
4642 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 13, 2020
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Tree-Based Classifiers for Landslide
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Abstract—Ensemble learning methods have been widely used
due to their remarkable generalized performance, but their poten-
tial in landslide spatial prediction application is not fully studied.
To take full advantage of ensemble learning techniques, the classi-
fication and regression tree classifier and four tree-based ensemble
classifiers of random forest, extremely randomized tree, gradient
boosting decision trees, and extreme gradient boosting decision
trees are used in this study for landslide susceptibility assessment.
Specifically, a stacking ensemble learning framework coupled with
embedded feature selection is presented, consisting of multiple
tree-based classifiers mentioned previously as base learners and
logistic regression as a metalearner in a two-layer structure. In
the study area of Yongxin, China, 364 historical landslide locations
were first randomly partitioned into a ratio of 7/3 for training and
testing the model. Then, a spatial database of 16 landslide causative
factors was constructed for landslide prediction. Meanwhile, the
relative importance of these factors were quantified by using the
total number of feature splits and the average Gini index during the
training process, and a novel embedded feature selection method
was used in the base learner of the proposed framework to further
improve the computational efficiency and predictive performance
by allowing each base learner to obtain its own optimal subfeature
space. Finally, different methods were assessed by using several
evaluation criteria. Experimental results demonstrated that the
proposed ensemble learning framework had the highest area under
the curve value of 0.864, and it is more effective than the conven-
tional tree-based classifiers and other ensemble learning methods.

Index Terms—Embedded feature selection, ensemble learning,
landslides susceptibility mapping, tree-based classifiers.

I. INTRODUCTION

ON A global scale, landslides are one of the most destruc-
tive geo-hazards, posing a serious threat to human life

and causing a lot of economic losses [1]. China is one of the
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most active landslide-prone areas in the world. The increasing
disasters and the demand for risk management make it urgent for
professionals to assess and mitigate landslide risks [2]. In order
to effectively formulate countermeasures to prevent landslide
disasters from a macro perspective, it is necessary to identify
potential landslide-prone areas [3]. In this regard, landslide sus-
ceptibility mapping (LSM), representing the spatial distribution
of the probability of landslide occurrences in cartography, has
been used as one of the most effective tools for landslide disaster
management and mitigation [4], [5].

With the development of computer systems and geographic
information system (GIS) tools, various machine-learning meth-
ods have been proposed for LSM in recent years, including ar-
tificial neural networks (ANN) [6], [7], logistic regression (LR)
[8]–[10], decision trees [11]–[13], and support vector machines
(SVM) [14]–[16]. Although these methods are not the same in
principle, all of them are mainly based on the following as-
sumptions [17]. First, landslide occurrence is controlled by some
physical laws that can be analyzed and learned. Second, land-
slide causative factors are directly or indirectly related to land-
slide occurrence. Finally, future landslides are more likely to oc-
cur under the similar conditions that cause historical landslides.

Ensembles are well-established machine learning techniques
that can obtain more accurate prediction results by integrat-
ing various base learners [18]. The state-of-the-art ensemble
techniques can be generally divided into three groups: bagging,
boosting, and stacking [19]. In comparison, ensemble learning
methods are constructed with sequential or parallel base learners,
and these learners can be homogeneous or heterogeneous in
stacking ensembles, while they are homogeneous in bagging and
boosting. In order to break through the limitations of a single
machine learning algorithm, many ensemble learning methods
have been applied to LSM in recent years [13], [20]–[26]. Most
of them combine homogeneous ensemble frameworks of bag-
ging or boosting with tree-based classifiers to further improve
the performance of landslide susceptibility modeling. Unlike
the two frameworks, stacking can combine multiple types of
learning algorithms through combination algorithms to maxi-
mize the generalization accuracy [27], [28]. However, very little
attention was paid to the application of the stacking ensemble to
integrate multiple types of classifiers in LSM. Furthermore, the
potential of ensemble learning methods in improving tree-based
classifiers for LSM has been greatly limited. On the other hand,
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Fig. 1. Location of the study area.

feature selection is usually used to eliminate redundant landslide
causative factors during the landslide susceptibility modeling
process. Feature selection directly affects final landslide pre-
diction results [29] and can be mainly classified into three
categories: filter, wrapper, and embedded. Filter methods have
been commonly used for landslide susceptibility assessment,
including information gain ratio [30]–[32], correlation-based
methods [33], [34], and relief-F [22], [35]. Although these
methods are interpretable and easily calculated, they cannot
effectively play a significant role in feature optimization [36]. In
particular, the filter methods may delete features that have useful
information to some learners before the base learner is trained
during the heterogeneous ensemble learning process. However,
the embedded methods incorporate feature selection as a part of
the training process of the learner, which can conveniently obtain
the optimal feature subset of the learner in the heterogeneous
ensemble learning framework.

To solve the problems mentioned above, we present a two-
layer stacking ensemble learning method (SELM) framework
to explore the potential of ensemble methods for LSM. To
the best of our knowledge, studies on stacking ensemble of
different prediction models for LSM is very rare. In the proposed
framework, five tree-based methods are used as base learners,
including classification and regression tree (CART), two bag-
ging methods of random forest (RF), extremely randomized
tree (ERT), and two boosting methods of gradient boosting
decision trees (GBDT) and extreme gradient boosting decision
trees (XGBoost), and LR is used as a metalearner. Furthermore,
a novel embedded feature selection (EFS) method is used in the
base learner of the proposed framework to further improve com-
putational efficiency and predictive performance by allowing

each base learner to obtain its own optimal subfeature space.
Compared with previous studies, this study is not a simple
combination of single classifiers with different homogeneous
integration methods, it is an exploration for the potential of
heterogeneous (stacking) ensemble learning in LSM. The three
main contributions of this study can be summarized as follows:
First, the heterogeneous stacking strategy that is integrated
into the EFS-SELM framework can maintain heterogeneity by
combining different tree-based classifiers, which can solve the
generalization problems to some extent and be more suitable for
this field. Second, the discussion on the relationship between
landslide inherent mechanism and geological structures can
provide a certain explanation for final susceptibility results.
Furthermore, the discussion on the impacts of susceptibility
results on landslide disaster reduction and management can also
provide reliable guides for researchers, engineers, and policy-
makers. The effectiveness of the proposed stacking ensemble
learning method with embedded feature selection (EFS-SELM)
framework was systematically verified using landslide data from
Yongxin County, China, and it was compared with the conven-
tional tree-based classifiers mentioned previously.

II. STUDY AREA AND DATA PREPARATION

A. Description

Yongxin County, located in the western part of Jiangxi
Province, covers an area of about 2187 km2 and has an elevation
of 41–1398 m above sea level (see Fig. 1). The landforms in the
study area are mainly mountainous and hilly, with high marginal
terrain and low-lying central terrain, forming asymmetric basin
landforms. In addition, its climate type is subtropical humid
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Fig. 2. Geological map of the study area.

monsoon climate with abundant rainfall, mild climate, and four
distinct seasons. As the county is located in the mountainous
and pluvial regions, it is one of the most serious landslide-prone
areas, in China, especially during the rainy season. According
to the local government report in Jiangxi Province, the lives of
about 2174 people were affected by disastrous landslide events.
As the number of catastrophic climatic events increases, land-
slide disasters are becoming more frequent in this area, posing
a serious threat to human life and causing a lot of economic
losses. Therefore, it is necessary to perform LSM in this area to
prevent and mitigate the adverse effects of landslides. Further-
more, the geological environment and climatic conditions in this
study area are typical for landslide-prone areas. As a result, the
selection of this area will help the landslide spatial prediction
models to obtain more comprehensive causative factors, which
will facilitate the comparison of the various models and their
application outside this study area where they were constructed.

Geologically, the study area is part of the fold system in
southern China, and its tectonics is located in the eastern part of
the Caledonides orogenic belt in China. It has abundant typical
tectonic landforms and is characterized by a multiphase fault
zone and a ductile shear zone from the northeast to Yanshanian.
Except for the Sinian, Silurian, and Tertiary, the Cambrian to
Quaternary strata are well distributed in the study area, with
a total thickness of more than 20 000 m. The distribution of
geological units in the study area is shown in Fig. 2. According
to lithofacies and geological time, these units are divided into
17 groups, of which conglomerate, dolomite, sandstone, and
limestone are the main outcrops.

B. Data Preparation

1) Landslide Inventory Map: A landslide inventory is gen-
erally defined as a collection of historical landslide data that
contains information on the area, type, activity, and physical
properties [37]. It can provide important clues between landslide
occurrences and causative factors to predict the area’s future
landslide possibility. In this study, a landslide inventory map
was constructed by using historical landslide records, interpre-
tations of satellite images, and field survey data provided by
the local government. As shown in Fig. 1, a total 364 land-
slide locations were recorded, consisting both rotational slides
(70%) and translational slides (30%). The largest and smallest
landslides are 750 000 and 32 m2, respectively. Among all the
recorded landslides, 21.6%, 37.8%, and 40.6% were classified
as large-scale (>1000 m2), medium-scale (400–1000 m2), and
small-scale (< 400 m2), respectively.

2) Landslide Causative Factors: According to the previous
research, the selection of the landslide causative factors should
consider study area characteristics, scale of the analysis and
the data availability [38], [39]. Base on this summarization,
we use six geomorphic factors [altitude, slope, aspect, plan
curvature, profile curvature, and sediment transport index (STI)],
a tectonic factor (distance to fault), a geologic factor (lithology),
a triggering factor (rainfall), three hydrological factors [stream
power index (SPI), topographic wetness index (TWI) and dis-
tance to river], four land-related factors [land use, normalized
difference vegetation index (NDVI), distance to road and soil].
The literature review demonstrated that most of the statistical
methods used landslide predisposing factors related mainly
to geomorphology [17]. These factors that can describe geo-
morphology are always obtained from digital elevation model
(DEM) data, and some direct measures of geomorphology have
been commonly used in LSM, including altitude, slope, aspect,
plan curvature, profile curvature, and STI. Moreover, according
to the Meteorological Bureau of Jiangxi Province, rainfall is
the main landslide-triggering factor in the study area, rather
than tectonic seismicity. Moreover, the study area is located
in the hinterland of the Eurasian Plate, which has no active
fault zone. Therefore, the crust is relatively stable. However, the
rocks exposed near the faults generally have loose geotechnical
structure, low shear strength and weather resistance. In these
areas, the fracture pores are more developed, which is conducive
to the infiltration of atmospheric precipitation and the migration
of groundwater, providing dynamic conditions for the occur-
rence of landslides. Therefore, distance to faults was used as a
tectonic-related predisposing factor in this study. For clarity, the
detailed descriptions of these factors are listed in Table I, and all
thematic maps of the factors were prepared using ArcGIS 10.2
and are shown in Fig. 3.

The DEM of the study area was generated from the ASTER
GDEM,1 Landsat 7 ETM+ satellite images of the study area
were obtained from the Computer Network Information Center
of Chinese Academy of Sciences,2 the geological map was

1[Online]. Available: http://gdem.ersdac.jspacesystems.or.jp
2[Online]. Available: http://www.gscloud.cn
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Fig. 3. Landslide causative factor maps. (a) Altitude, (b) slope, (c) aspect, (d) plan curvature, (e) profile curvature, (f) sediment transport index (STI), (g) distance
to faults, (h) lithology, (i) rainfall, (j) stream power index (SPI), (k) topographic wetness index (TWI), (l) distance to river, (m) land use, (n) normalized difference
vegetation index (NDVI), (o) distance to road, and (p) soil.
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Fig. 3. Continued.
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TABLE I
DESCRIPTIONS OF LANDSLIDE CAUSATIVE FACTORS

derived from the China Geology Survey,3 and the soil map was
prepared from the Institute of Soil Science, Chinese Academy
of Sciences.4 In addition, the GIS database of rainfall was
derived from the average annual precipitation of 20 rain stations5

distributed in the study area from 1960 to 2015, and precipita-
tion values of the area are determined by the inverse distance
weighted spatial interpolation method. The GIS databases6 of
distance to road and distance to river were obtained by buffer
analysis using road and river vector map with buffer distance of
four grades.

The selection of the mapping unit is an important prerequisite
for LSM. The grid-based method is by far the most popular
for landslide susceptibility modeling using raster data [17]. In
order to effectively compute landslide susceptibility of each grid
unit, in addition to unifying all landslide causative factors into
a raster form with respect to the DEM spatial resolution (25 m),
the data of each factor must be reclassified according to its
essential structure. Specifically, the continuous-valued factors of
altitude, slope, plan curvature, profile curvature, SPI, STI, TWI,
NDVI, rainfall, distance to fault, distance to river, and distance
to road were reclassified into several discrete subcategories. For
land use, the study area was classified into six classes: water,
forest, grassland, bare land, farm land, and residential area, with
an overall accuracy of 92.4% using maximum likelihood. The
factor of slope aspect was classified into eight directions and

3[Online]. Available: http://www.cgs.gov.cn
4[Online]. Available: http://www.issas.ac.cn
5[Online]. Available: http://www.weather.org.cn
6[Online]. Available: http://www.geodata.cn/

flat (no aspect), and the soil was divided into RGc, ATc, ALh,
ACu, and Ach. According to the geological map, the lithology of
the study area was divided into 17 units, and the descriptions of
each units are listed in Table II [15]. Therefore, all the causative
factors were reclassified so that each grid cell corresponds to a
new class of values of all 16 factors, and these new classes were
used as input data in modeling. The normalized classes of all the
causative factors and the corresponding frequency ratios (FRs)
based on landslide densities are listed in Table III.

III. METHODOLOGY

As shown in Fig. 4, the proposed method in this study mainly
consists of four steps. First, we constructed a spatial database
containing the landslide inventory map and causative factors of
the study area, and historical landslide locations are divided into
two groups for training and verification. Second, we used the
spearman’s rank correlation coefficient to quantify the correla-
tion between landslide causative factors, and the importance of
each factor is quantified when training the tree-based models.
Third, CART, four tree-based ensemble methods, and SELM
and ESF-SELM methods are used to assess the susceptibility of
landslides. Finally, we evaluated and compared the performance
of these models mentioned previously by receiver operating
characteristic (ROC) curve and five metrics.

A. Tree-Based Single Model and Ensemble Models

1) CART: CART is a classic machine learning method [40].
Unlike the C4.5 decision tree, CART is essentially a binary
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TABLE II
DESCRIPTIONS OF LITHOLOGY IN THE STUDY AREA

Fig. 4. Flowchart of this study.
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TABLE III
RECLASSIFICATION INFORMATION OF LANDSLIDE CAUSATIVE FACTOR
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TABLE III
CONTINUED

Fig. 5. Flowchart of training CART for landslide prediction.

partition of the recursive feature space, and the partitioning
process can be graphically represented [41].

In this study, CART is used for landslide susceptibility assess-
ment. The CART classifier for landslide prediction is shown
in Fig. 5. The landslide causative factors are the bifurcation

points of CART, and the leaf nodes Y and N represent landslide
and nonlandslide, respectively. Although CART is an effective
method and can be easily visualized or even extract classification
rules, its prediction ability and generalization ability can be
further improved through ensemble frameworks.
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Fig. 6. General overview of the bagging process.

Fig. 7. General overview of the boosting process.

2) Tree-Based Ensemble Learning Methods: The bootstrap
aggregating method of bagging [42] is one of the earliest ensem-
ble method. The general process of bagging is shown in Fig. 6.
First, the subtraining sets are obtained from random subsampling
in the training set. Then, these subtraining sets are used to train
weak learners. Finally, an aggregated predictor is obtained by
voting on these weak learners.

RF is a widely used algorithm that is derived from the idea
of the bagging ensemble. It is a collection of CART, so each of
its trees depends on the value of independently sampled random
vector [43]. The optimal split of each node can be obtained by
searching a random subset of candidate attributes.

ERT shares multiple features with RF and further play the
randomness in tree splitting. ERT is also a representative al-
gorithm combining bagging and CART. However, the main
difference between ERT and RF is that instead of choosing the
best cut-point in each node based on local samples, the ERT
algorithm randomly selects the best splitting point in a node
[44].

Boosting is to sequentially produce weak learners in an iter-
ative manner in sequence. It does not randomly select training
samples like the Bagging ensemble, but focuses on samples that
do not have accurate predictions. A general overview of the
boosting process is shown in Fig. 7.

GBDT is a novel and representative boosting-based algo-
rithm. This algorithm uses CART as the base learner, and
provides a competitive and highly robust tool for regression
and classification [45]. For the binary classification problem,
GBDT uses a negative gradient similar to the log-likelihood loss
function of LR to fit the approximate value of the loss.

XGBoost is a scalable end-to-end tree boosting system, which
is widely used in different machine learning tasks. Compared
with GBDT, its computational speed and accuracy have been
significantly improved. Its main innovations can be summarized
as follows [46]. First, its loss function is optimized. Second,
the candidate split value is efficiently generated by parallel ap-
proximate histogram algorithm. Finally, it presents an effective
cache-aware block structure for out-of-core tree learning and a
novel sparsity-aware algorithm for parallel tree learning.

B. Evaluation Methods for Causative Factor Analysis

In this study, the relative importance of landslide causative
factors and the correlation between the factors are quantified
using the measures of feature importance measure (FIM) and
spearman’s rank correlation coefficient, respectively, and then
the analyzed results are used as a measure for the base learner
to perform embedded feature selection in the first layer of the
EFS-SELM framework.
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1) FIM: The importance of a feature implies how much it
contributes to the accuracy of the output during the prediction
process [47]. The relative importance of landslide causative
factors may vary because of different prediction methods. In
this study, CART uses the Gini index (GI) to calculate the im-
portance of features in the training process, which represents the
probability that randomly selected samples are misclassified in
a subset. The smaller the GI, the higher the purity of the dataset.
Let X = {X1, X2, . . . , XJ} be the features, D a training set,
K the number of categories, and pk the probability that a sample
is classified into the kth class, the GI is given by the following:

Gini (D) =

K∑

i=1

pk · (1− pk) = 1−
K∑

i=1

p2k (1)

Then, the FIM of Xj at the mth node of CART is calculated
as follows:

FIMjm = GIm −GIl −GIr (2)

where GIm represents the Gini index of the mth node, and GIl
and GIr indicate the Gini indexes of two new nodes after the
branch, respectively. Assuming that nodes split by feature Xj in
CART are in the set M, then the FIM of this feature in the CART
is calculated as follows:

FIM
(CART )
j =

∑

m∈M
FIMjm (3)

Assuming that there are n trees in RF, the FIM of the feature
Xj in RF is calculated as follows:

FIM
(RF )
j =

n∑

i=1

∑

m∈M
FIMjm (4)

The FIM calculation of ERT, GBDT, and RF are basically
the same. As the ensemble model has a certain randomness in
selecting feature splitting, the feature importance of each tree is
usually averaged. When quantifying the importance of a feature,
XGBoost uses the number of times that the feature is used as a
partition node in all trees as an evaluation indicator to measure
its importance. Thus, the more times a feature is selected to be
split, the greater the importance inside the tree. Finally, each
feature’s FIM of each model is normalized and converted into
a number from 0 to 1. The closer it is to 1, the greater the role
of this factor as a feature in the prediction of the corresponding
model.

2) Spearman’s Rank Correlation Coefficient: In order to es-
timate the correlation between landslide causative factors, the
spearman correlation analysis method is used in this study.
Spearman’s rank correlation coefficient is a nonparametric sta-
tistical correlation measure of rank correlation to evaluate how
well the relationship is between elements in two different sets.
Given a pair of feature vectors X and Y of length N, the spear-
man’s rank correlation coefficient can be calculated as follows:

Rs = 1− 6 ·∑N
i=1 |R (Xi)−R (Yi)|2
N · (N2 − 1)

(5)

where R(Xi) and R(Yi) represent the rank of elements Xi and Yi

in the feature vectors X and Y, respectively. It can be clearly seen

that spearman’s rank correlation coefficient ranges from –1 to
1, representing the total negative linear correlation and positive
linear correlation, respectively. The higher the absolute value of
the coefficient, the more related the two factors are. In practice,
if the absolute value of the correlation coefficient between the
two features is greater than 0.7, indicating the correlation is too
strong [48], one of these two features should be excluded.

C. Proposed Framework

Over the last two decades, Bagging and Boosting have been
the most representative homogeneous ensemble techniques,
while stacking has become a commonly used technique for
heterogeneous ensemble approach since Wolpert first presented
the related study in 1992 [49]. In fact, stacking is a general
two-level framework, where the metalearner (second layer) is
trained by the prediction values produced by the first-layer base
learners to make the final prediction. The first layer of the SELM
framework is like a highly complex nonlinear feature converter.
After this conversion, the samples have new representations.
Therefore, the second layer does not require complex classifiers,
and generalized linear models such as LR are a suitable choice.
In this study, we present a novel strategy to predict landslide
susceptibility using the SELM framework, which combines the
advantages of various tree-based algorithms (CART, RF, ERT,
GBDT, and XGBoost) with a meta-learner (LR) to maximize
the generalization accuracy.

The training process of the constructed SELM framework
is illustrated in Fig. 8. Given an original training dataset T =
{(x1, y1), (x2, y2), . . . , (xn, yn), . . . , (xN , yN )}, where
xn and yn represent the feature vector and the target value of
the nth instance. Then, the original training set is randomly
divided into K folds T1, T2, . . . , TK , subsequently, Tk and
T (−k) = T − Tk are sequentially selected as the validation and
training sets, respectively, of the kth fold in the K-fold cross
validation. Each base learner is trained byT (−k) and then predicts
each instance in Tk. Let Pi(x) represent the prediction of the ith
base learner on an instance with a feature vector x in Tk, and
then we will get the predictions of the ith base learner on all
instances in the original training dataset as follows:

Pin = Pi (xn) ,

n = 1, 2, . . . , N (6)

where Pin can be a class predicted by the base learner
(landslide or nonlandslide), or can be a probability value of
the class (landslide susceptibility). After the cross-validation
process of each base learner is completed, the set of pre-
dicted values of each instance output by the base learners
and its corresponding target value are combined to construct
the training setTmeta = {(P1n, . . . , Pin, . . . , P5n, yn), n =
1, 2, . . . , N} of the metalearner (LR) in the second layer.
Finally, the metalearner is trained by Tmeta.

The testing process of the proposed SELM framework is
shown in Fig. 9. Let Lik represent the ith base learner that
is trained by T (−k), given a new test instance, Likproduces
a prediction Pik for this instance. The mean value of
Pik(k = 1, 2, . . . ,K)is calculated as the prediction of the ith
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Fig. 8. Training process of the proposed SELM framework.

Fig. 9. Test process of the proposed SELM framework.

base learner for this instance. In this way, the base learners
produce a vector of predictions, which is used as the input of
the trained metalearner (LR) to make the final prediction.

Furthermore, we improve the performance of the traditional
SELM framework by embedded feature selection (see Fig. 10),
and explore ways to build a more efficient SELM framework.
Specifically, in the first layer of SELM, the top j (j is less
than the number of features and will be used as a parameter in
EFS-SELM to determine its optimal value) important features
of each base learner are selected according to the FIM calculated
in the training process, and then correlation tests are carried out
on these features. If the spearman’s rank correlation coefficient
between the two features is greater than 0.7, the features with
lower FIM in the corresponding learners will be deleted. In
this way, each base learner obtains the feature space that it
is “good at,” and finally, it is combined with metalearner that
synthesizes them. The process of EFS-SELM using embedded
feature selection to obtain multiple feature subspaces of different
base learners not only reduces the dimension of the dataset, but
also further mines the advantages of the SELM framework in
knowledge discovery and feature extraction.

D. Evaluation Metrics

In landslide susceptibility analysis, assessing the validity of
the model used is absolutely an essential component, because

it has no scientific significance without verification [50], [51].
The ROC plots the true positive rate on the y-axis and the false
positive rate on the x-axis, which helps to indicate the quality of
the probabilistic prediction system [52], and has been used for
this study. In addition, some commonly used statistical measures
such as area under the ROC (AUC), accuracy, recall, precision,
and F-measure are also used to assess the predictive capability
of landslide models. These statistical measures are calculated by
the respective following formulas:

Accuracy =
TP + TN

TP + FP + TN + FN
(7)

Recall =
TP

TP + FN
(8)

Precision =
TP

TP + FP
(9)

F − measure =
2× TP

2× TP + FP + FN
(10)

where TP (true positive) and TN (true negative) denote the num-
ber of correctly classified landslide and nonlandslide samples,
whereas FP (false positive) and FN (false negative) mean the
number of incorrectly classified landslide and nonlandslide sam-
ples, respectively. To apply the evaluation measures mentioned
previously to the study area, we use training and test datasets
to reflect the fitting ability and predictive ability, respectively.
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Fig. 10. Flowchart of the proposed EFS-SELM framework.

It should be noted that the performance on the test set better
reflects the predictive accuracy and generalization capability of
the model, since it is not used for training the model. For the
measures of accuracy, precision, recall, and F-measure metrics,
the higher the value, the better the model.

IV. RESULTS AND ANALYSIS

A. Landslide Causative Factors Analysis

1) Relative Importance of Causative Factors: The average
FIMs of causative factors in different tree-based models are
shown in Fig. 11. First, all models showed that the factors of
altitude, land use, lithology, NDVI, and STI contribute signifi-
cantly to landslide modeling, while the factors of plan, profile,
distance to road, and TWI are relatively low. It should be noted
that the FIM values of plan, profile, distance to road, and soil in
the CART are zero because the CART was pruned. Moreover,
the importance of STI is very different between the models,
specifically, it has the highest FIM of 0.2153 in XGBoost, while
it has a relatively low FIM in the other models.

2) Correlation Analysis Between Causative Factors: A vi-
sualized heat map of the spearman’s rank correlation coefficient
between the causative factors is shown in Fig. 12, where blue
represents positive correlation, while red indicates negative cor-
relation. It can be seen that the altitude is negatively correlated
with land use with a correlation coefficient of –0.51, while it
is positively correlated with NDVI and slope with correlation

coefficients of 0.45 and 0.52, respectively, indicating that the
higher the altitude, the less land use and development. Mean-
while, the denser the vegetation, the steeper the slope. The slope
is positively correlated with STI as the correlation coefficient
between them is 0.53, and negatively correlated with TWI as the
correlation coefficient between them is –0.48, which indicates
that the steeper the slope, the higher the STI and the lower
the TWI. It can be observed that the correlation between these
factors is very low, because all the correlation coefficients are
less than the critical value of 0.7, so no factor was eliminated in
this study.

B. Training Models and Constructing Landslide
Susceptibility Maps

To apply these models for LSM of the study area, the past
landslide events were randomly divided according to a common
sampling strategy [16], [53], [54], i.e., 70% of landslides (255)
for training and the remaining 30% of landslides (109) for
testing. In addition, to maintain class balance, the same number
of nonlandslide sites (255 and 109) was randomly selected from
the landslide-free areas to construct the training and test sets.

In this section, the training dataset was input into the meth-
ods, which were implemented in Python under the scikit-learn7

framework. To automatically obtain an optimal combination of

7[Online]. Available: https://scikit-learn.org/stable/
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Fig. 11. Feature importance measures (FIMs) of landslide causative factors in different models.

Fig. 12. Spearman’s rank correlation coefficient between landslide causative factors.

parameters of these methods, the grid search was used in the
scikit-learn framework package to traverse the given method
parameter combination and determine the best parameter com-
bination through cross validation. The optimal parameters of all
the methods obtained through the above tuning process are listed
in Table IV.

After training the landslide prediction models, landslide sus-
ceptibility maps were constructed in the form of probability
grids in the ArcGIS environment. Each grid cell in the map
was assigned a landslide susceptibility index that indicates the
probability of landslide output by the methods. For better visu-
alization, the indices were reclassified into five levels: very low,
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TABLE IV
PARAMETERS OF DIFFERENT METHODS USED IN THIS STUDY

low, moderate, high, and very high, using the commonly used
natural breaks method. Landslide susceptibility maps obtained
by different methods are illustrated in Fig. 13. Then, to under-
stand the overall pattern of landslide distribution and different
classes of landslide susceptible areas, the landslide density dis-
tribution was obtained in Fig. 14, which shows the distribution of
each class in susceptibility maps and the percentage of landslides
in different susceptible classes.

It can be observed that the spatial distribution of the landslide
susceptibility maps produced by different prediction methods
share some similar rules. For example, the regions with relatively
high susceptibility are mainly distributed in the north and south
of the study area, and the central region is classified to the
relatively low susceptibility class. Furthermore, the historical
landslide occurrences are mostly located in very high and the
high susceptible areas. Among them, the very high susceptibility
class of the map produced by CART occupied 30% of the study
area, while the low and high susceptibility classes only account
for 0.76% and 5.47% in area. As a single tree classifier, the spatial
distribution of the landslide susceptibility map produced by
CART is not desirable, but the regional distribution of landslide
susceptibility produced by the other ensemble-based methods
was more in line with the spatial distribution of landslide.

C. Model Assessment and Comparison

In this study, the performance of the models was assessed
using both training and testing sets. The results of five evaluation
statistical metrics are listed in Table V. Using the training
set, RF had the best fitting ability, followed by ERT, SELM,
EFS-SELM, XGBoost, GBDT, and CART. However, the results
of the methods using the test set is very different, and EFS-SELM
achieved the best performance using the test set, followed by

SELM, XGBoost, GBDT, RF, ERT, and CART. As the perfor-
mance on the test set can better demonstrate the predictive and
generalization accuracy of the model than the using the training
set, it can be observed that the EFS-SELM method obtained
the highest accuracy in landslide prediction, and RF may be
overfitted using the training set.

The ROC curve and the calculated AUC used for the overall
predictive capability estimation of all the methods are shown
in Fig. 15. It can be seen that all the ensemble-based methods
obtained satisfactory predictive performance with an AUC above
0.8, and EFS-SELM had the highest AUC value of 0.864,
followed by SELM (0.860), XGBoost (0.856), GBDT (0.851),
RF (0.841), ERT (0.835), and CART (0.778).

In order to further validate the effectiveness of the proposed
EFS-SELM framework, which demonstrated the best perfor-
mance in the previous experiments, we compared this framework
with some traditional machine learning algorithms such as SVM
and ANN. The optimal parameters of SVM and ANN were
obtained using the grid search that has been mentioned in Section
IV-B. Moreover, Table VI lists the results of five evaluation
statistical metrics of the proposed framework, SVM, and ANN.
It turns out that the proposed EFS-SELM framework achieved
highest AUC value (0.864) on test sets, higher than SVM (0.853)
and ANN (0.843).

V. DISCUSSION

A. Prediction Performance of Different Methods

Landslide is a very complicated process. So far, in order to
accurately evaluate and predict landslide susceptibility, scholars
have been trying to explore new methods [55], [56]. Because
tree-based models are easy to visualize and are suitable for
a small amount of sample data, scholars often apply them to
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Fig. 13. Landslide susceptibility maps by different methods. (a) CART. (b) RF. (c) ERT. (d) GBDT. (e) XGBoost. (f) SELM. (g) EFS-SELM.
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Fig. 14. Percentages of different classes and landslides. (a) Landslide susceptibility classes. (b) Landslides in the corresponding susceptible classes.

TABLE V
STATISTICAL MEASURES OF DIFFERENT METHODS USING TRAINING AND TEST SETS

TABLE VI
STATISTICAL MEASURES OF THE PROPOSED FRAMEWORK AND TRADITIONAL

MACHINE LEARNING ALGORITHMS USING TEST SETS

LSM and use the tree visualization to understand the rules
of landslide prediction [11]–[13]. However, the generalization
and overfitting problems of tree-based methods make landslide
prediction more complicated, which may cause uncertainty in
the LSM process. In addition, the high complexity of land-
slide forecasting and the uncertainty of various sources in the
modeling process limit the prediction method and reduce the

generalization performance of the method. To solve these prob-
lems, this study applies ensemble learning methods to improve
the generalization accuracy of tree-based methods in landslide
susceptibility assessment.

This article presents the SELM framework for LSM, where
five tree-based machine learning methods, namely CART, RF,
ERT, GBDT, and XGBoost, are combined through a metalearner
(LR). Subsequently, this article compares the three commonly
used ensemble ideas of bagging, boosting, and stacking for
landslide modeling. The experimental results show that ensem-
ble learning methods can improve the prediction performance
of landslide modeling. Specifically, the prediction performance
based on the representative boosting algorithms (GBDT and
XGBoost) is superior to the representative bagging algorithms
(RF and ERT). This finding is the same as the previous research
[57]. Moreover, the performance of these ensemble methods is
better than a single tree (CART).
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Fig. 15. ROC curves by different methods using the test set.

In addition, among these machine learning ensembles, the
stacking algorithm provided the greatest improvement. This can
be explained by the fact that in the SELM framework, if the
base learner mistakenly learns a specific region in the feature
space and leads to a misclassification, the metalearner at the
second-layer may classify correctly based on other learners [58].
On the other hand, in order to further explore the potential of
the SELM framework, an embedded feature selection process
is added to the EFS-SELM framework. This feature selection
method can not only reduce the complexity of the model and the
dimension of the dataset, but also further explore the advantages
of the SELM framework in knowledge discovery and feature ex-
traction. Compared with the SELM framework, the EFS-SELM
framework does achieve higher prediction and generalization
accuracy.

However, a recent study evaluated and compared the predic-
tive capabilities of SVM hybrid ensemble algorithms (bagging,
boosting, stacking) for landslide susceptibility modeling, and the
SVM-stacking model was found it has the lowest performance
[23]. In this previous relevant research, the use of the stacking
method reduced the accuracy of the single classifier SVM from
0.813 to 0.741, probably because the advantages of stacking
ensemble method have not been fully explored. Notably, using
the stacking ensemble method, we achieved higher prediction
performance.

B. Importance of Landslide Causative Factors

The importance of evaluating causative factors is of practical
significance for geological experts to analyze the relationship
between landslides and environmental variables to prevent them.
Machine learning algorithms are increasingly helping decision
makers gain new insights [59]. The experimental results show
that five causative factors, altitude, NDVI, land use, SPI, and
lithology, have an important role in modeling landslide in the
study area. In mountainous areas, altitude affects vegetation
distribution, land use, and slope, which can also be observed
from the correlation analysis mentioned in Section IV-A, and
altitude further affects the stress value of the slope body, thereby
affecting the occurrence of landslides. Vegetation can play an

active role in the stability of shallow soil on the slope through
the roots, and NDVI can reflect the distribution of vegetation, so
NDVI has a strong correlation with the occurrence of shallow
landslides [60]. The importance of land use factors illustrates the
huge impact of human activities on landslides, which reminds
people to carry out more detailed geological survey before
land development and utilization in this area. Finally, from the
perspective of engineering geology, lithology is the fundamental
factor that determines the anti-slip force of a slope, and unfa-
vorable geological tectonic background and characteristics of
the rock-soil body are the prerequisite for landslide. Due to the
bifurcated nature of tree nodes, some features can only play
an important role if other specific feature spaces have been
well divided [61]. Therefore, the bifurcation process of trees
is similar to the process of judging how various lithologies are
prone to landslide under the influence of environmental factors.
For example, the slope of sandy soil cannot exceed its internal
friction angle, but hard and intact rocks (such as granite and
silicalite) can form very steep high slopes without losing their
stability. In addition, due to the difference in porosity between
different lithological rock and soil mineral particles, the pore
water pressure of some susceptible rock-soil bodies will change
drastically during rainfall, and the shear strength will decrease,
causing slope instability.

C. Reliability From Geological Perspective

Generating the sample dataset containing both positive and
negative samples is a primary step before landslide susceptibility
modeling. Positive samples are prepared from historical land-
slides. There are several sampling methods for LSM, including
seed cells [62], single pixels [63]–[65], and all pixels [66].
However, by using some sampling methods, mixed types of
landslides might affect the modeling outcomes. Therefore, in our
study, sampling the centroids of landslide polygons as positive
data can significantly mitigate the negative effects of mixed
landslide types of rotational and translational landslides.

On the other hand, in this study, the LSM obtained by
EFS-SELM has good flexibility and practicability, and it has
been determined that one-third of the study areas shows high
and very high susceptibility to landslides, which are mainly
concentrated in faults, the soft rock mass distribution areas of
Devonian Jurassic and Carboniferous, as well as the areas with
high altitude and relatively lack of vegetation. From a geological
point of view, the main exposed lithologies in highly susceptible
areas are sandstone, shale, dolomite, and carbonaceous slate,
which have loose geotechnical structure, low shear strength,
and weather resistance, and their properties are easy to change
under the action of water and prone to landslides. In addition,
the magmatic activities in the study area are frequent and have
experienced long-term multicycle tectonic movement, resulting
in multistage magmatic activities from Nanhua to Cretaceous
and forming a wide distribution of granite and a small amount
of basic intrusive rocks. In the distribution area of granite, the
thickness of clastic rock is relatively large, and the division of
clastic rocks is relatively good. The weathering products are
mostly granular quartz and clay that are loose in structure, and
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they have good water permeability and moisture content, which
may cause surface water to penetrate into the soil and fill it with
water, and significantly reduce the shear strength of rock-soil that
is likely to cause landslides. Furthermore, the folding structure
in the study area is relatively developed, showing an “S”-shaped
turn. It is an arc-shaped compact-isoclinic fold, sloping west-
ward and axially northeastward, and most of it is damaged by
late fractures, so its shape is incomplete. The fold strata are
composed of Cambrian, Ordovician and part of Devonian, and
the two flanks of the fold strata are prone to landslides.

Overall, the above geological analysis of high landslide sus-
ceptibility is consistent with the prediction of the EFS-SELM
framework in high-risk areas. Before carrying out land planning
and construction in these areas, more professional and detailed
geological surveys and engineering prevention are required.
Specifically, engineering geology, soil properties, and geotech-
nical techniques should be considered. In addition, for the “very
high” risk area, we recommend engineering measures to enhance
slope stability and real-time monitoring of environmental factors
(such as rainfall) to help increase the agility and efficiency of
disaster prevention measures.

D. Impacts on Disaster Reduction and Management

Effective and accurate space forecasting is highly conducive
to the systematic construction of landslide-resistant sustainable
human settlements, thereby reducing the probability and vulner-
ability of poor mountain inhabitants to extreme weather-induced
landslides [67], which is one of the sustainable development
goals of the 2030 Agenda [68].

The tree-based models are computationally lightweight and
easier to extract rules than other black-box models [40], which
can help decision makers gain new insights into understanding
the landslide disasters. This study explored the potential of
ensemble learning methods in improving tree-based classifiers
for LSM and proposed an EFS-SELM framework. Such a strat-
egy and framework can free researchers from focusing on the
improvement of single statistical algorithm, as it not only is able
to combine the advantages of many different algorithms, but
also has the potential to be visualized to provide researchers
with a machine learning prediction perspective. It turns out that
the proposed framework can effectively carry out knowledge
discovery, and accurately recognize landslide-prone areas with
the highest AUC value of 0.864.

Although the prediction of the EFS-SELM framework should
not be considered deterministic, its ability to quickly discover a
large number of data patterns reduces the time required to iden-
tify susceptible areas and provides a quick and valuable starting
point that needs to be supplemented and evaluated by experts.
Moreover, the application of the tree-based models and ensemble
methods in constructing the macroscopic landslide susceptibility
map is very effective, and it is of great significance for people to
conduct targeted landslide prevention and control. In addition,
it can also be used as a basic tool for land management and
planning for future construction projects in such areas. Finally,
it is worth emphasizing that the ensemble idea of combining
different conventional classifiers provides great potential and

possibility for the assessment and mitigation of geo-hazards,
which can be effectively used for landslide spatial prediction
modeling.

Since research works have shown that improving the technical
and scientific capacity to identify, understand, and predict poten-
tially hazardous landslides does not automatically translate into
effective practices for landslide risk reduction [69]. Therefore,
in order to reduce disaster risk, there is a need to address existing
challenges and prepare for future ones by focusing on 1) making
full use of advanced remote sensing technology to monitor,
assess, and understand disaster risk and share such information;
2) strengthening cooperation and coordination among relevant
institutions in disaster risk governance, as well as the full and
meaningful participation of relevant stakeholders at appropriate
levels [70].

VI. CONCLUSION

In this study, a novel EFS-SELM framework is proposed
to explore the potential of ensemble learning to improve the
performance of tree-based classifiers for landslide susceptibility
assessment. Base on the experimental results, we can draw some
conclusions as follows.

1) For homogeneous ensemble learning, the boosting meth-
ods, XGBoost and GBDT, obtained higher prediction ac-
curacies than those of the bagging methods, RF and ERT.
Moreover, the prediction accuracies by them are signifi-
cantly higher than that of the single-tree classier, CART.

2) For heterogeneous ensemble learning, stacking ensemble
and embedded feature selection used by the EFS-SELM
framework can significantly improve prediction and gen-
eralization accuracies of tree-based classifiers for LSM.
Therefore, the proposed framework can effectively ana-
lyze the relationship between various landslide causative
factors, carry out effective feature extraction and knowl-
edge discovery, and accurately recognize landslide-prone
areas. The landslide susceptibility maps of EFS-SELM
comprehensively consider the influence of all the causative
factors, and have a guiding significance as a whole.

3) Finally, it is worth emphasizing that the ensemble idea
of combining different conventional classifiers provides
great potential and possibility for the assessment and
mitigation of geo-hazards, which can be effectively used
for landslide modeling.
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