanus) as seen from the
(a) ground level and (b) air in April 2019.

is savanna woodland dominated by Eucalyptus miniata Cunn.
Ex Schauer (Darwin woollybutt) and Eucalyptus tetrodonta F.
Muell (Darwin stringybark), with a grass understory dominated
by native annual grass species, such as Sorghum spp., and
perennial species such as Heteropogon contortus (L.) Roem. &
Schult and Alloteropsis semialata (R. Br.) Hitchc., and invasive
perennial species such as Andropogon gayanus Kunth. (see
Fig. 2).

Gamba grass could be structurally (i.e., in terms of height and
density) similar to Sorghum spp., which is the most dominant
annual grass species in the study area. However, gamba grass
has a different phenological cycle compared to native savanna
grasses [3], [7], and remains tall (up to 4 m) and photosyntheti-
cally active into the mid dry season (June–July), by which time
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TABLE I
WORLDVIEW-3 ACQUISITION PARAMETERS

θ = elevation angle; α = azimuth angle; GMT = Greenwich Mean Time.

the native grasses have senesced (usually March–May) and have
“collapsed” to form a low (∼0.5–1 m) grass layer. Consequently,
the early to middle dry season is the best seasonal time to
accurately detect gamba grass, when it is distinct and clearly
visible in the landscape.

B. Field Measurements

The field measurements were collected in multiple surveys
conducted on 21–22 March, 16–17 April, 5–6 July, 6–7 August,
and 17–18 September 2019. A Leica GS16 GNSS smart antenna
and CS20 controller [26] were used in conjunction with Leica’s
precise point positioning (PPP) service to enable centimeter
accuracy of field data. In the first survey, circular plots [radius
(r) = 3 m and area (A) ≈ 28.3 m2] were mapped with a
homogeneous representation of (1) live (green) gamba grass,
(2) burnt gamba grass, (3) herbicide-sprayed gamba grass, (4)
senesced Sorghum spp., (5) burnt Sorghum spp., and (6) other
live and senescing native grass species. In the second survey,
circular plots were only classed as gamba or non-gamba due to
phenological changes that occur as the dry season progresses.
Additional classes were defined after the fieldwork by delineat-
ing homogeneous circular plots (r = 3 m) of (7) trees and (8)
water bodies in WorldView-3 imagery. For the purpose of this
study, gamba grass classes (i.e., 1, 2, and 3) and non-gamba
classes (i.e., 4, 5, 6, 7, and 8) were grouped into two classes
resulting in an imbalanced (≈1:2) training dataset of 187 and
355 samples, respectively.

C. WorldView-3 Imagery

The WorldView-3 imagery was tasked to be acquired on the
11th of April 2019 and two scenes were collected within 42 s of
each other (see Table I).

Each scene consisted of PAN, VNIR, and SWIR bands in
a wavelength range 400–2365 nm (see Table II). April is the
transition between wet and dry season and was selected to task
the satellite imagery acquisition because Sorghum spp. and other
native grasses have commenced senescence and browning in
color, while gamba grass remains photosynthetically active and
green, and as such, is recognizable from the air (see Fig. 2) [2].

The satellite imagery was provided as an Ortho Ready 2A
product, which was radiometrically corrected to ground re-
flectance, and projected to a plane using UTM 52S projection.
Radiometric correction was accomplished using atmospheric
compensation (AComp) algorithm developed by DigitalGlobe
for their WorldView sensor series imagery [27].

TABLE II
WORLDVIEW-3 SPECTRAL BANDS

NIR = near-infrared, SWIR = short-wave infrared.

As a first preprocessing step, both VNIR and SWIR bands
were pan-sharpened to 0.3 m resolution based on the PAN band
and using Zhang [28] algorithm implemented in PCI Geomatica
software [29]. Then, pan-sharpened VNIR and SWIR bands
as well as the PAN band were orthorectified using rational
polynomial coefficients (RPC) and 30 m resolution SRTM-
derived digital elevation model (DEM) using PCI Geomatica
OrthoEngine. Finally, PAN, VNIR, and SWIR spectral bands
were stacked and merged into a single mosaic with 0.3 m spatial
resolution.

From the PAN band, 12 textural features were derived using a
filter window of 3 × 3 pixels [30]–[32] (see Table III). Previous
research suggests that using a filter window of 3×3 pixels results
in the highest accuracy of vegetation parameter estimation in
VHR satellite imagery [32]. Similarly, from VNIR and SWIR
bands, 120 NDSIs were derived (i.e., n!/r!× (n− r)!, where n
represents the total number of bands and r represents the number
of bands used to calculate one NDSI). NDSIs were calculated in
succession from Coastal Blue to SWIR-8 (see Table II) spectral
bands as follows:

NDSI(i,j) = (Ri −Rj) / (Ri +Rj)

where R is the spectral reflectance, and i and j are numbers
indicating the wavelengths (nm). Throughout this article, each
NDSI is denoted as combination of three-letter acronyms in
Table II (e.g., NDSI(COA,SW8) is denoted as COASW8).

Finally, we calculated predictor variables from WorldView-
3-derived spectral bands, textural features, and NDSIs. For this
we extracted statistics (see Table IV) in 17 × 17 pixels windows
(i.e., ≈26 m2) to match the areas of field measurements (i.e.,
≈28.3 m2) for each field sampling plot, resulting in total of
1036 predictor variables.

The examples of WorldView-3 imagery derived features and
predictor variables are presented in Fig. 3.
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TABLE III
TEXTURAL FEATURES EXTRACTED FROM THE PANCHROMATIC BAND

GLCM is a gray-level co-occurrence matrix; GLDV is a gray-level difference
vector derived from a GLCM; N is the number of gray levels; P is the normalized
symmetricGLCM of dimensionN ×N ;V is the normalized gray-level difference
vector of dimension N ; P (i, j) is the normalized co-occurrence matrix such that
∑N−1

i,j = 0 P (i, j) = 1; V (k) is the normalized gray-level difference vector,

V (k) =
∑N−1

i,j=0 P (i, j), where |i− j| = k [30], [33].

TABLE IV
PREDICTOR VARIABLES EXTRACTED FROM WORLDVIEW-3-DERIVED

SPECTRAL BANDS, TEXTURAL FEATURES, AND NDSIS

Note: Predictor variables are denoted as a combination of the name of the statistics
and feature (e.g., p50_COASW8 stands for 50th percentile of all pixel values in
17 × 17 pixels window of NDSI(COA,SW8) feature).

D. Machine Learning

In this study, we used XGBoost algorithm [21], [34] to dif-
ferentiate gamba grass from other vegetated and nonvegetated
areas. XGBoost is an ensemble learning method that combines
the predictive power of multiple linear models or decision trees
using a boosting algorithm. In boosting, a decision tree or
linear regression that improves the model most is added to an
ensemble at each iteration until the set number of estimators
(i.e., n_estimators) has been achieved. In contrast to bagging
techniques such as random forest, in which trees are grown to

Fig. 3. Examples of (a) features within zoom-in area #1 (see Fig. 1) and
(b) predictor variables within zoom-in area #2 (see Fig. 1) extracted from
WorldView-3 imagery: (a1) Edge (see Table III), (a2) (p50_Edge, Table IV),
(b1) normalized difference vegetation index (NDVI) (here, NDVI is an inverse
of NDSI(RED, NI2)), and (b2) p50_NDVI (i.e., 50th percentile of all pixel values
in 17 × 17 pixels window of NDSI(RED,NI2), Table IV).

their maximum extent, boosting makes use of shallow trees with
fewer splits.

The training data were shuffled and split into “train” (75%
of the data) and “test” (25% of the data) sets. Then, XGBoost
classifier with a binary logistic loss function and a tree booster
was used to predict the presence of gamba grass in two stages.
First, randomized search on hyperparameters was performed us-
ing the “train” dataset with a stratified five–fold cross validation
(cv) (training:testing ratio of 75:25). Six hyperparameters were
optimized including max_depth in range from 1 to 11 with an
increment of 1, learning_rate of 0.001, 0.01, 0.1, 0.5, 1, and
2, subsample in range from 0.2 to 1.0, with an increment of
0.1, min_child_weight in range from 1 to 21 with an increment
of 1, gamma of 0, 0.25, 0.5, and 1, and n_estimators of 100,
500, and 1000. We used expert knowledge to specify reasonable
ranges and increments of the hyperparameters. The best model
according to a cv score was used to extract the importance
of predictor variables in terms of gain, which is a relative
contribution of the corresponding predictor to the model [35].

Second, using predictors ranked according to their impor-
tance, another XGBoost classification using step-forward pre-
dictor selection (SFPS) was performed [36]. In each iteration,
the predictor which previously best improved the model per-
formance was added until addition of new predictors did not
improve the performance in terms of a cv score.

Eight XGBoost models were trained and optimized using
predictor variables extracted from: (1) four spectral bands (2,
3, 5, and 7 in Table II), (2) eight spectral bands (1 to 8 in
Table II), (3) 16 spectral bands (1 to 16 in Table II), (4) textural
features derived from a PAN band, (5) six NDSIs derived from
four spectral bands (2, 3, 5, and 7 in Table II), (6) 28 NDSIs
derived from eight spectral bands (1 to 8 in Table II), (7) 120
NDSIs derived from 16 spectral bands (1 to 16 in Table II), and
(8) all predictor variables in combination.
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Fig. 4. Ranked (from highest to lowest) importance of 30 predictor variables
for the model trained using all predictor variables in combination.

Multiple recent studies of VHR satellite imagery utilized
object-based image analysis (OBIA) prior to classifying invasive
weeds [10], [15], [18]. While OBIA has previously shown to
improve accuracies of classification as compared to per-pixel
classification [37], it usually relies on segmentation algorithms
that are difficult to validate and correct, if applied poorly. In this
study, to utilize the power of OBIA approaches without rely-
ing on segmentation algorithms, we trained XGBoost models
using predictor variables calculated within field-measured areas
(≈28.3 m2) and applied it to predictor variables calculated within
17 × 17 pixels neighborhood area (≈26 m2).

To optimize and evaluate our models during cross validation
and test stages, we used balanced accuracy (BA) metric, which
avoids inflated performance estimates on imbalanced datasets.
It is the macroaverage of recall scores per class or, equivalently,
raw accuracy where each sample is weighted according to the
inverse prevalence of its true class, and is defined as

BA =

(
TP/P +TN/N

2

)

where TP is a true positive (i.e., correctly classified as positive),
TN is a true negative (i.e., correctly classified as negative), P is
a positive, and N is a negative.

III. RESULTS

A. Importance of Predictor Variables

The top 30 most important predictors for the model trained
using all predictor variables in combination is shown in Fig. 4.
Here, importance is expressed in terms of a relative gain (i.e.,
the relative contribution of the corresponding predictor to the
model).

Predictor importance-identified spectral bands offering great-
est capacity for discrimination of gamba grass were those cov-
ering 510–745 nm and 2185–2365 nm wavelength ranges (see
Table II).

TABLE V
BALANCED ACCURACY OF GAMBA GRASS PRESENCE CLASSIFICATION USING

ALL PREDICTORS AND PREDICTORS SELECTED USING SFPS

BA is balanced accuracy; n = number of predictor variables; cv = fivefold cross validation;
b = number of spectral bands used for extracting predictor variables.

B. Step-Forward Predictor Selection

The SFPS procedure generally resulted in an improved per-
formance of XGBoost classifier with a BA increase on a “test”
set of up to 4.3% (Model #8 in Table V), which is in line with
previous findings by Robinson et al. [15]. The SFPS also reduced
the number of necessary predictors for best performance by
57% (Model #1)–96% (Model #6). Although the combined use
of all predictors (Model #8) in SFPS procedure led to a BA
increase from 86.9% to 91.2%, it was still no better than that of
NDSIs-derived model (Model #7).

In contrast to previous studies [15], [17], additional spectral
bands did improve classification accuracy by 4.8% when going
from a 4-band (Model #1) to a 16-band setup (Model #3).
The improved performance became even more pronounced in
an NDSIs scenario with a BA improvement between Model
#5 and #7 of 11.9% (see Table V). While the model trained
using textural features only (i.e., Model #4) showed the worst
performance with BA of 76.6%, it was still comparable to that
of Model #1 utilizing RGB+NIR bands (BA of 77.9%).

For Model #8, only three predictors (i.e., p50_GREREE,
min_REDSW7, and max_GRE) were necessary to generate
gamba grass presence classification with BA = 85% (see Figs. 4
and 5).

According to Fig. 5, cross-validated BA stopped improving
after using the top 78 predictors. Nonetheless, the BA im-
provement between models trained using ≈10 and 83 predictor
variables could be considered marginal.

The final map of gamba grass presence at 0.3 m spatial
resolution generated using a model with hyperparameters from
Model #8 (see Table V), trained using all training data (i.e.,
“train” and “test” sets combined) and top 78 predictor variables,
is presented in Fig. 6.

Fig. 6(a) shows that only the western part (i.e., hilly to rugged
ridges of the Litchfield National Park) of the study area was
mostly free of gamba grass. Interestingly, shaded areas were
occasionally misclassified for gamba presence [see Fig. 6(c)].

IV. DISCUSSION

Gamba grass is a high impact weed invading northern Aus-
tralia. Developing an accurate and cost-effective method to map
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Fig. 5. SFPS for Model #8 using all predictor variables in combination. (Note:
Only 83 predictor variables were used in SFPS, as 953 predictors with zero
importance were excluded.)

Fig. 6. (a) Final map of gamba grass presence probability (11th of April 2019)
with (b) zoom-in area #1 and (c) zoom-in area #2.

gamba grass is critical for better management of this weed. Our
results demonstrate that VHR WorldView-3 imagery can be used
to differentiate gamba grass from other vegetated and nonvege-
tated areas, with accuracies of up to 91.3%. This methodology
is scalable to larger areas as it relies exclusively on readily
accessible VHR satellite imagery, not airborne LiDAR data [9].
This study is a significant advancement for stakeholders, as the
accuracy of gamba grass mapping is sufficient to inform land-
scape management in northern Australia. Using WorldView-3
imagery was more affordable than airborne LiDAR or airborne

hyperspectral imagery. The data acquisition costs (USD) of
WorldView-3 imagery were $0.24/ha and $0.48/ha for 8-band
and 16-band imagery, respectively, compared to ∼$1/ha and
∼$1.1/ha for airborne hyperspectral and LiDAR, respectively
(cost based on a >10 000 ha survey) [38], [39].

WorldView-3-derived NDSIs provided more separability
when classifying gamba grass compared to individual spec-
tral bands or textural features. Additional WorldView-3 VNIR
bands (i.e., Coastal, Yellow, Red Edge, and NIR-2) provided
6.2% increase in classification accuracy, while the addition of
SWIR bands improved classification accuracy by another 5.7%.
However, given the spectral and structural differences of differ-
ent vegetation types, this result might be not applicable when
mapping other weed species [15], [17]. Interestingly, textural
features extracted from the PAN band provided a satisfactory
classification result with BA of 76.6%, which is relevant when
considering the use of single-band sensors (e.g., WorldView-1)
for mapping invasive weeds.

An occasional misclassification of gamba grass presence oc-
curred in areas shaded by tree crowns. These were characterized
by change in the spectral shape, and were occasionally similar in
terms of spectral and NDSI signal to unshaded gamba grass. This
problem could be alleviated by collecting additional training
samples in shaded areas to aid further discrimination.

VHR satellite imagery is reportedly more accurate than
medium-resolution satellite imagery in mapping invasive weeds
[40]. Nevertheless, there are numerous studies that evaluated
medium-resolution satellite imagery for invasive weed map-
ping and achieved accuracies of up to 90% [40]–[42]. While
being able to cover large areas and usually available for free,
medium-resolution satellite imagery requires extensive field
surveys at multiple time steps to achieve the above-mentioned
accuracies. Therefore, we propose using the generated gamba
grass map from the VHR WorldView-3 imagery to inform
medium-resolution satellite imagery (e.g., Sentinel-2 [43]) in
order to upscale the extent of gamba grass maps in time and
space. Previous research suggests that such upscaling could be
achieved through the use of convolutional neural networks [44].

V. CONCLUSION

The ability to map the spread of invasive weed species is
critical for effective environmental management. Our results
showed that XGBoost has the ability to map invasive weed
presence in WorldView-3 imagery with high accuracy (BA =
91.3%). The use of WorldView-3-derived NDSIs significantly
improved the detection of gamba grass as compared to raw
spectral bands. Since gamba grass is rapidly invading landscapes
of the northern Australia, we recommend that future studies
should focus on multitemporal mapping of this weed using
freely available medium-resolution, multispectral satellite im-
agery that is trained with the type of results shown in this study.
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