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A Contextual Bidirectional Enhancement Method for
Remote Sensing Image Object Detection

Jun Zhang , Changming Xie , Xia Xu , Zhenwei Shi , Member, IEEE, and Bin Pan , Member, IEEE

Abstract—In remote sensing images, the backgrounds of ob-
jects include crucial contextual information that may contribute
to distinguishing objects. However, there are at least two issues
that should be addressed: not all the backgrounds are beneficial,
and object information may be suppressed by backgrounds. To
address these problems, in this article, we propose the contextual
bidirectional enhancement (CBD-E) method to simultaneously re-
move unexpected background information and enhance objects’
features. CBD-E integrates the features of different background
regions sequentially in two directions. On the one hand, a gate
function is used to filter out unexpected information in the back-
ground and thus improve the recall of detection. On the other hand,
a spatial-group-based visual attention mechanism is adopted to
enhance the features of objects to reduce the false alarm. The gate
function provides an approach to selecting meaningful information
in the background, while the spatial-group- based visual attention
mechanism enhances the information control ability of the gate
function. In the experiments, we have validated the effectiveness
of both the gate function and the visual attention mechanism and
further demonstrated that the proposed contextual fusion strategy
performs well on two published data sets.

Index Terms—Bidirectional fusion, context, remote sensing
object detection, visual attention.

I. INTRODUCTION

OBJECT detection in remote sensing images has attracted
more and more attention and has achieved remarkable

results in recent years [1]–[4]. Compared with images from
various angles captured by ground-level sensors, remote sensing
images of the overhead view typically contain richer and more
distinguishable co-occurring characteristics between objects and
the background [5], [6]. Usually, the objects and the background
in remote sensing images have certain contextual relationship.
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For example, ships often appear on the sea and airplanes tent
to locate on airports. Therefore, the introduction of context can
significantly improve the performance of remote sensing object
detection algorithms [7]–[9].

However, it is inevitable that some unexpected things appear
around the detected object. Unexpected information that exists
in the background may mislead the model so that true objects
are identified as negative samples. For example, planes may
be identified in a square, and parked cars may be detected in
a wasteland. In contextual information fusion, to establish a
powerful joint representation of an object, it is necessary to filter
out unexpected information in the background. In this article,
we construct a contextual-based remote sensing object detection
network called contextual bidirectional enhancement (CBD-E).
CBD-E is motivated by the idea that context generally contribute
to the detection results, but under certain circumstances the
background may mislead the detectors. Therefore, we propose
two simultaneous strategies to address this issue: filtering out
the unexpected background and enhancing the objects.

On the one hand, we integrate the gated bidirectional fu-
sion (GBD) structure [10] into our CBD-E model to suppress
the unexpected background. In GBD-Net [10], multiple sets
of information of contextual regions are fused in a certain
order, namely, first in a positive order and then in a negative
order. The gate function implemented by convolution simulates
the gate to control the information flow, and filters out unex-
pected information during the fusion process. By introducing
the context, the risk of missed detection may be reduced. It
is worth noting that the background is retained and gradu-
ally becomes dominant in CBD-E, which is quite different
from existing multiscale enhancement or visual attention based
approaches.

On the other hand, to further enhance the objects in the
image, we improve the bidirectional fusion structure via a vi-
sual attention based approach, spatial groupwise enhancement
(SGE) [11]. Unlike objects in natural scene images, objects in
remote sensing are observed in the overhead view, in which case
their structures tend to be stable and occlusions are seldom. In
CBD-E, to force the detector to focus more on the object itself,
we introduced the idea of visual attention. Additionally, subfea-
tures generated by neural networks can usually be distributed in
multiple groups to represent various semantic entities [12]. SGE
strengthens the subfeatures separately according to grouping. It
is worth noting that this is more advantageous for gate functions
to control the flow of information. By focusing on object itself,
CBD-E reduces the risk of false alarm and improves precision.
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Overall, the proposed method is inspired by the effectiveness
of contextual correlation, where removing unexpected back-
ground and enhancing the objects are conducted simultaneously.
The two contributions of CBD-E can be summarized as follows.

1) We develop a GBD structure to suppress the unexpected
background in the context area around the object.

2) We conduct SGE to improve the object saliency and high-
light the features of the object.

II. RELATED WORKS

A. Generic Method

Object detection methods based on deep learning are widely
used in remote sensing scenes. These detectors are broadly
divided into two types: two-stage and single-stage. Two-stage
methods have better results in detection accuracy. They first
generate some candidate boxes, and then further determine the
category and adjust the position, such as Faster RCNN [13].
One-stage methods have a faster speed when inferring. They
do not need to generate proposals, such as SSD [14] and
YOLO [15]. The researchers designed the feature pyramid net-
works (FPN) [16] with FPN based on the two-stage algorithm.
In recent years, weakly supervised detectors have been devel-
oped, which only require scene-level annotations for training.
WSDL [17] exploits both the separate scene category informa-
tion and mutual cues between scene pairs to sufficiently train
deep networks. Our proposed CBD-E uses FPN as a baseline.
We will introduce it in detail in Section III.

B. Context Method

In recent years, researchers have tried various methods to use
context to enhance the performance of remote sensing detectors.
Liu et al. proposed detection methods [18]–[21] to extract con-
text by segmenting remote sensing images before detecting ob-
jects. Based on the prior knowledge of an object and its context,
Sun et al. established a robust context model [22]–[24] to obtain
the degree of correlation between an object and its context. The
rapid development of deep neural networks, especially convolu-
tional neural networks (CNNs), enables the context to be fully
utilized. Zhao et al. extracted features and designed an object
detection model [25], [26] using a CNN for fusion context based
on the conditional random field. Zhang et al. designed a deep
learning model [27] with a contextual feature extraction struc-
ture. In the researchers’ model, the context structure is built on
the deepest of several feature extraction branches, and contextual
information is introduced to each layer of the detection branches.
Yang et al. designed two-stage object detectors that consisted
of a region proposal stage and a refinement stage [28]–[30].
Before the refinement stage, the authors introduced the features
of the region around the candidate box as context to be integrated
into the local features. Gong et al. proposed CA-CNN [31] that
obtains scene information by mapping contextual regions of in-
terest (RoIs) mined from the foreground proposals to multilevel
feature maps. Ke et al. designed LCFFN [32] with multiple
branches. The model extracts context from RoIs that expand by
a fixed ratio and combines them with local features. The essence

of the aforementioned methods is to obtain object features that
contain the richest possible contextual information to allow the
subsequent structure to perform more accurate classification and
regression.

C. Gate Function

Opening a gate means allowing someone or something to
pass, otherwise it means blocking them. The gate function is
a structure that simulates the gate through a mathematical oper-
ation. It is usually used to transmit or block some information. In
LSTM [33], researchers have designed various gate functions to
realize the update of long-term memory and short-term memory.
In GRF [34], the researchers use the characteristics of the gate
function to control the features to select the appropriate branch.
In highway networks [35], the gate function is used to open a
channel to the deep layer, which solves the problem of gradient
disappearance. In our proposed CBD-E, the gate function is
designed to filter out unexpected information in the background.

D. Visual Attention

When observing things, humans always have different levels
of attention in focus and background. Inspired by the human
visual system, the researchers designed the attention structure
to simulate the focus of human observation. This mechanism is
widely used in object detection in remote sensing scenes. Chen
et al. proposed a multiscale spatial and channel-wise attention
mechanism for enhancing objects in different backgrounds [36].
In MA-FPN [37], the researchers extract attention information
from shallow features and optimizes deep features to make the
network track object regions more accurately. Xue et al. devel-
oped a supervised multidimensional attention network to detect
small object in a cluttered background [38]. In our proposed
CBD-E, the visual attention is designed to enhance the objects.

III. METHOD

The overall framework of CBD-E is shown in Fig. 1. First,
we generate three context regions with different sizes based on
the candidate box. The feature map of each region is obtained
through RoIAlign [39], and they have the same size. Then, we
use the bidirectional fusion structure to interact the features
of the original region and the background region in order of
size. In the process of transmission, we filter out the unexpected
information in the background through the gate function. And
the visual attention mechanism is used to enhance the features
of objects suppressed by context. Finally, the fused feature maps
are fed into the parameter sharing detection network to generate
multiple prediction boxes, and the optimal box is selected by
nonmaximum suppression (NMS). More details are discussed
in the following sections.

A. Background

In the current detection methods, CNNs are widely used as
an effective way of extracting features [40]–[43]. In CBD-E,
FPN is used to generate abstract feature maps that describe
remote sensing image content. In the current two-stage detection
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Fig. 1. Overview of our framework. Parameters on black arrows are shared across branches, while parameters on red arrows are not shared. G and E represents
gate function and visual enhancement, respectively.

algorithms, a rough set of object proposals is usually generated
first as candidate boxes and then is refined by adjustment of
their coordinates and prediction of their categories [44], [45].
In this article, we generate the candidate boxes on the feature
map through region proposal network (RPN) [13] and use r
to represent the region of a candidate box. Mathematically, we
define the coordinate expression b of r as follows:

b = [x, y, w, h] (1)

where x and y represent the central point coordinates of r, and
w and h represent the length and width of r, respectively.

Based on the candidate box b0, RoIAlign is usually used to
obtain a set of fixed-size regional feature maps v0 by twisting and
scaling. Then, the original refinement procedure of the existing
two-stage detectors commonly entails performing the following
operations to refine region r0:{

s = fcls(v0)
bf = freg(b0, v0)

(2)

where freg and fcls are regression and classification operations,
respectively. In a two-stage detector, freg is generally a linear
regression operation used to obtain the coordinates bf of the
predicted box, and fcls is usually a softmax operation used to
obtain the confidence score s of the refined predicted box. If the
context is not considered, bf is usually the final predicted box
of the object.

B. Context Fusion Method Based on a GBD Structure

In a remote sensing scene, the specific background where the
object is located will often provide the information crucial to
distinguishing the object. In this article, we introduce a gated
bidirectional structure into remote sensing object detection to
fuse information from different context regions. In the following

sections, we will show how to select different regions and the
fusion process.

1) RoIAlign of Features for Different Context Regions: The
feature maps of several different support regions of an object are
selected as the contextual information of the object. In CBD-E,
we obtain the context region rp of r0 through b0. The following
actions are usually performed:

bp = [x0, y0, (1 + p)w0, (1 + p)h0] (3)

where bp is the coordinate of rp. In CBD-E, we adjust the value
of p to obtain three sets of coordinates b1, b2, and b3, which
correspond to the three context regions r1, r2, and r3, as shown
in Fig. 1. From the corresponding regions, features v1, v2, and v3
are obtained through RoIAlign and warped into 14 × 14 × 256
to obtain the same size.

The context scale value p determines the amount of padded
context. A large p value means that a larger background region
can be obtained and that richer contextual information can be in-
troduced. Different from the multiscale enhancement algorithm
that always pays attention to the features of the object itself,
CBD-E pays more attention to the contextual information when
the p is larger. As p increases, the features of the object itself will
be compressed more, and contextual information will dominate.
A smaller p value means that more features of the object itself
can be retained but that less contextual information will be
introduced. Since each region has the same central point, there
is an inevitable overlap between the context regions. If the dif-
ference between p values is smaller, the model will also contain
more redundant information. When the value of p is very large,
the context region of a large object may exceed the range of
the feature map. During the experiment, 1.7 is a reliable upper
limit of p. The context close to the object is usually more closely
related to the object. Therefore, as the value of p decreases, the
interval of p decreases. Next, we set p = 0.4, 0.8, and 1.7 by
default, corresponding to r1, r2, and r3, respectively.
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Fig. 2. (a) Illustration of bidirectional structures that fuse features of different regions. (b) Illustration of a bidirectional fusion structure with gate functions.

2) Bidirectional Fusion Structure: Fig. 2(a) shows the archi-
tecture of a bidirectional fusion structure. It takes features v0,
v1, v2, and v3 as inputs and outputs features v30 , v31 , v32 , and v33
for a single candidate box. It builds two-directional connections
between multiple regions of different sizes. One directional
connection starts from features with the smallest region size
and ends at features with the largest region size. The other does
the opposite. The connection starting from the smallest region
gradually introduces the object into the larger background. This
means that the category of the object is gradually verified in a
larger background. The change of the region size from large to
small means that the category of the object is gradually inferred
from the continuously shrinking background. For example, a
baseball diamond is located in the playground, and the play-
ground is located in the school. The gradient change of region
size enables information of different regions to be gently fused
together, and the resulting fusion structure will be more stable.

For a single candidate box b0, vi is represented as v0i , which
is the input of the ith branch. The forward propagation for the
proposed bidirectional structure can be summarized as follows:

v1i = σ(v0i ⊗ w1
i + b0,1i ) + v1i−1,i (4)

v1i−1,i = σ(v0i−1 ⊗ w1
i−1,i + b1i−1) (5)

v2i = σ(v0i ⊗ w2
i + b0,2i ) + v2i,i+1 (6)

v2i,i+1 = σ(v0i+1 ⊗ w2
i,i+1 + b2i+1) (7)

v3i = σ(cat(h1
i , v

2
i )⊗ w3

i + b3i ) (8)

where ⊗ represents the convolution operation. Variables b∗∗
and w∗

∗ represent the biases and filters of convolutional layers,
respectively. Operator σ(·) represents an elementwise RELU
used as a nonlinear function. Function cat() concatenates CNN
feature maps along the channel direction. If i =0, v10 is only

generated by v00 : v10 = σ(v00 ⊗ w1
0 + b0,10 ). If i =3, v23 is only

generated by v03 : v23 = σ(v03 ⊗ w2
3 + b0,23 ).

To enhance stability, we add an identity mapping, as is widely
done in practice [46], [47]. The operation is as follows:

vfi = v0i + αv3i . (9)

The result vfi will be sent to the subsequent detection network for
classification and regression. Constant α is a crucial parameter;
its impact is discussed in the following sections. In subsequent
sections, α defaults to 0.1.

3) Gate Functions for Filtering out Unexpected Information:
The background region of an object includes unexpected infor-
mation that is detrimental to improved detection performance.
Instead of retaining and passing all the information of the
background to the next region during the fusion process, we
introduce gate functions to filter out unexpected information
and adapt message passing for individual candidate boxes.

Our gate function is generated by two adjacent branches. In
the approach of GBD-Net [10], the gate function generated by
v0i−1 controls the transfer of information from (i− 1)th branch
to ith branch. This means that only (i− 1)th branch controls
what messages are passed. Unlike GBD-Net, we believe that ith
branch that receives information should also participate in rate
control. Therefore, we introduce v0i in the generation of the gate
function, as shown in Fig. 3. And the others are also generated
by two data sources. We analyzed the contribution of this change
in Section IV-F.

Fig. 2(b) shows the application of gate functions. A gate
function is implemented by convolution with a kernel size of 3
× 3 and the sigmoid nonlinear function. The generation process
and control information passing of the gate structure are as
follows:

G1
i = sigm(cat(v0i−1, v

0
i )⊗ wg

i−1 + bgi−1)) (10)
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Fig. 3. Illustration of the gate functions generated by different data sources.
The right function is used in CBD-E.

G2
i = sigm(cat(v0i , v

0
i+1)⊗ wg

i+1 + bgi+1)) (11)

v1i = σ(v0i ⊗ w1
i + b1i ) +G1

i • v1i−1,i (12)

v2i = σ(v0i ⊗ w2
i + b2i ) +G2

i • v2i,i+1 (13)

where G is the gate function used to control message
passing, • denotes elementwise product, wg

∗ and bg∗ are
weights and offsets of the convolution, respectively, and
sigm(x) = 1/[1 + exp(−x)]. The value of G represents the
passing rate of information, so it should be within the range
of (0, 1). The output of sigm() is in the range of (0, 1). And
the function is derivable and its curve is symmetrical around
0.5. So sigm() is suitable as a gate. In element-level operations,
multiplying by 0 means that the information is erased. When
G = 0, it means that the pass rate is 0, and the unexpected
information is erased. Conversely, the context that is helpful for
detecting objects is allowed to pass by the gate.

C. Enhance Objects Features Based on Visual Attention
Mechanism

In this article, we introduce a visual attention mechanism
to prevent the introduction of contextual information leading
to suppressing the object information. SGE adjusts the impor-
tance of subfeatures of corresponding positions by generating
an attention factor for each spatial position in each semantic
group. Unlike SENet [47], which focuses on partial channel
information, it enables each group to autonomously enhance its
learning expression. In our method, SGE can enhance the fused
information v1i and v2i grouping in the context fusion process,
as shown in Fig. 4.

In SGE, feature maps are first divided intoE groups according
to dimension. Then, each group in a space has a vector repre-
sentation V , V = {v1. . .vm}, vj ∈ R

C
E , m = h×w. We further

assume that this group gradually captures a specific semantic
response (such as the serve area of a tennis court) during network
learning. In this group space, it is ideal to obtain the feature maps
that have a strong reaction only on the serve area. And the rest
of it is barely activated and becomes a zero vector. However,
due to the inevitable noise and the existence of similar patterns,
it is usually difficult for CNNs to obtain a well-distributed
feature response. Therefore, we use the overall information of
the whole group space to further enhance the learning of the
semantic feature of crucial regions. Specifically, we use the
global statistical feature obtained through the spatial averaging
function Fgp(·) to approximate the semantic vector this group
learns to represent. For a single feature group V , the operations

are as follows:

e = Fgp(v) =
1

m

m∑
j=1

vj . (14)

Next, using the global feature, we can enhance the features
of this group. The enhancement operation realized by the dot
product enhances or weakens the features of different groups to
different degrees. Therefore, the model pays more attention to
some particular grouping. For each position, we have

cj = e · vj . (15)

To prevent the bias in the magnitude of coefficients between
various samples, we normalize c over the space

ĉj =
cj − μc

ηc + ε
, μc =

1

m

m∑
k

ck, η
2
c =

1

m

m∑
k

(ck − μc)
2 (16)

where ε is a constant used to enhance stability, with the value
of 1e-5. To ensure that the normalization of the insertion net-
work can represent the identity transformation, we introduce
two parameters γ and β. Compared with other attention meth-
ods [48]–[50], it is more lightweight with fewer parameters. For
each coefficient ĉ

aj = γĉj + β. (17)

Parameters γ and β are trainable; γ is initialized to 0, and β is
initialized to 1. Finally, to obtain the enhanced feature vector v̂j ,
the original vj is scaled by the generated crucial coefficients aj
via a sigmoid function

v̂j = vj · sigm(aj). (18)

Ultimately, all feature groups in V̂ = {v̂1. . .v̂m}, v̂j ∈ R
C
E ,

m = h× w will be enhanced. Fig. 5 illustrates the GBD struc-
ture with SGE.

D. Loss Function

In the training step, we use a multitask loss function, like
Faster RCNN. The loss of RPN includes two parts: classification
loss Lrc and regression loss Lrl. In the second stage, the loss
includes classification Lsc and regression Lsl. Lrc is log loss
over two classes. And Lsc is a multiclass cross-entropy loss.
The loss function for an image is defined as

L = λ0
1

Nrc

∑
f=1

Lrc(z
c1
f , tc1f ) + λ1

1

Nrl

∑
q=1

tc1f Lrl(z
l1
q , t

l1
q )

+ λ2
1

Nsc

∑
f=1

Lsc(z
c2
f , tc2f ) + λ3

1

Nsl

∑
f=1

tc2f Lsl(z
l2
f , t

l2
f ).

(19)

Here, tc1f is 1 if the anchor point is positive, otherwise it is 0.
And tc2f is the classification ground-truth label. f is the index
of an anchor in a minibatch, and q is the index of an anchor
of the image. λ∗ are weights, and N∗∗ are used to normalize
the corresponding loss part. zc∗∗ are the classification prediction
values at different stages. L∗l =

∑4
i=1 Z(zl∗f,i − tl∗f,i), and Z

is Smooth L1 loss. The ground-truth bounding box offsets is
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Fig. 4. Illustration of the SGE module enhancement process. The subfeatures of each group are processed in parallel, and the correlation between the global
statistical features of the whole group and the local positional features of the group is used as the attention guidance to enhance the features of the group.

Fig. 5. Illustration of our GBD structure with SGE.

denoted by zl∗f = [zl∗f,1, z
l∗
f,2, z

l∗
f,3, z

l∗
f,4]. And the predicted offset

is denoted by tl∗f = [tl∗f,1, t
l∗
f,2, t

l∗
f,3, t

l∗
f,4].

E. Discussion

CBD-E fuses accurate and concise contextual information
without suppressing features of the object of interest. In con-
text fusion, we filter out unexpected information by the gate
function and enhance the feature of the object by SGE. Finally,
multiple groups of feature maps rich in contextual information
will predict the object through the subsequent detection network.
Parameters are shared during detection. Fig. 1 shows the detec-
tion process of CBD-E, where the contextual information of r0
is provided by feature maps of r1, r2, and r3. In conjunction with
the contextual information, the following refinement operations

are usually performed in the second stage:{
(s0, s1, s2, s3) = fcls(v

f
0 , v

f
1 , v

f
2 , v

f
3 )

(bf0, bf1, bf2, bf3) = freg(b0, v
f
0 , v

f
1 , v

f
2 , v

f
3 )

(20)

where v1, v2, and v3 are the regional feature maps of b1, b2, and
b3, respectively, (bf0, bf1, bf2, bf3) are the four predicted boxes
obtained by regression of b0, and (s0, s1, s2, s3) are confidence
scores of the four predicted boxes. The prediction for an object
can only be one box instead of four. The final prediction box
will be selected from the four predictions by proper NMS. The
detailed process of CBD-E is shown in Algorithm 1.

IV. EXPERIMENTS

In this section, we examine the performance of CBD-E
through several experiments. We first introduce the data set and
the evaluation methods used in the experiment. Then, we de-
scribe the implementation details of CBD-E. Next, we compare
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Algorithm 1: Contextual Bidirectional Enhancement.

Input: Candidate box b0 = [x0, y0, w0, h0], contextual
regions number I , a set of context scale values
P = {p0 = 0, . . ., pI}, feature maps extracted by CNN V .

Output: Final prediction box bf .
1: for i = 0 to I do
2: Obtain contextual box bi by scaling the b0 by pi,

based on (3).
3: Obtain the contextual feature v0i of bi on V by

RoIAlign.
4: if i == 0 then
5: v1i is generated by v0i through convolution.
6: else
7: Generate G1

i by v0i and v0i−1.
8: v1i−1 is visually enhanced by SGE and filtered by

the gate G1
i .

9: Obtain v1i by fusing v0i and the feature v1i−1 of the
previous branch.

10: end if
11: end for
12: for i = I to 0 do
13: if i == I then
14: v2i is generated by v0i through convolution.
15: else
16: Generate G2

i by v0i and v0i+1.
17: v2i+1 is visually enhanced by SGE and filtered by

the gate G2
i .

18: Obtain v2i by fusing v0i and the feature v2i+1 of the
previous branch.

19: end if
20: Obtain vfi by fusing v1i and v2i .
21: Generate the predict box bfi by vfi .
22: end for
23: Select the optimal prediction box bf in {bf0, . . ., bfI}

through NMS.

our approach with baseline networks and other state-of-the-art
context fusion algorithms. In addition, we compare CBD-E with
some of the most advanced remote sensing object detection
algorithms. Finally, we analyze the influence of key parameters
in CBD-E on detection performance.

A. Data Sets

Two public data sets, namely, NWPU [51], RSOD [52], and
DIOR [53], are used for comparison. Both of them are available
online.123

1) NWPU: The NWPU data set is a challenging ten-class
object detection data set published in conjunction with object
detection tasks annotated by the Northwestern Polytechnical

1Online. [Available]: http://jiong.tea.ac.cn/people/JunweiHan/NWPUVHR
10dataset.html

2Online. [Available]: https://github.com/RSIA-LIESMARS-WHU/RSOD-
Dataset-

3Online. [Available]: http://www.escience.cn/people/gongcheng/DIOR.html

University. These ten classes of objects are ship, vehicle, air-
plane, bridge, storage tank, tennis court, harbor, basketball court,
ground track field, and baseball diamond. The NWPU data
set has two parts, the positive set and the negative set, which
contain a total of 800 images, ranging in size from 533 × 597 to
1028 × 1728. All 3210 objects in this data set exist in the 650
images in the positive set. The 150 images in the negative set
contain no objects. Of these images, 715 from Google Maps are
high-resolution remote sensing images with spatial resolutions
ranging from 0.5 to 2 m, and the remaining 85 images are
color-infrared images with the spatial resolution of 0.08 m. The
positive set and the negative set are randomly divided into three
parts according to the ratio of 6:2:2. Corresponding data are
combined as training set, verification set, and testing set. We
directly use the original images as input to the network, instead
of splitting them or resizing.

2) RSOD: RSOD is an open remote sensing object detection
data set that was labeled by a Wuhan University team in 2017.
The data set contains 976 images and four categories: aircraft,
playground, overpass, and oil tank. These images contain a total
of 6950 objects, including 1586 oil tanks in 165 images, 191
playgrounds in 189 images, 4993 aircraft in 446 images, and
180 overpasses in 176 images. The data set is randomly divided
into a training set, a validation set and a testing set according to
6:2:2 ratios.

3) DIOR: The dataset is a large open source dataset recently
developed and contains 23 463 images. It covers a wide range
of categories. These images contain 20 kinds of objects, such as
vehicle, train station, harbor, etc. The size of the image is unified
to 800 × 800. The ground coverage is wide, covering more
than 80 countries. Moreover, these images are carefully collected
under different seasons, weathers and imaging conditions. And
it has high interclass similarity and intraclass diversity. We use
officially divided training set, validation set, and test set.

B. Evaluation Metrics

We use average precision (AP) to quantitatively evaluate the
performance of an object detection system. This standard is
widely used in many object detection studies [31], [32]. Pre-
cision measures the fraction of detections that are true positives,
and recall measures the fraction of positives that are correctly
identified. Assuming that TP, FP, and FN denote the numbers of
true positives, false positives, and false negatives, respectively,
precision and recall can be formulated as follows:

Precision =
TP

TP + FP
(21)

Recall =
TP

TP + FN
. (22)

If the intersection over union (IOU) between the predicted
bounding box and the ground truth exceeds 0.5, the respective
instance is considered to be TP. Otherwise, the prediction is
treated as FP. The AP metric involves computing the average
value of precision over the interval from recall = 0 to recall = 1,
i.e., the area under the precision–recall curve (PRC) obtained
by plotting precision and recall. AP is particularly suitable

http://jiong.tea.ac.cn/people/JunweiHan/NWPUVHRpenalty -@M 10dataset.html
https://github.com/RSIA-LIESMARS-WHU/RSOD-Dataset-
http://www.escience.cn/people/gongcheng/DIOR.html
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TABLE I
COMPUTED MAP (%) COMPARISON OF EIGHT DIFFERENT METHODS ON THE NWPU DATA SET

for evaluation algorithms that predict both object location and
category because the criterion reflects the stability of the model.
Higher AP values indicate better model performance and vice
versa. For multiclass detection tasks, mAP is usually used to
evaluate the model’s average performance across all classes.

C. Implementation Details

The implementation of CBD-E is based on FPN. We use
ResNet-101 [46] as the backbone network to extract features.
We migrated the ResNet-101 pretrained on ImageNet [54] to our
model and further fine-tuned it on remote sensing data sets [55],
[56]. For the NWPU and RSOD data sets, predictions are made
on P2, P3, P4, P5, and P6 of feature maps extracted by the FPN.
The maximum number of positive samples selected by RPN is
no more than 6000, and the IOU between the labels is more
than 0.7 for positive samples. We set the batch size of the above
methods to 1. In the second stage, where the number of positive
samples does not exceed 128, the minibatch size is set to 256. For
the NWPU data set, we trained for 30 000 steps, and our initial
learning rate was set to 1e-3 and changed to 1e-4 and 1e-5 at
10 000 and 15 000 steps, respectively. For the RSOD data set,
we trained for 45 000 steps, and our initial learning rate was set
to 1e-3 and changed to 1e-4 and 1e-5 at 15 000 and 30 000 steps,
respectively. For both data sets, we use the data augmentation of
rotation and flip. To prove the outstanding performance of our
method among algorithms of the same kind, we reproduced the
context fusion methods CA-CNN and LCFFN of other authors.
For fairness of this comparative experiment, we reproduced the
above methods on the same baseline network FPN and used the
same training parameters and data augmentation.

In this article, we compare CBD-E with other advanced object
detection methods in the field of remote sensing, such as Faster
R-CNN, SSD300, and RetinaNet [57]. Additionally, we use the
same data set partition for all of the above methods.

D. Results and Analysis

1) Experiments on NWPU: The predictions of CBD-E on
this data set are shown in Fig. 6(a). The experimental results
are shown in Table I, where the best results are marked in
bold. Compared with the baseline, CBD-E achieved an overall
performance improvement of 2.25%, and obtained the excellent
detection result of 94.98% in comparison with seven methods.

According to Table I, there are several classes, including bridge,
ground track field, baseball diamond, and storage tank, for which
CBD-E improves over the baseline by 10.38%, 2.02%, 3.69%,
and 8.92%, respectively. As shown in the PRCs in Fig. 7, GBD
significantly increases the recall of multiple classes compared to
the baseline. And CBD-E obtained a more perfect curve. On this
data set, CA-CNN and LCFFN attain an mAP of 93.81% and
93.67%, which are excellent results. These similar algorithms
and CBD-E have excellent performance. In Table I, the exper-
imental results of Faster R-CNN, SSD300, and RetinaNet all
originate from [58]. Through comparative experiments, the ef-
fect obtained by CBD-E is comparable to that of state-of-the-art
remote sensing target detection algorithms. During inference,
CBD-E can run at 2.0 FPS on the GPU.

In CBD-E, the improvement in detection accuracy of storage
tanks and bridges is very large. Although a storage tank has a
distinct outline, it has almost no texture, as shown in Fig. 8.
Storage tanks are usually found only in factories. Compared
with the baseline, CBD-E has a more accurate response to the
factory, as shown in Fig. 8. We speculate that the introduction
of CBD-E as context has made a tremendous contribution to the
improvement of storage tank detection performance. It is worth
mentioning that CA-CNN and LCFFN are also significantly
better than Faster R-CNN, SSD300, RetinaNet, and FPN in
the detection of storage tanks. We attribute the improved per-
formance of detecting these objects to the context. Bridges are
usually built over rivers. We visualized the feature maps during
the detection process and found that riparian line that are not
detected objects still have a high degree of activation response,
as shown in Fig. 8. We speculate that the introduction of rivers as
context is an important factor to improve the accuracy of bridge
detection.

2) Experiments on RSOD: Due to the differences between
the data sets, we analyzed the sensitivity of the parameters on
RSOD. Unlike NWPU,p=0.2, 0.6, and 1.4 is more suitable. The
others are consistent with NPWPU. The predictions of CBD-
E are shown in Fig. 6(a). The experimental results are shown
in Table II, where the best results are marked. Compared to
the baseline, the overall performance of the CBD-E has been
greatly improved, and the improvement of some categories is
significant. CBD-E has a mAP of 94.23%, which is outstanding
among many methods. GBD reached 93.61%, which still has a
considerable increase compared to the baseline. Table II shows
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Fig. 6. Select detection results on the test sets of NWPU, RSOD, and DIOR. The red boxes represent the ground truth. (a) Predictions of CBD-E on the NWPU
data set. (b) Predictions of CBD-E on the RSOD data set. (c) Predictions of CBD-E on the DIOR data set.

that for oil tanks, CBD-E attains a significant improvement by
4.48% compared with the baseline. The storage tanks in the
NWPU data set and the oil tanks in RSOD are instances of
the same object. The oil tank images in the RSOD data set are
slightly clearer, but the texture is still not rich enough, as shown
in Fig. 6. CA-CNN and LCFFN are also significantly better than
Faster R-CNN, SSD300, RetinaNet, and FPN in the detection
of oil tanks. The introduction of contextual information also

enables better detection results for oil tanks in the RSOD data
set. On RSOD, the inference speed of CBD-E can reach 3.3 FPS.

In Table II, the experiment results of Faster R-CNN, SSD300,
and RetinaNet all also originate from [58]. As shown in Table II,
CBD-E is observed to still have the excellent mAP among the
context fusion algorithms. Compared with other object detection
methods in remote sensing scene, CBD-E still has outstanding
performance.
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Fig. 7. PRCs of the baseline (red), GBD (green), and CBD-E (blue) for NWPU.

Fig. 8. Activation response during detection. The objects in the red box are from NWPU, oil tanks in the green box are from ROSD, and storage tanks in the blue
box are from DIOR.

3) Experiments on DIOR: Due to the differences between the
data sets, we analyzed the sensitivity of the parameters on DIOR.
When the object is relatively large, we find that the expanded
RoI often exceeds the range of the image. So, we set p= 0.2, 0.6,
and 1.0. The predictions of CBD-E on this data set are shown
in Fig. 6(a). The experimental results are shown in Table III,
where the best results are marked in bold. Compared with the
baseline, CBD-E achieved an overall performance improvement

of 2.4%, and obtained the excellent detection result of 67.76% in
comparison with seven methods. According to Table III, there
are several classes, including storage tank, baseball field, and
basketball court, for which CBD-E improves over the baseline
by 10.0%, 8.2%, and 6.5%, respectively. By visualizing the
features of the P2 layer in FPN, we found that the feature
extraction network of CBD-E has a stronger activation effect
on the storage tank than the background, as shown in Fig. 8.
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TABLE II
COMPUTED MAP (%) COMPARISON OF EIGHT DIFFERENT METHODS ON THE RSOD DATA SET

TABLE III
COMPUTED MAP (%) COMPARISON OF EIGHT DIFFERENT METHODS ON THE DIOR DATA SET

TABLE IV
DETECTION MAP (%) FOR FEATURES WITH DIFFERENT REGIONS’ COMBINATION ON THE NWPU DATA SET

And the factory where the storage tank is located also has strong
activation.

In Table III, the experiment results of Faster R-CNN, SSD300
and RetinaNet all also originate from [53]. Compared with other
object detection methods in remote sensing scene, CBD-E still
has outstanding performance. During inference, CBD-E can run
at 3.6 FPS on DIOR.

E. Parameter Analysis

To investigate the influence of different sizes of context re-
gions, we perform a series of experiments on the NWPU data
set. Among them, contextual features of different region sizes
are added one-by-one. The experimental results obtained with
various parameters are shown in Table IV. p = 0 means that

no background area is introduced, and this region is the original
candidate box. If there is only one region feature, we observe that
the larger the background region is, the worse the performance
is. Additionally, the larger the gradient of the background area is,
the worse the performance is. We speculate that the central area
of an object tends to contribute more to instance classification.
Based on this conjecture, we explored the detection performance
when p takes a negative value, for example, p=−0.2. Unfortu-
nately, we do not get better performance, even if it only serves
as a branch.

We research the influence of parameter α mentioned in
Section III using the NWPU data set. The experimental results
for various values of α are shown in Table V. When studying the
influence of α, we fix the value of E at 64. We find that no per-
formance improvement is attained if α is larger or smaller than
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Fig. 9. Activation response of the NWPU’s storage tank in the second stage. Unprocessed features are enclosed in green boxes. The features in the red box are
optimized by the algorithm.

TABLE V
DETECTION MAP (%) FOR FEATURES WITH DIFFERENT VALUES OF α AND E

ON THE NWPU DATA SET

0.1. We tried to use the fusion result v3 directly for prediction
but obtained worse performance, as shown in the last column in
Table V. Using the NWPU data set, we also explore the influence
of parameter g of SGE, as shown in Table V. When studying the
influence of g, we fix the value of α at 0.1. We find that the
performance of the network increases first and then decreases
with the increase in E. According to the experimental results,
we select the value of E to be 64.

F. Ablation Study

We performed ablation studies to verify the effectiveness of
various parts of CBD-E. We explore the activation state of the
object by obtaining heat maps synthesized by its feature maps
during the detection process, as shown in Fig. 9. In the four
groups of original features obtained by RoIAlign, the relative
activation state between the object and its context is not optimal.
The activation intensity of the object itself cannot be much higher
than its background. And the activation amount of the object
itself is negative correlated with the activation amount of its
context. After CBD-E combing the context and enhancing the
object, the four groups of features of the storage tank all have
considerable changes, as shown in Fig. 9. The four groups of
features of the storage tank all have more effective context in-
formation and its own activation intensity is higher. Regions that
introduce less background also have rich contextual information.
And the features of the object in context-rich regions have been
properly improved. It is worth noting that the object itself has a
fairly strong activation relative to its context. In order to further
verify that this high activation phenomenon is caused by visual
attention, we removed the SGE part in the CBD-E model (GBD).
The contrast in activation intensity between objects and context
is no longer so strong, as shown in Fig. 9.

TABLE VI
INFERENCE SPEED (FPS) ON DIFFERENT DATA SETS

Our method also has a considerable impact on the front-end
network. By visualizing the features of the P2 layer of FPN,
we found that the CBD-E feature extraction network has a
stronger activation of the object relative to the background.
And the activation degree and scope of the object’s context
are also more object-oriented, as shown in Fig. 8. The strong
response contrast obviously means that the model pays more
attention to the detected object. However, after removing the
SGE part (GBD), the response to the object is significantly
reduced, and the contrast strength between the object and the
context is reduced.

On the NWPU, we did an ablation experiment on our proposed
GBD structure, by comparing the original view GBD-Net. As
shown in Table IV, our proposed GBD has a slight improvement
in a variety of regional combinations. And the GBD is more
prominent when the gap between adjacent branches is larger.
We speculate that when the regional difference is large, the
acceptance branch should be more involved in the control of
the gate function.

G. Computational Cost

On the three data sets, we conducted an ablation study on the
inference speed and computational cost of CBD-E. All models
are tested on a single Nvidia GeForce GTX 1080Ti GPU with
11-GB memory. As shown in Table VI, the inference speed of
CBD-E can reach 2-3 FPS. On the NWPU, we tested the compu-
tational cost and parameter amount. Compared to the baseline,
the FLOPs of CBD-E increased by 10%. The parameters of
CBD-E increased by 20% from the baseline, and the visual
attention only increased by 1536. As the number of parameters
increases, CBD-E inevitably increases the computational cost
compared to the baseline. And the computational cost of visual
attention is slight.
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V. CONCLUSION

In this article, we propose the CBD-E method for contextual
information fusion in remote sensing scene object detection,
where gate functions and visual attention are involved in the
deep network. The gate functions effectively remove the un-
expected information in the context fusion process, and SGE
highlights the feature of the object itself that is suppressed by
the background. The former’s role is to improve recall, and the
latter’s role is to reduce false alarm. The joint learning of the
two strategies enhances the expression ability of the algorithm.
By analyzing the performance of multiple methods on open
remote sensing data sets, we conclude that CBD-E has excellent
performance in context-dependent algorithms, and has achieved
comparable effect to state-of-the-art methods.
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