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Abstract—The traditional interferometric synthetic aperture
radar denoising methods normally try to estimate the phase fringes
directly from the noisy interferogram. Since the statistics of phase
noise are more stable than the phase corresponding to complex
terrain, it could be easier to estimate the phase noise. In this article,
phase noises rather than phase fringes are estimated first, and then
they are subtracted from the noisy interferometric phase for de-
noising. The denoising convolutional neural network is introduced
to estimate the phase noise and then a modified network called
IPDnCNN is constructed for the problem. Based on the IPDnCNN,
a novel interferometric phase noise reduction algorithm is pro-
posed, which can reduce the phase noise while protecting fringe
edges and avoid the use of filter windows. The experimental results
using the simulated and real data are provided to demonstrate the
effectiveness of the proposed method.

Index Terms—Denoising convolutional neural network
(DnCNN), interferometric synthetic aperture radar (InSAR),
phase noise reduction.

I. INTRODUCTION

SYNTHETIC aperture radar interferometry (InSAR) is an
all-time and all-weather remote-sensing technique and can

be used for generating digital elevation models (DEMs) or
detecting surface deformation [1], [2]. However, phase noise
cannot be avoided due to the existence of thermal noise, tem-
poral decorrelation, spatial decorrelation, and miscoregistration,
which increases the difficulty of phase unwrapping and reduces
the accuracy of DEM and deformation reconstruction [3]. Con-
sequently, noise reduction is crucial for improving the quality
of SAR interferograms before phase unwrapping [4].
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The traditional phase noise reduction approaches are usu-
ally divided into two categories: spatial-domain filtering and
transform-domain filtering. In spatial-domain filtering, local
phase estimation methods are widely used. Classic boxcar filters
estimate the parameters over a rectangular sliding window and
require the samples to be homogeneous [5]. The algorithms
proposed in [6] and [7] are based on the noise subspace and
the projection of the signal subspace. The subspace of noise is
obtained from a local window after coarse coregistration, and
the window size may influence its performance. Meanwhile, it
is difficult to estimate the signal subspace dimension in regions
with low coherence. The complex-valued Markov random field
(MRF) filter is employed in [8] and [9] to estimate the noise-free
phase term by minimizing the energy function in a local window.
The energy function is further developed in [10] based on a
joint probability and the phase value is computed with a ge-
netic algorithm. Nevertheless, some complicated areas could be
oversmoothed due to the fixed local window for MRF methods.
A common issue with these local phase estimation methods is
that they have difficulty in adapting to different features with the
fixed window size.

The Lee filter is designed to achieve a balance between the
residual noise and detail information loss [5], where a window
with the adjustable size and direction is employed according to
the local gradient of the interferogram. However, this method
only calculates 16 discrete orientations, which brings distortion
to curved fringes. Following the Lee filter, the intensity-driven
adaptive-neighborhood method carries out a complex multilook
operation on an adaptive neighborhood [11], where the adaptive-
window filters can achieve a tradeoff between the noise reduc-
tion and detail preservation. However, noise reduction is not
effective because the adjacent pixels are limited within the local
window.

To overcome the limitation of estimating the phase in a local
window, nonlocal phase estimation is proposed [12], [13], which
suppresses noise while preserving textures utilizing the weighted
averaging of similar pixels, with phase similarity calculated by a
matching window. In [14], a refined nonlocal filter is proposed,
which measures the similarity between the central pixel and
the remaining pixels in the matching window by a normalized
probability density function. However, nonlocal methods cannot
provide accurate similarity estimation in highly sloped terrains
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because a fixed-size matching window is used to capture the
varied fringe curvature [15].

On the other hand, the transform-domain filtering approach
mainly includes the wavelet transform and the frequency trans-
form. In [16], a complex wavelet interferometric phase filter
(WInPF) is implemented utilizing the discrete wavelet packet
transform decomposition to extract and amplify the useful sig-
nal in the interferogram. There are several adapted versions
of the WInPF, such as those studied in [17] and [18], where
by employing the Wiener filter or simultaneous detection and
estimation techniques, better performance is achieved in filtering
complicated areas. The phase information and noise can be more
easily separated in the wavelet domain, but the wavelet-domain
filters greatly depend on the scales of wavelet decomposition
and the threshold of wavelet coefficients.

For the frequency-domain methods, the Goldstein filter sup-
presses phase noise by enhancing the main frequency compo-
nents, but its performance is affected by the window size and
filter parameter [19]. A modification is proposed in [20] to
construct a filtering parameter dependent on the coherence value
to keep more texture details in the interferogram. However, a
biased coherence estimation result usually leads to an inaccurate
estimation of the filtering parameter. To solve this problem,
the filtering parameter is modified using an optimal nonlinear
model with homogenous regions and a bootstrapping technique
[21] or using a combination of correlation and multilook fac-
tors [22], [23]. These extended Goldstein filters preserve phase
fringes well, but frequency-domain filtering still suppresses
high-frequency components of fringes, resulting in the loss of
fringe details.

In order to further enhance the fringe edge-preserving ability,
Trouve [24] proposed a local frequency compensation filtering
algorithm. The local fringe frequency (LFF) is removed in each
local window, and then the residual phase is smoothed. Finally,
the removed fringe frequency is added to the filtered residual
phase to generate the filtered interferogram [25]. In [26], an
adaptive multiresolution technique was proposed to modify the
LFF estimation by setting a threshold to eliminate the “bad LFF
values” that have a large difference compared with its neigh-
boring pixels. It provides better protection for phase fringes,
but it is still hard to estimate the fringe frequency for highly
sloped terrain. In [27], multifrequency data are used to achieve
the accurate LFF in abruptly changing terrain and the Goldstein
filter is applied to the residual phase. In [28], the LFF is removed
before Goldstein filtering and the filter parameters are then
optimized, which improves edge preservation. Nevertheless, the
performance of local frequency compensation filters relies on
frequency estimation accuracy, which is heavily influenced by
phase noise and window size.

Window size selection is an important issue for the traditional
noise reduction methods. A large window denoises better at
the cost of losing details, such as edges, and vice-versa [29].
However, it is difficult to select a suitable window for all
pixels of the interferogram due to the diversity of terrain.
Although the adaptive-window filter can be used according
to the coherence or other criteria, it only reaches a tradeoff

between the noise reduction and edge preservation. So the
performance improvement from the adaptive window is limited
for complicated terrains. Fortunately, the phase noise statistics
are more stable than the phase fringes since noise is almost
from the same types of error sources, and thus, the estimation
of phase noise could be easier than estimating phase fringes in
areas with complicated terrains [30]. Therefore, in this work,
we intend to estimate the phase noise first and then subtract it
from the noisy phase to obtain the denoised one.

In recent years, convolutional neural networks (CNNs) have
been developing rapidly and widely applied to image noise
reduction [31]. CNNs have a powerful mapping approximation
capability and can extract the noise characteristics from massive
training data [32], [33]. For noise reduction in optical images,
a large-scale multilayer perceptron (MLP) model is adopted in
[34] with superior performance to the traditional methods, such
as block matching and 3-D filtering in image detail retention
[35]. The denoising convolutional neural network (DnCNN)
proposed in [36] can quickly and steadily remove optical im-
age noises. In addition, sparse encoding [37], trainable nonlin-
ear reaction diffusion [38], and self-coder [39] have achieved
good results in optical image denoising through phase training.
Among these methods, DnCNN is more effective in removing
Gaussian noise from optical images.

In this article, a new approach to remove the interferometric
phase noise via a modified DnCNN is presented. The original
DnCNN is modified to adapt to interferometric phase noise
estimation and the denoised phase is obtained by removing the
estimated noise from the original noisy interferogram. In the
proposed method, the number of samples used for noise training,
300 000 here, is huge and all pixels of noisy interferogram are ex-
ploited in phase noise estimation with the well-trained network.
Therefore, it can effectively suppress noise while preserving
phase fringe edges.

The remainder of this article is organized as follows. The
interferometric phase denoising method based on the modified
DnCNN is proposed in Section II. The experimental results
based on both simulated and real SAR data are presented in Sec-
tion III, where the results are compared with those of the slope
adaptive filtering and improved Goldstein filtering algorithms.
The conclusions are drawn in Section IV.

II. PRINCIPLE OF MODIFIED INTERFEROMETRIC PHASE NOISE

REDUCTION METHOD

The traditional denoising methods normally estimate the
interferometric fringes directly from the noisy interferogram
with the pixels in a window. However, it is difficult to extract
all of the fringes accurately especially for a complicated terrain
interferogram with low coherence or low signal-to-noise ratio
(SNR). As mentioned earlier, a new strategy is adopted in this
work, where noise is estimated first and then removed from the
image. Given the strong mapping approximation ability of CNN,
it is suitable for processing low-SNR interferograms with heavy
phase noise. Therefore, the estimation of noise is achieved by
modifying a DnCNN in this article.
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Fig. 1. Structure of DnCNN.

A. DnCNN Denoising Network [36]

DnCNN is modified from the VGG network [40] for image
denoising. VGG is a typical CNN architecture proposed by the
Visual Geometry Group of Oxford at ILSVRC 2014 based on
the Alexnet network. Compared with the Alexnet network, VGG
uses several groups of small convolution filters with a size of 3
× 3 instead of larger convolution filters. Under the condition
of the same receptive field, the network expression capability is
improved by increasing the network depth.

DnCNN removes all of the pooling layers in a VGG network,
learns the noise distribution, and combines batch normalization
(BN) for fast training and better denoising. It sets the depth of the
network according to the patch size used in the most advanced
denoising algorithms [36]. The network structure of DnCNN
is shown in Fig. 1. Assuming that the original image size is
N ×N × c, the corresponding output is noise with the same
size. c is the number of channels, i.e., c = 1 in the gray case and
c = 3 in color case. The size of the convolution filter is 3× 3,
the number of feature maps is 64, and the size of the receptive
field is (2d+ 1)× (2d+ 1) for a depth of d.

Denote the noisy image by y, the clean image by x, and the
noise by n. Then, the input of the DnCNN model is y = x+ n.
Unlike most denoising networks, such as MLP [34], which
trains the mapping function F (y) = x to estimate the clean
image directly, the DnCNN uses the residual learning method to
estimate noise by training the mapping function G(y) = n, and
then obtain a clean image by applying x = y −G(y). The loss
function in the DnCNN is the mean squared error of the noise

J(θ) =
1

2N

N∑
i=1

(Gθ(y
(i))− (y(i) − x(i)))

2
(1)

where θ is the trainable parameter to be learned, x(i) and y(i) are
the ith clean image and noisy image, respectively, and Gθ(y

(i))
is the noise trained by the ith noisy image.

B. Interferometric Phase Denoising Network
Based on DnCNN

Interferometric noise is considered as an additive complex
Gaussian in complex interferogram [5], which makes it suitable

for denoising with the residual learning strategy [36]. However,
significant errors occur when DnCNN, the classic optical image
denoising network, is directly used to process the interferometric
phase. By modifying DnCNN, an interferometric phase denois-
ing network (IPDnCNN) is designed to suppress phase noise
in a more robust way. The network structure of IPDnCNN is
shown in Fig. 2, where sine and cosine values of phase are used
as the input of the network and two more layers are added. Due
to the wrapping characteristic of the interferometric phase, if we
use the interferometric phase value as the input of the network
directly, the fringe edge tends to be judged as noise, which leads
to unstable network training and poor denoising result. To avoid
the instability of the fringe edge on network training, IPDnCNN
uses sine and cosine values of the interferometric phase as input
to the network. Fig. 3 displays a cross section of several fringes
together with its sine and cosine values. As can be seen, phase
jumps appear in the fringe edges. These jumps are similar to
the characteristics of phase noise. Meanwhile, sine and cosine
values are continuous even at fringe edges; thus, they would not
be confused with the noise in network training.

Therefore, with the introduction of sine and cosine values of
the interferometric phase, the number of channels becomes two
in the proposed IPDnCNN, i.e., c = 2. Assuming noises n1 and
n2 are the outputs of the IPDnCNN, the interferometric phase
ϕ is calculated by

ϕ = angle(cos(x′) + j(sin(x′)− n1)) (2)

where j=
√−1 and{

sin(x′)= sin(y)− n1

cos(x′)= cos(y)− n2
. (3)

The loss function of IPDnCNN is adopted to learn the residual
mapping for prediction, which is changed as

J ′(θ) =
1

2N

N∑
i=1

(n
(i)
1 − (sin(y(i))− sin(x(i))))

2

+
1

2N

N∑
i=1

(n
(i)
2 − (cos(y(i))− cos(x(i))))

2
(4)
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Fig. 2. Structure of IPDnCNN.

Fig. 3. Inputs of DnCNN and IPDnCNN.

Fig. 4. Flowchart of IPDnCNN.

where n
(i)
1 and n

(i)
2 are obtained through the mapping

G′
θ(sin(y

(i)), cos(y(i))).
For general optical image denoising tasks, DnCNN typically

sets depth as 17 with a reception field of 35× 35. Since the
interferometric phase usually has a low SNR, a larger receptive
field is needed to capture enough spatial information for denois-
ing. In order to balance efficiency and performance, the depth
of IPDnCNN in this work is increased to 19 with a receptive
field size of 39× 39. Simulation experiments show a further
increase in the network depth that will increase computational
cost, but without clear improvement in denoising performance

TABLE I
SIMULATION PARAMETERS

Fig. 5. Process of training data generation.

[36]. The first layer is a convolution layer with 64 filters of
size 3× 3× 2. A total of 64 feature maps are obtained and the
rectified linear units (Relu) activation is applied for nonlinearity.
A total of 64 filters of size 3× 3× 64 are utilized for convolution
from the second layer to the 18th layer, and the BN technique is
used for 64 feature maps to accelerate convergence at these 17
layers where Relu activation works. The last layer uses two filters
of size 3× 3× 64 to reconstruct two noisy images. Then, the
denoised sine and cosine images are obtained by removing the
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Fig. 6. Different training samples of clean/noisy interferometric fringe.

estimated noise from the noisy images, and finally, the denoised
interferometric phase ϕ is calculated according to (2).

C. Interferometric Phase Denoising Based on IPDnCNN

Based on IPDnCNN, an interferometric phase denoising
method is proposed. The phase noise is predicted by the network
and then removed from the noisy phase to obtain the latent clean
phase. As shown in Fig. 4, IPDnCNN is mainly composed of
three steps: first, a large amount of training data with different
noise intensity is prepared; then, the network is trained by
many epochs, including the adjustment of parameters and other
experiments; finally, the denoising network is tested with both
simulated and real data.

1) Data Preparation: Datasets are particularly critical for
deep learning. The reasonable training data of IPDnCNN are
produced through simulation. The training datasets are gener-
ated according to the observation geometry of InSAR using the
real DEM data in Lanzhou, China. The simulation parameters
are listed in Table I.

The process of data preparation is shown in Fig. 5. First,
the slant distance Δr is calculated with DEMs and the satellite
position. The clean wrapped phase can be expressed as

ϕ = mod

(
2π ·Δr

λ
, 2π

)
− π (5)

where λ is the wavelength, mod(·) operator retains the principal
value, and the actual phase is wrapped within the period (−π, π].

To train the network for denoising with different noise levels,
random complex Gaussian noise is added during SAR image
simulation [42]. Then, the noisy interferometric phase is ob-
tained through a complex conjugate cross product of two SAR
images.

Following the steps above, 6000 groups of clean and noisy
wrapped phases of size 591× 591 are generated. To reduce
overfitting issues during the training process, sufficient training
data are needed. Augmentation techniques [43], including hor-
izontal flip, vertical flip, rotation, and so on, are used to expand
the training set. The patch size of the DnCNN is 40× 40. It

is increased to 80× 80 in our method to capture more context
information since the interferometric phase usually has a low
SNR. After these steps, more image patches are produced. In this
work, 300 000 groups of phase patches are used as the training
data and 30 000 groups are used as the testing data. Four typical
training samples are shown in Fig. 6.

2) Network Training: The sine and cosine values of the noisy
interferometric phase are input to the network. The output is
obtained by subtracting sine and cosine values of the clean
interferometric phase from those of the noisy interferometric
phase.

Some network parameters are set according to the DnCNN
network to learn the residual map for predicting phase noise.
A total of 40 epochs are trained using the stochastic gradient
descent (SGD) method. The learning rate is manually adjusted
based on the empirical value according to the DnCNN network.
The learning rate of the first 30 epochs is set as 0.001 to speed
up the convergence. The learning rate in the last ten epochs is
0.0001 to reduce the final error. Instead of setting a dropout
rate to prevent overfitting, the BN and residual learning strategy
are employed to stabilize and enhance the training performance
[36]. The initial value of the network weight matrix in SGD also
has a significant impact on the training process. For multilayer
networks, the initial values should be random while ensuring that
the input and output of each hidden layer have the same statistical
characteristics [41]. In order to speed up the convergence, the
minibatch size is set as 32, which means that 32 interferometric
phases are randomly fed into the network each time.

During the training process, the value of the loss function
given in (4) is observed. The network is said to have converged if
the value of loss function gradually becomes smaller and finally
stabilizes. The DnCNN method requires a GPU that is able to
accommodate the computational load. Based on the hardware
environment of DnCNN, all the experiments are implemented
on a PC with Intel(R) Core(TM) i5-5200U@2.2 GHz CPU and a
Quadro P4000 GPU. The training in this experiment took about
3 days.

3) Network Testing: Using the trained network, the simu-
lated phase data, not involved in the training, are used to test the
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Fig. 7. Four groups of noisy interferometric fringe and denoised result.

TABLE II
EVALUATION RESULT

generality of IPDnCNN. The sine and cosine values of the noisy
phase are fed into the trained IPDnCNN through two channels,
and then the noise is obtained at the output. The interferometric
phase after denoising is reconstructed according to (2) and (3).
The performance is evaluated by phase mean square error (MSE)
and residual points.

To test the generalization ability of the trained network, extra
100 groups of data simulated for different occasions are used
to evaluate its ability to handle the unknown phase noise. The
coherence value of simulated data is randomly set from 0.03
to 0.97. Four groups of noisy phases and denoised results are
provided in Fig. 7. The evaluation results are given in Table II.
After phase denoising using IPDnCNN, the average number of
phase residues of 100 denoised images is improved from 1528
to 13, EPI from 4.119 to 0.957, and MSE from 1.338 to 0.134. It
shows that the trained network performs well in handling more
general cases.

III. RESULTS AND ANALYSIS

In this section, both simulated and real interferograms are used
to demonstrate the performance of the proposed phase denoising
method. The training datasets are the same as those in Section II,
which is simulated according to the observation geometry of
InSAR and the real DEM data. The simulation parameters are
given in Table I. The slope adaptive filter [27] and improved
Goldstein filter [28] are used for comparison.

A. Basic Experiments

SAR complex images of mountains, in Lanzhou, China, are
simulated with the method in [42] and noisy interferometric
phase with 591 × 591 pixels is produced. The noise-free phase

Fig. 8. Simulated data. (a) Clean phase. (b) Noisy phase.

is created with the same steps, as shown in Section II. The clean
and noisy phases are, respectively, shown in Fig. 8(a) and (b).
As can be seen in Fig. 8(b), the phase fringes are submerged by
noise because of the low coherence.

Slope adaptive filter, improved Goldstein filter, DnCNN, and
the proposed IPDnCNN are applied to this simulated dataset.
The window size for the former two filters is set as 11 × 11 and
32 × 32, whereas the DnCNN and IPDnCNN methods do not
need a filter window. The results are shown in Fig. 9. In each
group, the left image is the denoised phase, and the right one
is the phase difference between the denoised and clean phases
as well as the distribution of residual points. Among them, the
purple dots represent the positive residual points, while the blue
points represent the negative ones.

Clearly, the fringes in Fig. 9(d) contain less noise than those in
Fig. 9(a)–(c), especially in the region with dense interferometric
fringes. In Fig. 9(a), the slope adaptive filter can protect fringe
edges better but leaving more phase residues. In Fig. 9(b),
the improved Goldstein filter has excessive filtering strength
in dense fringe areas, leading to broken fringes. In Fig. 9(c),
for the phase-as-input DnCNN method, significant errors have
resulted in fringe edges because of misjudging the phase jumps
as noise. It is obvious that there are too many errors when
DnCNN is applied directly to the interferometric phase. So the
modifications in IPDnCNN are necessary.
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Fig. 9. Denoised phase and phase error. (a) Slope adaptive filter with win-
dow size 11 × 11. (b) Improved Goldstein filter with window size 11 × 11.
(c) DnCNN method. (d) IPDnCNN method.

Comparing the result of the IPDnCNN method in Fig. 9(d)
with the existing filters, the noise reduction effect is significant,
and the fringes are much better preserved. From the phase error
diagrams, it is clear that the IPDnCNN method performs better
than the other filters.

Fig. 10 displays a cross section through the denoised phase
and phase error map in region A. As clearly shown, in this
low-coherence area, the result of the IPDnCNN method is most
consistent with the original clean phase data.

In order to quantitatively evaluate the results, MSE, edge
preservation index (EPI), and residues are used as the criteria
[28]. MSE is to measure the deviation of the denoised phase
from the clean one, given by

MSE =

∑ |arg (exp (jϕ(i, j)− jϕclean(i, j)))|2
M

(6)

where ϕ(i, j) represents the denoised phase, ϕclean(i, j) is the
clean phase, and M is the number of pixels.

Fig. 10. Cross sections. (a) Denoised phase. (b) Phase error.

TABLE III
EVALUATION RESULTS OF SIMULATED DATA

Fig. 11. MSE under different coherence values.

EPI is calculated by

EPI =
∑

(|ϕ(i,j)−ϕ(i+1,j)|+|ϕ(i,j)−ϕ(i,j+1)|)∑
(|ϕclean(i,j)−ϕclean(i+1,j)|+|ϕclean(i,j)−ϕclean(i,j+1)|)

(7)
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Fig. 12. Noisy and denoised phase (top: low coherence and bottom: high coherence). (a) Noisy phase. (b) Slope adaptive filter. (c) Improved Goldstein filter.
(d) IPDnCNN method.

TABLE IV
EVALUATION RESULTS OF SIMULATED DATA

which is an indicator for performance in fringe and edge preser-
vation and a value closer to 1 means a better edge preservation
result.

Residues are the pixels where the gradient integral of adjacent
pixels in a certain direction is not zero. More residues bring more
difficulties in phase unwrapping, and thus, reducing residues is
one of the main purposes for phase denoising.

The evaluation results are presented in Table III. In this dense
area, the traditional filters using a small filtering window (11
× 11) perform better than using a large window (32 × 32). In
terms of residues in the interferogram, the slope adaptive filter
(11 × 11), improved Goldstein filter (11 × 11), and the DnCNN
method have produced the reductions of 90.12%, 97.15%, and
84.61%, respectively, while by the IPDnCNN method, it is
99.95%. The phase EPI for the IPDnCNN method is closer to
1 compared with the other methods, which means that it has a
better performance in fringe preservation. Moreover, the MSE of
the IPDnCNN method is the smallest due to an excellent phase
smoothing performance.

B. Adaptability Experiments

In order to compare the adaptability of different methods
under different noise levels, 30 additional interferograms with

Fig. 13. ERS interferogram. (a) Interferometric phase. (b) Coherence coeffi-
cient.

different coherence values from 0.38 to 0.83 are tested and the
MSE of different methods is shown in Fig. 11. It can be seen that
the proposed method always has the lowest MSE. Considering
the better MSE of a smaller window for the traditional filters,
the 11 × 11 window size is used in them.

For a detailed comparison, we present the denoised results
of a low-coherence interferogram (coherence = 0.39) and a
high-coherence interferogram (coherence = 0.71), as shown
in Fig. 12. The proposed method suppresses noise effectively
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Fig. 14. Denoised results of different methods. (a) Slope adaptive filter. (b) Improved Goldstein filter. (c) IPDnCNN method.

even for the low-coherence case, while the conditional filters
are worse.

The evaluation results are given in Table IV. According to the
results above, the proposed method has the best performance
on noise reduction (smallest MSE and least residues) as well as
fringe preservation (EPI closest to 1).

C. Experiments With Real Data

1) ERS SAR Data: ERS SAR images over the ENTA Volcano
in September and October 2000 are used as the test data. The
interferometric phase image of size 400× 400 has dense fringes,
and the mean coherence value is only 0.537. The interferometric
phase and the coherence value are shown in Fig. 13.

The denoised results by the three methods are shown in
Fig. 14. Each group contains the denoised phase, the enlarged
area in the red rectangle, and the residue distribution. The
interferometric fringes in the enlarged area are dense with a
low-coherence value of 0.419. It can be seen that the IPDnCNN
method has reduced noise significantly while preserving the
edge, whereas the slope adaptive filter and the improved Gold-
stein filter are less capable of denoising the interferometric
phase.

To further verify the improvement produced by the IPDnCNN
method, a cross section is extracted in region B. As shown
in Fig. 15, the phase obtained from the IPDnCNN method is
relatively continuous, while those obtained from the other three
still show some abnormality caused by residues and edge blur.

Fig. 15. Cross sections through the denoised phase of real data.

A quantitative evaluation is also performed to compare the
denoised results. Due to the lack of a clean phase, only the
number of residuals and the residual phase standard deviation
(RPSD) are calculated. The RPSD is carried out after the removal
of the LFF from the initial interferometric phase, and it reflects
the smoothness of the residual phase. A smaller RPSD means a
smoother phase with less noise. It is calculated using (8):

RPSD =

√∑
N (ϕr (i, j)− ϕ̄r (i, j))

2

N − 1
(8)

where ϕr(i, j) is the residual phase obtained by removing the
LFF from the denoised phase, ϕ̄r(i, j) is the linear phase ramp
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Fig. 16. NSAR data and the results. (a) Optical image. (b) SAR amplitude image. (c) Coherence coefficient. (d) Interferometric phase, and denoised phase with
the (e) slope adaptive filter, (f) improved Goldstein filter, and (g) IPDnCNN methods.

TABLE V
EVALUATION RESULTS OF REAL DATA

in a moving window of size 3 × 3, and N is the number of pixels
in the whole image.

To reduce the possible effect of artifacts, we only evaluated
the denoising performance in the yellow rectangle.

As given in Table V, all methods can significantly reduce the
number of residual points. The residues of the slope adaptive
filter, improved Goldstein filter, and the IPDnCNN method have
been reduced by 94.6%, 98.7%, and 100%, respectively. Again,
the IPDnCNN method gives the best result. For the RPSD results,
we have a similar observation.

2) NSAR Data: The interferograms obtained from a reservoir
region in Shanxi, China, recorded by the NSAR system devel-
oped by the Nanjing Research Institute of Electronics Technol-
ogy in March 2017, are chosen to conduct another experiment.
The size of the observation area is of 775 × 775 pixels, and
the terrain features are significantly different from that in the
mountain area. The left side of this area is the reservoir. The
slope of the reservoir dam is large, resulting in phase overlap. The
amplitude image, coherence coefficient, interferometric fringes,
and denoised results are shown in Fig. 16.

Fig. 17. Cross sections through the denoised phase of airborne data.

Since the airborne data have high SNR and sparse stripes,
all three methods have achieved good noise reduction effect. In
the low-coherence region marked with the red box, the result
of the IPDnCNN method, as shown in Fig. 16(g), contains less
noise than that of the other two, as shown in Fig. 16(e) and (f).
Fig. 17 shows a cross section of the tangent C. It is obvious that
the denoised phase from the IPDnCNN method is the cleanest
and most continuous one, while those from the slope adaptive
and improved Goldstein filters still show many unwanted phase
jumps.

Since the signal in the water region is too weak to form
coherent fringes, this region is excluded during the quantitative
evaluation, and the evaluation results are given in Table VI.
Similar to the results of ERS data, the proposed method has
produced the least residues and smallest RPSD. It not only
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TABLE VI
EVALUATION RESULTS OF AIRBORNE DATA

TABLE VII
RUNNING TIME (S)

reduces the phase noise more effectively but also preserves the
local fringe better.

For the traditional filtering methods, the phase denoising per-
formance is greatly affected by the filter window, which cannot
make full use of the information contained in the entire image.
IPDnCNN extracts image features by training massive data
through a nonlinear network structure and estimate phase noise
with the entire image’s pixels. IPDnCNN not only describes the
noise more precisely but also makes full use of the entire image,
so it achieves a clear improvement in residual reduction and edge
preservation.

To compare computational costs for the three methods, Ta-
ble VII presents the running time of each experiment in this
section using different methods on a computer with Intel(R)
Core(TM) i5-5200U@2.2 GHz CPU.

As shown, although the data training takes a lot of time, once
the network is well trained, the proposed IPDnCNN is more
efficient than the traditional methods.

IV. CONCLUSION

In this article, the convolutional neural network is intro-
duced to InSAR phase denoising. In contrast to the existing
phase denoising methods that directly predict the complex phase
fringes, the proposed method estimates the phase noise first and
then removes them from the noisy interferogram. The proposed
IPDnCNN is constructed based on DnCNN. The sine and cosine
values of the interferometric phase are used as the input to
the network so that it can avoid misjudgment of phase fringe
edges in noise detection. The loss function is redesigned and the
network training parameters are modified to deal with the phase
noise reduction problem. Moreover, the proposed IPDnCNN
increases the patch size and two convolution layers to utilize
the phase information more effectively. As demonstrated by
the experimental results using both simulated and real SAR
data, the proposed method has achieved best performance in

noise reduction while preserving fringe edges. Like other deep
learning methods, the data training process is time-consuming,
but a well-trained network can effectively improve the efficiency
of data processing.

In the current work, phase noise and clean phase are used
as training samples. As a part of our future work, we will try to
improve the IPDnDNN model to divide the InSAR interferogram
into a trip point, noise point, overlap mask point, shadow point,
and so on so that the overlap and shadow areas can be detected
in advance to improve the quality of the denoised phase.
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