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Abstract—The interpretation of deep learning network is an
important part in understanding the convolutional neural networks
(CNNs). As an exploratory research, this article explored the inter-
pretation method in 3-D point cloud deep learning networks, for the
purpose of evaluating the performance of convolution functions in
3-D point cloud CNNs. Specifically, a 3-D point cloud classification
network with two branches is used as the interpretation network
in two aspects; 1) information entropy is introduced to diagnose
the internal representation in the middle layer of CNN; and 2)
the external consistency of convolution function is measured by
per-point classification accuracy with class activation mapping
technique. Four typical convolution functions are tested by the in-
terpretation network on ModelNet40 dataset and the experimental
results demonstrate that the proposed evaluation method is reli-
able. Feature transformation ability and feature recognition ability
of convolution functions are extracted by visualization evaluation
and proposed measurable metrics evaluation.

Index Terms—3-D point cloud, convolution function evaluation,
deep learning interpretation, external consistency, internal
consistency.

I. INTRODUCTION

THE use of deep learning for 3-D point cloud is an important
topic in 3-D object detection and recognition, PointNet [1]

opens up an end-to-end deep learning method which enables
high-accuracy 3-D object recognition, and derives a lot of ef-
fective works in point cloud deep learning methods [2]–[5], but
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less work is done to explore why it works and what is learned
in the network. It is an important work to open up the “Black
box” in the learning process of network [6] to understand what
is learned hidden inside feature map of conv-layer and which
filter can guide the discernment decision of network output.
At first, in order to understand the artificial neural network
(ANN), the interpretation was built with fuzzy rules [7], as more
attention has been paid in this region. eXplainable Artificial
Intelligence (XAI) has become an extremely important job to
help human understand “why,” “what,” “what for,” and “how”
neural network works and search for a direct understanding
of the mechanism in the “Black box” [8]. XAI contains all
techniques in AI system such as machine learning (ML), neural
network (NN), deep learning (DL), etc., Explainability and
interpretability of network are the cores in an XAI research, and
these two concepts can be often understood as one meaning,
that is the mapping of abstract concepts to areas that human can
understand [9].

Recently, CNNs contribute the state-of-art models to all the
areas in fundamental computer vision, from image classification
[10] and object detection [11] to instance segmentation [12]. In
2-D CNNs interpretation, existing works mainly perform in two
different ways: 1) first direction is mapping the output into the
input image space to visualize the decision or discriminative
parts which contribute most to output score [13]–[15]; and 2)
the second direction focuses on diagnosing CNN internal repre-
sentations to obtain insight understanding of features encoded
inside CNN [16]–[18].The presentation of the interpretative
methods include visualization and quantification, showing a
comprehensive evaluation in 2-D CNNs works. But in 3-D point
cloud CNNs, there are few works in 3-D CNNs interpretation.
Since the technology of 3-D convolutional network is an ex-
tended work based on 2-D convolutional technology, and the
coordinate attribute of point cloud not only denotes geometric
feature, but also is the location of feature in the space of input
point cloud, it is easy to establish mapping relationship be-
tween feature map and coordinate space. Therefore, this article
attempts to seek for extending the techniques in 2-D CNNs
interpretation to evaluate the performance of 3-D point cloud
CNNs, to disentangle the hidden information contained in the
conv-layers.

Different 3-D convolution, operations are proposed to solve
the problem of 3-D point cloud convolution [2], [19], [20].
3-D convolution function is designed to explore more efficient
way for edge feature aggregation [21], but the effectiveness of
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a network depends on architecture of the framework and the
design of the convolution function; it is hard to judge whether the
network architecture is more efficient or the convolution function
contributes more. Therefore, this article puts different convolu-
tion functions into the same network framework to evaluate the
performance of convolution functions with different kernels. The
framework is called interpretation network, which is based on an
effective 3-D point cloud deep learning network in the existing
research, it ensures that the interpretation network can perform
in-depth interpretation of convolution functions with less accu-
racy degradation. On the other hand, in terms of evaluation met-
ric, most of existing metrics mainly depend on the final network
output, which is effective but monotonous. In order to evalu-
ate the 3-D convolution function more comprehensively, both
internal and external consistencies are considered. This article
provides suitable criteria for the quantitative evaluation of con-
volution function in terms of internal consistency and external
consistency.

To the best of our knowledge, interpretation has been widely
studied for 2-D image CNNs, but little work has been done
for the interpretation in 3-D CNNs, especially in the evaluation
of 3-D convolution functions, a good choice of convolution
functions gives the network a powerful drive to aggregate the
local feature of object, generating more reliable information to
lead the final classification. Focusing on the interpretation of
convolution functions in 3-D CNNs, the contributions of this
article are summarized as follows:

1) This article proposes two 3-D CNN evaluation criteria
called internal consistency and external consistency, re-
spectively. Internal consistency evaluation is proposed for
evaluating the feature map of multiple filters, which is gen-
erated by a 3-D convolution operation. The method seeks
maximum information entropy as a metric for diagnosing
the representation of intermediate layer in a pretrained
network, the internal network is a tool to assess the feature
transformation ability of convolution functions. External
consistency evaluation is proposed for evaluating the ac-
curacy degree of network output. 3-D class activation
map (CAM) is used to build up the mapping relationship
between per-point and the output category. Its purpose
is to assess the feature recognition ability of convolution
functions in 3-D CNNs.

2) A 3-D CNN interpretation network is proposed based
on the existing 3-D point cloud deep learning network
(Pointnet & DGCNN). A branch architecture is adopted
in the interpretation network to excavate internal and
external consistency of convolution operation. Typical 3-D
convolution functions are evaluated by the interpretation
network, and multiple metrics are used to give them a
comprehensive analysis.

The remainder of the article is organized as follows. Section II
gives a brief review on the related work. Section III describes
details of the proposed evaluation approach and an interpretation
network. Section IV shows the experimental results and provides
some analyses on the results and Section V concludes the
article.

II. RELATED WORK

A. Interpretation for 2-D CNNs

Our work builds on extending techniques of visualization and
quantification of 2-D CNNs interpretation works, this article
will first give a brief introduction of the existing techniques in
2-D CNNs interpretation. There are a number of recent works
in the domain of interpretation and understanding 2-D CNNs;
the key point is to understand which feature is the decision-
making process and how much useful information is contained
in internal conv-layers. Readers can refer to the review on the
methods of 2-D CNNs interpretation in [22] for a comprehensive
knowledge.

Visualization evaluation: The visualization combined feature
association methods are the most commonly used in CNNs
interpretation. There are two divided categories in visual in-
terpretation, one using image synthesizer that highlights the
feature with highest score [23] and the other using projection
of feature response in a conv-layer back to the input space [24].
The first category method is based on the Deconvnet technique.
Zeiler et al. performed the deconvolution for feature map of
middle-layer in the network [25], [26]. The units of feature map
were projected to the pixel space and observed the variety of
feature map in original image. The other method is based on the
CAM technique which was proposed by Zhou et al. [13], the
original CAM method used the global average pooling (GAP)
to replace the maximum pooling layer, exploiting its location
ability and creating a CAM to locate the discriminative area in a
2-D object image [27]. On this basis, Selvaraju et al. proposed
a gradient-weighted class activation mapping (Grad-CAM) to
generalize the original CAM by propagating gradients of fea-
ture maps, which introduce a new way of combining feature
maps using the gradient signal [28]. Kumar et al. proposed
a class-enhanced attentive response map, which combines the
dominant attentive response map and dominant class attentive
map, attributing each pixel a response to the input space [29].
Both types of methods interpret 2-D CNN in different perspec-
tives and reach a good performance, but both of them have their
drawbacks. CAM methods require a modification in the network
architecture, which would affect the accuracy of network; and
the Deconvnet method is computationally more expensive than
CAM-based methods, and does not build up the mapping relation
between features and output category, so lacking of intuitional
visualization to human [28].

Quantification evaluation: For quantifying the interpretability
of 2-D CNNs, the diagnosis work of CNN focuses on exploring
representations of the black-box in the conv-layers and the most
direct method is to analyze CNN features from feature map in the
intermediate layers [22]. Zhang et al. made use of the analysis
of network feature space to refine network representation, and
computes the biased representations to estimate different at-
tributes or categories [18]. Lakkaraju proposed a model-agnostic
methodology, which uses feedback from an oracle to identify
unknowns and intelligently guide the discovery [30]. The pur-
pose of CNN representation diagnosis is to discover potential
flaws in conv-layer, providing a guide to improve the CNNs
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TABLE I
TECHNOLOGIES OF CNNS INTERPRETATION METHODS

[22]. Bau et al. [31] and Zhou et al. [32] used a direct feature
mapping approach called network dissection; units are given
human interpretable labels by semantic alignment of units and
input image in a given CNN, intersection over union score (IoU)
is used as a metric to measure the unit interpretability score. In
the same way, Net2Vec quantified the Filter-Concept overlap by
IoU for each filter in a convolutional layer, in order to quanti-
tatively demonstrate how concepts are encoded across multiple
filters [33]. In essence, feature mapping approaches translate
visualizations of representation into quantitative interpretations
of interpretability, it is not independent but relies on external
information like input image space to disentangle the internal
representation. Nevertheless, it still needs to explore a suitable
metric to allow for a meaningful comparison of how well a model
fits the parameters from the training network [8].

B. Interpretation for 3-D CNNs

Although there are few systematic interpretation works for
3-D CNNs evaluation, still it can be found in some achievements
contained in previous studies. An interpretation work has been
done in PointNet, t-SNE was used to embed point cloud global
signature into 2-D space to cluster similar shapes, and point
function is visualized to gain more insights on what the learnt
per-point functions detect [1]. Based on this, a C-PointNet was
proposed to explain what has been learned inside the PointNet
[34], it uses a Class-attentive response map to visual the activa-
tion parts in a 3-D object. The existing 3-D interpretation works
mainly rely on the visualization ways and lack of measurable
metric.

To this purpose, this article focuses on exploring the 3-D
CNNs interpretation work based on the statistics theory, and
providing an evaluation methodology for the 3-D convolution
function selection. The most existed network is interpreted by vi-
sualization in the work mentioned above, but it is hard to evaluate
all objects by visualization because there are multiple filters in
conv-layers. Measurable metrics are needed for a comprehensive
evaluation to the network. For this reason, a synthesis method
is proposed for 3-D CNNs interpretation, which is constituted
by internal consistency evaluation and external consistency
evaluation. The internal consistency evaluation is a diagnostic
internal representation work with independent metric without
considering external information, while the external consistency
evaluation is an extended application of CAM-based technique
to 3-D CNNs interpretation, Table I lists the key technologies of

Fig. 1. Convolution operation of 2-D image and 3-D point cloud. (a) 2-D
operation kernel. (b) 3-D operation kernel in geometric distance space.

reference 2-D CNNs interpretation methods and our 3-D CNNs
interpretation methods.

III. 3-D CONVOLUTIONAL FUNCTION EVALUATION

Before describing the details of the interpretation network,
concepts of the internal consistency and external consistency
evaluation are explained as follows:

Internal consistency evaluation: Extracting the convolutional
information from each filter, evaluation for the internal represen-
tation which is learned in the network, convolution functions are
diagnosed by the maximum information entropy extracted from
the feature maps in the conv-layers. It is a relative evaluation
without contacting the outside world, only depending on the
distribution of feature within and between the filters.

External consistency evaluation: Establishing a mapping rela-
tionship between each point and category, and evaluating consis-
tency accuracy of the interpretation network output; convolution
functions are evaluated by analyzing the degree of difference
between ground-truth and final output in point-level. It is an
absolute evaluation, which involves raw input information and
the ground-truth.

A. 3-D Convolution Functions

The largest difference between 2-D convolution and 3-D
convolution is that the 2-D convolution operation has a fixed
pattern, as shown in Fig. 1(a), where the units are represented
in regular domains and the convolution function is also regular
grids such as 3 × 3 or 5 × 5. However, it cannot be analogized
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to 3-D convolution directly because the locations of neighbors
of central point are transformable in point cloud [35], and the
location property between neighbor points and central points
are treated as an important feature, which is called edge feature
[21]. Many research works put forward the convolution function
to aggregate edge features of point cloud, the operation of
convolution function with geometric space is shown in Fig. 1(b)
and can be concluded as

x
′
i = g (h (xi, xj)) (1)

where the point cloud samples are denoted as X =
{x1, x2, . . . , xn} ∈ RN . xi is the ith point in sample, xj are the
neighbors of xi, commonly it takes k-nearest neighbor graph of
xi as the scope of convolution, where j ∈ (1, 2, . . . , k). Function
h(·) : RN → RK is a feature transformation operation and g(·)
is a symmetric function, which aggregates all local features to
x

′
i for next conv-layer. Here, the common process activation

function and bias are reduced to make the formula express more
clearly.

More studies have focused on the choice of feature transfor-
mation operation h(·). This article enumerates four convolution
functions in the existing works [1], [2], [19], [20]

h (·) = h (xi) (2)

h (·) = h (xj) (3)

h (·) = h (xi, xi − xj) (4)

h (·) = h (xi, xj , xi − xj) . (5)

Although the work in [19] has compared different functions
using classification accuracy, it did not give the details about
why it happened, this article will do deep study in the evaluation
of convolution functions.

B. Evaluation of Internal Consistency

The interpretation work in CNNs focuses on explaining which
features are activated and what degree of activation is achieved
in the internal conv-layers. Feature map is defined as a list of
features, which are generated by a filter in the conv-layer. Most
previous interpretation studies make use of feature visualization
techniques, but it is impractical for a comprehensive evaluation
since so many filters need to be visualized. Hence, this article
plans to measure the degree of activation of all feature maps by
using a quantitative metric, and maximum information entropy
is adopted to describe complexity of multiple filters in the
conv-layers.

In information theory, entropy is a measure of uncertainty, the
greater the uncertainty is, the larger entropy is and the greater
capacity of the system to carry information. In order to accurately
estimate the state of random variable, it generally adopts to maxi-
mize entropy [36]. This is because the model with largest entropy
is the best model among all possible probability models. The
value of feature in conv-layer feature map is more like random
variable, so that the concept of entropy can be applied. According
to the property of convolution, the deeper convolutional layer is,
the more features are extracted and more feature reconstructions
are involved [37]. There is more information inside the feature

map so that the diversity of features is increased. If features in a
filter are greatly activated, the value of feature in this filter will
increase partially or fully. This transformation reflected in value
is a numerical disorder, the entropy is larger with the variable
change.

Assume a point cloud of object l contains n points and m
dimensions in the feature map of conv-layer, and let αij denote
the activated value of the ith position of points in the j-th filter
in the feature map, where i = 1, …, n, j = 1, …, m. To obtain the
information entropy of each filter, first αij is normalized

ᾱij =
αij −min (α1j , α2j , . . . , αnj)

max (α1j , α2j , . . . , αnj)−min (α1j , α2j , . . . , αnj)
.

(6)
Second, in the jth filter, taking the percentage of activation

value between the ith position ᾱij and the sum of all points∑n
i=1 ᾱij as variable probability

Pij =
ᾱij∑n
i=1 ᾱij

, i = 1, 2, . . . , n, j = 1, 2, . . . ,m (7)

wherePij denotes the probability value of normalized activation
value ᾱij . Then, the entropy of the jth filter is obtained as

ej = −γ

n∑

i=1

Pij ln (Pij) , j = 1, 2, . . . ,m (8)

where γ = 1/ ln(n) to keep ej > 0. As a consequence,
Et(l) = {ej |j = 1 . . .m}denote the entropy of m filters in the
tth conv-layer for object l, which is used as a measurable metric
to analyze the feature transformation ability of convolution
function in the internal network, more detail will be discussed
in Section IV-B.

C. Evaluation of External Consistency

In the common classification network, the fully connected
layers are used to recombine features which are extracted by con-
volution layers, it can establish the linear relationship between
the features and categories, but the location of feature would be
disordered by the operation of fully connected layers [38] and it
hard to map the location of feature into input space. In order to
observe which part of points dominate the classification output
score most, class activation technique was developed to map 2-D
image into 3-D points in this article; a 3-D CAM is implemented
in the classification network, the fully connected operation is
replaced with the shared multilayer perceptron (shared MLP).
Also, global max pooling layer is replaced with GAP layer, the
use of average pooling layer focuses on the complete extent of
the feature maps, and better fits to identify the discriminative
points of object [13]. In the external network, let αn

k denote
the active value of feature in the kth filter of the ith position
of points in last conv-layer, where k = 1, …, m and i = 1, …,
n, Ak(l) = 1

n

∑
i α

i
k(l) denotes the value of global average

feature in the kth filter of object l, the class score Sc can be
obtained as [13]

Sc (l) =
∑

k

wc
kAk (l) =

1

n

∑

k

wc
k

∑

i

αi
k (l)



5092 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 13, 2020

Fig. 2 Framework of the interpretation network.

=
1

n

∑

i

∑

k

wc
kα

i
k (l) (9)

where wc
k denotes the weight of feature in the kth filter for the

class c, in essence, wc
k emphasizes the influence of Ak(l) for

class c. Then, the 3-D class active map can be defined as

Clsic (l) =
∑

k

wc
kα

i
k (l) (10)

which denotes the contribution of the nth points to the category
c; that is, Clsic(l) can be used to get the mapping relationship
between each point and a category c. Taking the maximum value
of Clsic(l) in tunnel c as the classification result of each point,
the class mapping score for points to each class is given by

Mapi (l) = max
c

Clsic (l) (11)

where Mapi(l) donates the classification result of the ith points
in object l. To evaluate the classification results, counting the
number of correctly classified points inMapi(l), and the external
consistency accuracy (ECA) is defined as

ECA =
N

n
(12)

where N is the number of correctly classified points in Mapi(l)
and n is the number of points in Mapi(l). The ECA can be used
as an evaluation metric to describe the degree of consistency
between the category c and input points.

D. 3-D Interpretation Network

As mentioned above, when a 3-D CNNs are working, it is
hard to judge whether the network framework or the convolution
function works better. To evaluate the 3-D convolution function,
this article uses a common framework as the interpretation
network, as shown in Fig. 2. It consists of three parts: the basic
line network is based on DGCNN [19]; a branch divides the
backbone network into two classification networks, named as

internal consistency network and external consistency network;
and the inputs of conv-operation are the different convolution
functions to be tested. More details are explained as follows.

Basic line network: The basic line network is designed for
feature transformation with 3D convolution function. There are
three reasons to adopt the DGCNN framework as the basic line
network:

1) DGCNN considers graph-structure in feature space dis-
tance instead of geometric space distance when the local
graph of central point is created, DGCNN proposed a
dynamic graph which rebuilds the local graphs using the
distance of neighbor units in the feature space in each
conv-layers; the points with similar features are aggre-
gated layer by layer, which is beneficial to extract the
outstanding feature in conv-layers. Then if a convolution
function has a stronger feature transformation ability, the
similar outstanding features can be clustered and show
an obvious homogeneity [19]; and the feature cluster can
be visualized in input space and make it more intuitive
for human to understand the extracted features. In other
words, feature graph is more convenient to disassemble
“the black box,” which can contribute our interpretation
work to diagnosing feature transformation of convolution
function.

2) Based on the feature graph in former conv-layers, the
next convolutional layer continues to extract the feature
by rebuilding graph. Similar features are further explored
[19], the deeper information of feature can be found and
the feature transformation ability of convolution function
is accumulated as convolutional layers become deeper.
The distinction of feature transformation ability between
different convolution functions is amplified as convolution
layer goes deeper, which provides the basic in convolution
function evaluation.

3) DGCNN is a highly accurate 3-D point cloud deep learning
method and it shows the feature graph can be used in
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TABLE II
DETAILS OF THE INTERPRETATION NETWORK

3-D CNN scenarios, although its accuracy may not be
the highest. Interpretation work results in a decrease in
accuracy [22], but the use of feature graph enables a
higher ceiling to mitigate the loss of accuracy, to ensure
the performance of the interpretation network.

Internal consistency network: This branch is similar to the
classification network of PointNet&DGCNN, via max pooling
and fully connection layer to output the classified score. The
purpose of this operation is to obtain the feature map of each
filter in conv-layer, and evaluate the performance of different
convolution functions by exploring the internal representation
contained in the feature map of the network.

External consistency network: This branch is inspired by a
2-D image class activation mapping technique. 3-D class atten-
tion map is built by the modification of original classification
network. The dimension of the global feature is reduced to the
number of the category through replacing the MLP layer with
the fully connection layer; each dimension is associated with a
particular class, and average pooling is performed to obtain the
class score to replace the maximum pool; the response between
the per-point and the class is then established. The purpose of
this operation is to explore the contribution of each point to the
classification output.

IV. EXPERIMENT AND ANALYZE

In this section, the performances of different convolution
functions are evaluated with the methods described above. First,
the implementation and training accuracy of the interpretation
network are illustrated to study the feasibility of the network.
Second, different convolution functions are trained and tested
through the interpretation network, to evaluate their classifica-
tion ability by visualizing and quantifying analysis from internal
consistency and external consistency, respectively.

A. Implement Details

The data adopted for classification and evaluation come from
ModelNet40 [39], and the network to be implemented is the
same as DGCNN. Stochastic gradient descent (SGD) is used
with learning rate 0.1, and the rate is reduced until 0.001 using
cosine annealing. The momentum for batch normalization is
0.9, the batch size is 32, the delay rat is 0.7, and the max epochs
is set as 250. All models in this article are trained on a single
NVIDIA GPU with 8 GB GTX 1080Ti, 8 GB RAM computer
with platform TensorFlow, and language python 3.6.

The internal consistency network and external consistency
network in the interpretation network are conducted, respec-
tively, and convolution functions used to evaluate are h(xi),
h(xj), h(xi, xi − xj), h(xi, xj , xi − xj), which are described
in Section III-A. The classification accuracy of these convolution
functions in two branch networks are shown in Table II.

As shown in Table II, it can be found that four convolution
functions have high classification accuracy in internal consis-
tency network. Comparatively, the accuracy of the external
consistency network degrades slightly due to the absence of
fully connection layer. As an exploratory study, the design of
the network for interpretation may influence the accuracy of
classification of original network a bit [40], but it still retains an
acceptable accuracy for evaluation in our research.

B. Internal Consistency Evaluation

Section III has introduced the max information entropy theory
derived in convolutional feature map. This part will first demon-
strate the role of entropy ej in representation of features, then
ej is taken as a comparable metric to evaluate the propagation
of feature information in the interpretation process.

1) Demonstration of Entropy: In the process of CNNs, conv-
layer decides which features are activated and propagated to
next conv-layer, the key of convolution function evaluation is to
figure out which and how many features are activated. However,
it is impracticable to observe the contribution of each filter by
visualizing all features maps. So primary concern in this article
is whether a filter is fully activated, or the filter is partially
activated. The examples of the two situations in terms of fully
activated filter and partially activated filter are shown in Fig. 3. It
can be observed that fully activated filter activates most points in
object, and the partially activated filter activates a specific part of
points in object, these useful filters in conv-layer generate more
meaningful feature maps.

As the valuable information in conv-layer, these two kinds of
feature maps are needed in propagation and transformation of
the network. Full activation denotes that all points are activated
in this filter, illustrating that the tested point clouds response
to all the parameters of the filter. On the other hand, partial
activation denotes that some particular features of object are
activated, which gives more varieties for feature transformation
and recombination to next layer. In a feature map, the activated
representations can be summarized by adding up all values of
the feature in each filter [41], so our work explored the mean
and standard deviation (std) of activated values α in each filter
to denote the full activation and partial activation.
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Fig. 3. Points in input data response to features from the filters, which are fully
activated and partially activated, respectively. (a) Visualization of fully activated
feature map in guitar sample. (b) Visualization of partially activated feature map
in guitar sample. As activated values go from small to large, colors of points in
figure go from blue to red. The same expression applies to illustrate the point
cloud feature map in the following figures.

Fig. 4 shows visualization of the responding points for the
feature map, which has different mean and standard deviation
of activated value. From second column in Fig. 4, it can be
seen that the filter with larger mean(α) is more likely to be
an fully activated feature map, most of points in the object are
activated and colors trend to red, illustrating that the feature map
is responsive to the points and more features for identifying the
classification of sample can be extracted in this filter. The third
column in Fig. 4 shows the filters with large std(α); extracted
features response part of points in sample and some special
features of sample are activated, feature maps are more likely to
be generated by partially activated filters. In the fourth column
of Fig. 4, it can be seen that the filters with large mean(α) and
large std(α) also own useful information, the main skeleton of
sample is responded, so these filters are also meaningful for
feature transformation. The last column of Fig. 4 shows the filters
with small value of mean(α) and std(α), it shows that fewer and
irregular points are activated, illustrating that the parameters of
the filters are not suitable for this category of sample, so these
filters should be avoided in the conv-layer because less useful
information can transmit to next layer.

The first three kinds of filters above are all beneficial for
feature propagating in the conv-layer, but as the measurements,
there is an intersection between mean value and standard devia-
tion, both indexes have limits. Observing the value of entropy e
in each sample in Fig. 4, it can be found that the entropies e of
the meaningful filters are larger, illustrating that the information
contained in feature map can connect to the entropy e of features.
Therefore, this article attempts to represent the mean value
and standard deviation value by the entropy e. Finding the
relationship between e and mean(α) and std(α), the correlation
coefficients between entropy value and mean\std value of the
corresponding activation value are shown in Table III. Table III
picks the correlation coefficients of last convolution conv-layer
(layer 4 in Fig. 2), the reason for the choice of the last layer
is that it contains higher dimensions which own more diverse

TABLE III
CORRELATION COEFFICIENTS BETWEEN MEAN AND STD TO THE ENTROPY IN

DIFFERENT CONVOLUTION FUNCTIONS

features. From Table III, it can be concluded that the entropy
of the activation value is linearly positively correlated with the
corresponding mean and standard deviation, especially for mean
value, it indicates that entropy can reflect the activation for
feature map. So, this article adopts the maximum entropy to
measure the degree of feature activation instead of using the
mean value and standard deviation. Fig. 5 shows the response
points in the filters with large entropy for different samples; it
can be found that most points in major structure are activated.

Then it can be concluded that the entropy e relates to the
information contained in the feature map of conv-layer, the
larger the value is, the more useful information it contains.
It can be used as a measurable metric to evaluate the quality
of convolution function, and the performance of convolution
functions is diagnosed by entropy in the next caption.

2) Convolution Operation Diagnosing: The ability of feature
transformation is an important property for the convolution
function. In this article, feature transformation ability is simply
expressed as the amount of useful feature information extracted
by the convolution function. It is inferred from Section III-B
that the entropy e can measure the useful information contained
in a feature map. For the comprehensive evaluation, taking the
mean value of Et (l) = {ej |j = 1, 2, . . . ,m} to represent the
activation level of all filter in one conv-layer as

εtl =
1

m

m∑

j=1

ej (13)

where m is the size of filters in the tth conv-layer, εtl denotes
the average entropy of all feature maps in the tth conv-layer
for object l, which called convolutional activation entropy in
this article because it can measure the activation of feature in
conv-layer.

Feature transformation ability of different convolution func-
tions is evaluated according to the distribution of convolutional
activation entropy ε. The test models in ModelNet40 are used
for the evaluation in internal consistency network. Fig. 6 shows ε
of all test objects in each conv-layer with convolution functions
h(xi, xi − xj), h(xi, xj , xi − xj), h(xj), and h(xi), and dis-
plays their distribution between conv-layers in boxplot. It can be
seen that ε has different activation level in different conv-layers.
The layer 5 has lowest value of entropy since it contacts the
features, which are generated by the first four layers, and it is
handled directly by MLP, not transformed by the test convolution
function, so it is not exactly what our work concern about, but it
is displayed in Fig. 6 for referring; the main objects of our work
concern about are 1–4 conv-layers.
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Fig. 4. Feature maps which have different values of mean and standard deviation projecting to the position of input point cloud space. The red arrow on top of
the figures means the larger value and the blue one means smaller value.

Given a vertical comparison by observing the distribu-
tion of ε between 1–4 conv-layers, the convolution functions
h(xi, xi − xj) and h(xi, xj , xi − xj) have the similar variation
pattern in 1–4 conv-layers, the overall trend of ε is rising. The
values of ε in the initial layer are lower, as convolutional layers
deeper, the value of ε increases gradually and reaches the peak
value in the fourth conv-layer, as the number of layers increases,
the amount of information in the feature map increases. But in
the convolution functions h(xi) and h(xj), the overall trend of ε
is downward, the peak value turns up at layer 2 inh(xi) and layer
3 in h(xj), both convolution functions show irregular variation
pattern of ε.

Consider analyzing the phenomenon in Fig. 6 with the convo-
lutional property. As the conv-layer goes deeper and the number
of filter increases, the extracted features become rich and the
information contained increases [37]; therefore, the value of ε
becomes larger with conv-layer going deeper. It can be found
that the same property reflected in the distribution of ε for con-
volution functions h(xi, xi − xj) and h(xi, xj , xi − xj), which
shows these convolution functions have good performance in
feature transformation; on the contrary, the behaviors of h(xi)
and h(xj) in the distribution of ε illustrate that the ability
of feature transformation is weaker than the first two. More
details, it can be founded that in h(xi), h(xi, xi − xj), and
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Fig. 5. Points response to the feature map which with larger entropy is denoted
by e.

Fig. 6. Boxplot of the distribution of ε for different convolution functions.

h(xi, xj , xi − xj), from layer 1 to layer 2 the trend is the
ascent, while in h(xj), the entropy of layer 2 is lower than
layer 1, illustrating the edge feature xi plays a key role in the
first convolution layer. In [37], the feature of original layer is
mostly low-level feature, it can be inferred that edge feature
xi is useful for transforming the low-level feature, but as the
layers deepen, the transformation ability of h(xi) is reduced
when handling the high-level feature. h(xj) is able to extract
more information from the second layer than h(xi), illustrating
that the edge feature xi and xj work in different places, xi helps
the low-level information transform, xj prefers to high-level
information extraction. But comparing them to h(xi, xi − xj)
and h(xi, xj , xi − xj), their feature transformation abilities are
obviously inferior to the latter two. It can be said that single
edge feature is weaker than the multiple edge feature in feature
transformation ability.

Regarding the ability of feature transformation, h(xi) directly
convolved all the points without considering the local features,
so it cannot gain the graph attributes in geomatic or feature
space. In the follow-up study [2], [19], it shows that the lo-
cal relationship between points is an important feature; that
is the reason h(xi) performs weak in feature transformation
ability. h(xj) considers the neighbor points and gathers them
in the central point xi, but it lacks relative relationship between
central point xi and neighbors xj , the level of ε in h(xj) is
less than h(xi, xi − xj) and h(xi, xj , xi − xj). h(xi, xi − xj)
and h(xi, xj , xi − xj) have made use of relative information
between points and both achieve better results, but accord-
ing the discrete points in box plots, the distribution of ε in

h(xi, xj , xi − xj) is more concentrated than h(xi, xi − xj), it
means although the classification accuracy of h(xi, xi − xj) in
Table II is a bit higher than h(xi, xj , xi − xj), the stability of
h(xi, xj , xi − xj) is better h(xi, xi − xj) in feature transfor-
mation.

The optimizations of edge features have been already known
by existed qualitative research works, here, this article illustrates
these optimizations in the quantitative analysis by comparing
the distribution of ε between edge features. According to the
quantitative results in Fig. 6, it can diagnose that the first two
convolution functions h(xi, xi − xj) and h(xi, xj , xi − xj) are
“healthy” in feature transformation ability, while the latter two
convolution functions h(xi) and h(xj) seem “sick” in feature
transformation ability. And different edge features play different
roles in convolution layer, some features may work well in low-
level information extraction, some may be good for the stability.

Parameters selection: In the internal network, the only se-
lected parameter γ is a parameter to control the size of max
information entropy and keep the value greater than zero. In
this article, it set as γ = 1/ ln(n), n is the number of points in
sample, γ is set as self-adapting in order to keep the value of
entropy within acceptable limits in any case. Comparing with
another choice that set the value of γ as a constant, different γ
only decides the scale of value. Fig. 7 compares two selected
situations when γ =1/ ln(n) and γ = constant for different
number of input point clouds, where n = 1024, 768, 512, 256,
respectively. For the choice of constant, γ is set as 0.15 to keep
the value of entropy close to γ =1/ ln(n) when n = 1024 for
an intuitive comparison.

It can be observed that when γ =1/ ln(n), the value of
entropy does not change a lot when n changes, values are always
concentrated within a range. But when γ is a constant, the value
of entropy decreases as n reduces. It can be concluded that the
selection of γ = 1/ ln(n) is able to unify dimensions with
different size of input data, it is more flexible than using a
constant when dealing with different types of data.

C. External Consistency Evaluation

In 2-D CNNs, 2-D CAM can locate the units labeled category
in the image. In a similar way, per-points in the input point cloud
are allocated to a particular category by extending the CAM
technique to 3-D point cloud. Based on this, one can observe
which part of object is correctly classified and which features in
object mislead the classification output by comparing the output
from the 3-D CAM with the ground-truth of category. In this
article, convolution functions are evaluated from two aspects
by the 3-D class activation mapping technique: 1) the CAMs
of the network are visualized to observe what is the decision-
making part in object and evaluate what is the difference in
these convolution functions. 2) The ECA is used to measure
the per-point classification accuracy, which reflects the degree
of consistency between the output of the category in per-points
and the ground-truth.

1) Visualization: Through the visualization of 3-D CAM,
one can figure out which part of feature in object determines the
classification decision, which is so-called feature recognition;
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Fig. 7. Comparison for the parameter selection of γ between γ = 1/ ln(n) and γ = constant in different number of input point clouds.

Fig. 8. Visualization of per-point classification in different objects, the upper left corner, upper right corner, lower left corner, and lower right corner, respectively,
correspond to the results of h(xi), h(xj), h(xi, xi − xj), and h(xi, xj , xi − xj).

more features are detected, more points are allocated to corre-
sponding category. Then, the class with most points makes the
greatest contribution to final category in the network, it is desired
that the correctly classified points are in the majority, and the
misclassified points are as fewer as possible. The visualization
of per-point classification of different objects is shown in Fig. 8.

First, feature recognition ability of convolution function is
discussed. Fig. 8(a) displays the results in per-point classifica-
tion for airplane model; both convolution functions have good
performance in detecting airplane model because features in
airplane model are easy to recognize. Although almost all points
are correctly classified in this case, there are differences in
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TABLE IV
AVERAGE ECA OF CONVOLUTION FUNCTIONS

other models. In Fig. 8(b) which shows the 3-D CAM of grass
model, discrepancy points can be seen in different degrees for
test functions. The misclassified points are mostly at the leaf of
grass for h(xi) and h(xj), while the misleading part is located
at the inner of grass in h(xi, xi − xj) and h(xi, xj , xi − xj).
It can be inferred that the related relationship between xi and
xj can help to deal with the sharp features like leaf of grass
model, but inner scattered point clouds are hard to distinguish
from each other. Fig. 8(c) and (d) shows that the discernment
of h(xi) is obviously weaker than others, because lacking of
neighbor features makes h(xi) not sensitive to planes and curves
sharps. In conclusion, the per-point classification of h(xj),
h(xi, xi − xj), and h(xi, xj , xi − xj) has better performance
than h(xi), illustrating h(xi) is weaker than other functions in
feature recognition ability.

Next, the recognizable parts of the objects are discussed ac-
cording to the CAM. In the case of grass model in Fig. 8(b), it can
be seen that the leaf is an outstanding part to enhance the ability
to recognize grass model when comparing the performance of
four convolution functions. Fig. 8(d) indicates that the decision
part in the bottle is the punt, not the bottleneck. Fig. 8(e) and (f)
shows a category of chairs of different types; it can be seen that
the decision parts of chairs are gathered in the main skeleton, the
feet of the chair are confusable parts, and the pole sharp is hard
to distinguish between other categories with the same sharps.
From the visualization of different objects, it can infer that the
common sharp parts of structure will have certain effect in the
recognition ability of convolution function, it is easily confusing
when just utilize single local feature, so that is why the global
feature of the context should be taken into account [42].

Visualization gives a direct observation of these conclusions.
For a comprehensive evaluation, the ECA proposed in Sec-
tion III-C is used as a metric of the per-point classification
accuracy and show more discovery.

2) Measurement: First, the average ECA of all samples with
four convolution functions is counted in Table IV for overall
observation. h(xi, xj , xi − xj) receives the highest ECA and
ECA of h(xi, xi − xj) gets close to h(xi, xj , xi − xj), indi-
cating that h(xi, xi − xj) and h(xi, xj , xi − xj) have majority
of correctly classified points and good ability to distinguish
features of these models. The ECA of h(xj) is lower than
h(xi, xi − xj) and h(xi, xj , xi − xj), but it still got 86.2%
recognition rate. The performance of h(xi) is worse than others
and it only got ECA of 63.9%, illustrating that the ability of
feature recognition of h(xi) is weak, the conclusion obtained
from visualization is verified quantitatively in here. By the
average EAC, feature recognition ability can be initially ranked
from h(xi, xj , xi − xj) ≥ h(xi, xi − xj) > h(xj) � h(xi).

Next, information extracted from the ECA of each category
is discussed. Fig. 9 shows the average EAC of the samples,
which belong to the same class for 40 categories. Histogram
is used to compare the recognition of each category between
four convolution functions. It can be seen that the convolution
function h(xi, xj , xi − xj) achieves the highest ECA in most
categories, and EAC of each category are in a higher level.
h(xi, xi − xj) is second, and its performance is better than
h(xi, xj , xi − xj) in some particular categories. Although in
Table I the classification accuracy of external network shows
that h(xi, xi − xj) is more efficient than h(xi, xj , xi − xj), but
in terms of the ability of feature recognition, h(xi, xj , xi − xj)
is better than h(xi, xj , xi − xj); and h(xj) is in the third, but in
some categories, it is much weaker than the first two functions;
h(xi) produces unsatisfactory results, although mostly category
with a enough level of EAC can guide the correct classification,
but lower EAC means the convolution function are vulnerable
by the points which are wrongly classified, resulting in the lower
classification accuracy. From Fig. 9, it can be concluded that if
the ECA of convolution function is in a high level, more points
inside the objects are correctly classified, and final output is
more stable, illustrating more features are correctly recognized
and the feature recognition ability of convolution function is
better.

Finally, the feature recognition ability of convolution function
for different category is disused as follows. The average EAC of
samples which belong to the same category for every convolution
function is shown in Fig. 10, respectively; four convolution
functions get higher ECA in the category of airplane, chair, and
keyboard indicating that these categories have obvious features
that are easy to distinguish. But the EAC of wardrobe, radio, and
xbox are lower than other categories obviously, because these
categories have common attributes like square shape which can
be easily confused, making the convolution function not sensi-
tive to them. These objects belong to the categories which are
lack of the particular recognizable feature. It can be concluded
that convolution functions have different ability to recognize
different categories, which depends on the geometry character
of them, that is why the edge feature is needed in h(·).

Through the visualization and measurable metric, the feature
recognition ability of the convolution function is evaluated from
the external consistency network. It can be inferred that ECA
of convolution function h(xi, xj , xi − xj) ≥ h(xi, xi − xj) >
h(xj) � h(xi), which indicates that the feature recognition
ability are affected by uses of different edge features, and
through the difference of ECA of category, it can be concluded
that the shape of object is also an influence factor in object
recognition.

D. Results of Evaluation

To sum up, this article evaluates the feature transformation
ability and feature recognition ability of four typical convo-
lution functions from internal consistency evaluation and ex-
ternal consistency evaluation, the overall results are shown in
Table V. The performance of convolution functions is com-
pared with quantification and visualization evaluation. It can
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Fig. 9. Average EAC of four convolution functions for 40 categories.

Fig. 10. Average EAC of 40 categories under every convolution function, respectively.

TABLE V
OVERALL RESULTS OF CONVOLUTION FUNCTION EVALUATION

be seen that the edge features are of great significance for
feature transformation and recognition, and the effects vary
with different form of edge feature, such as h(xj) does not
perform as well as h(xi, xi − xj) and h(xi, xj , xi − xj). Re-
garding h(xi, xi − xj) and h(xi, xj , xi − xj), they have their
own characteristics in terms of feature transformation ability and

feature recognition ability, and they achieve better performance
in the 3-D classification network as evidenced by experimental
results.

Limitations: 1) Our work only test four typical convolution
functions, more convolution functions from state-of-the-art 3-D
CNNs work are expected to involve. 2) In the external con-
sistency network, in order to obtain 3-D CAM, the network
structure is modified to reinforce interpretation, incurring re-
duced accuracy of final output. Although this is a common
problem in interpretation work [40], it is desired to study a
method to build up the projection between the category out-
put and per-point without accuracy degradation. 3) At present,
the interpretation work of 3-D CNNs is limited to only 3-D
convolution function evaluation in our work, so it is neces-
sary to explore more aspects in the 3-D CNNs interpretation
work.
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V. CONCLUSION

The purpose of this article is to study the interpretation of 3-D
point cloud deep learning network and evaluate the convolution
operation performance of the typical edge convolution functions.
The key work of this article can be included in three points:
1) An interpretation network with branch structure is studied
for a comprehensive evaluation of 3-D convolution functions.
It provides the materials for the assessment of the internal
consistency and external consistency; it can retain an accept-
able classification accuracy as evidenced by the experiment to
support the follow-up evaluation. 2) In the convolutional layer,
max information entropy is introduced to represent the activation
of the dimensional feature; it proved that entropy has a positive
correlation with effective activation feature, which provides the
basis to take entropy as a metric of feature transformation ability
of convolution function. The “health state” of the convolution
function can be diagnosed by comparing the entropy distribution
between different conv-layers; and their feature transformation
ability can be evaluated by comparing the entropy values in
corresponding convolutional layer. 3) The 3-D CAM technique
was used to establish the response between per-point and the
classification category. The ECA is used to measure the per-point
classification accuracy, competing the feature recognition ability
of different convolution functions and exploring the identifiabil-
ity of category by quantitative analysis. Finally, the evaluation
between different convolution functions summarizes based on
their performance in the interpretation work.

The research work presented in this article is a heuristic work,
and it has a prospect in the application of the measurable metric,
for example, entropy value can be used to select the dimensions
with rich information, so as to optimize the network frame and
save the consumption of parameter storage. And multisource
data could be considered, like RGB-data or 4-D point cloud [43],
[44], more work could be extended in 3-D CNNs interpretation
works in future work.
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