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Deep Feature Aggregation Network for
Hyperspectral Remote Sensing Image Classification

Chunju Zhang ¥, Guandong Li

Abstract—Hyperspectral remote sensing images (HSIs) are rich
in spectral-spatial information. The deep learning models can help
to automatically extract and discover this rich information from
HSIs for classifying HSIs. However, the sampling of the models
and the design of the hyperparameters depend on the number of
samples and the size of each sample’s input space. In the case
of limited samples, the description dimension of features is also
limited and overfitting to other remote sensing image datasets
is evident. This study proposes a novel deep feature aggregation
network for HSI classification based on a 3-D convolutional neural
network from the perspective of feature aggregation patterns. By
introducing the residual learning and dense connectivity strategies,
we established a deep feature residual network (DFRN) and a deep
feature dense network (DFDN) to exploit the low-, middle-, and
high-level features in HSIs. For the Indian Pines and Kennedy
Space Center datasets, the DFRN model was determined to be more
accurate. On the Pavia University dataset, both the DFDN and
DFRN have basically the same accuracy, but the DFDN has faster
convergence speed and more stable performance on the validation
set than the DFRN. Therefore, when faced with different HSI data,
the corresponding aggregation method can be chosen more flexibly
according to the requirements on number of training samples and
the convergence speed. This is beneficial in the HSI classification.

Index Terms—Dense connectivity, feature fusion, hyperspectral
image classification, residual learning, 3-D convolutional neural
network (3D-CNN).

I. INTRODUCTION

YPERSPECTRAL remote sensing images (HSIs) are rich
in spectral-spatial information, which has important ap-
plications in land use, resource investigation, natural disasters,
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global environment, interstellar exploration, etc. Improving the
classification accuracy of HSIs has become a hot topic in the
field of remote sensing [1]-[4]. Existing studies often use a
support vector machine (SVM) [5], neural network [6], multi-
nomial logistic regression [7], and other methods to construct
a pixel-based classifier to resolve the HSI classification. In
general, although these methods utilize the spectral information,
they do not consider spatial information, and the classification
maps often contain noises. Recently, several spectral-spatial
feature-based classification frameworks have been proposed
to consider spatial information in pixel-based classifiers. For
example, Benediktsson et al. [8] utilize multiple morphological
operations to construct the spectral-spatial features of HSIs.
Multiple kernel learning based on spectral—spatial information
(e.g., composite kernel [9] and morphological kernel [10]) was
designed to improve the SVM classifier. Su et al. [11] proposed
the joint collaborative representation classification with corre-
lation matrix for HSIs, which could keep the local structural
information in HSIs. To further improve HSIs classification
accuracy, Su et al. [12] integrated ensemble learning and tangent
space collaborative representation classification. However, due
to the high-dimensional characteristic of the signal information
redundancy and several uncertainties, the HSI data structure is
highly nonlinear to some classification models rooted in statisti-
cal pattern recognition, making it difficult to classify the original
hyperspectral data directly [1], [4]. When the number of training
samples involved in supervised learning is limited, Hughes
phenomenon in which the classification accuracy decreases with
an increase in the feature dimension is present [13].

Deep learning methods, such as the stacked autoencoder
(SAE) [14] and deep brief network [15], can automatically
extract abstract features from the bottom to the high level of
semantics and convert images into more easily recognizable
features. They propose the use of a 2D-CNN to extract spatial
features and use of the principal component analysis to reduce
the dimension of HSIs, and finally, use spectral-spatial features
to improve the classification accuracy [16]-[18]. However, these
methods extract spatial and spectral features separately and
require complex preprocessing. To make full use of spectral—
spatial information in HSIs, Chen et al. [19] use a 3-D convolu-
tional neural network (3D-CNN) to directly extract features from
the original image, taking 3-D cube data as 3D-CNN input in a
small space size, showing a good classification performance.
Based on the 3D-CNN, a spectral-spatial residuals network
(SSRNs) is proposed in [20], in which the spatial and spectral
residual modules are designed to extract the spatial and spectral
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information, respectively. However, due to the relatively shallow
network used in the HSI classification, including only a few
convolution layers [19], [21], deep features cannot be extracted
effectively. In addition, considering that the 3D-CNN network is
composed of multiple layers, strong complementary relational
information between the different layers has not been fully
utilized in previous work. Song et al. [22] introduced residual
learning, designing the feature fusion between multiple layers of
information, to extract more discriminative features. However,
its main drawback is that the optimal feature fusion mechanism
depends on a hand-crafted setting with abundant experiments
[2], and the convergence speed is too slow. Moreover, in the face
of the diversity of hyperspectral data, the frequent adjustment
of the network structure is a time-consuming and laborious
measure and the performance of migration to other HSI datasets
is not as expected; thus, the accurate classification of geographic
objects cannot be achieved.

This study proposes a novel deep feature aggregation network
(DFAN) for HSI classification based on a 3D-CNN from the per-
spective of feature aggregation patterns. We introduced residual
learning [23] and dense connectivity [24], respectively, where
residual learning aggregates features by summation and dense
connectivity aggregates them by concatenation. Both residual
learning and dense connectivity have increased the depth of
the network and enhanced the flow of information. In addition,
considering that different layers can extract features at different
levels and provide complementary information, a fusion mecha-
nism s required to utilize the features at the multiple layers. Aim-
ing at resolving this issue, we proposed two kinds of DFANS,
the deep feature residual network (DFRN), and the deep feature
dense network (DFDN). When faced with different HSI data,
the corresponding aggregation method can be designed more
flexibly. This study provides a direction for HSI classification.

II. AGGREGATION VIEW

In this article, we proposed aggregation functions, including
summation and concatenation operations. In our structure, a
series of units are defined to make nonlinear transformations
of feature information, including convolution layers, batch nor-
malization (BN) [25], Relu [26], and pooling layers. The blocks
in both the DFRN and the DFDN are based on continuous BN,
Relu, and convolution layers (composite function). They obtain
the output from the aggregation function and continue to transfer
to the next aggregation function. In the final feature fusion, the
DFRN uses summation to fuse the features of the three blocks,
whereas the DFDN uses concatenation to aggregate the features
of the three blocks.

A. Connections in ResNet and DenseNet

The skip connection in ResNet ensures that the gradient can
be continuously transmitted through each residual block, which
consists of nonlinear units and a shortcut identity mapping.
The dense connection mode is a core connection in DenseNet.
Compared with ResNet, the dense connection not only connects
the next layer but also directly implements the cross-layer con-
nection. The gradient obtained from each layer is the gradient
addition of the previous layers for both DenseNet and ResNet.
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We unravel the view [24], [27] and carefully examine the con-
nection manner in DenseNet and ResNet for HSI classification.
In our design, the blocks in both the DFRN and the DFDN are set
to 3; that is, each block contains multiple composite functions
with each function consisting of BN-Relu—-Conv—-BN-Relu-
Conv. This means that there are three residual connections in the
residual block and three dense connections in the dense block.
The number and distribution of the end-to-end paths and the non-
linear units in the dense connection structure are same with that
in the residual connection structure. It is worth noting that any
path in the dense connection structure cannot continuously skip
connections. When a feature map is concatenated with others
after going through a skip connection, it must be immediately
forwarded into the following basic nonlinear unit instead of
taking another skip connection [28]. In the residual network,
the feature maps from the previous layer are summarized by
the input composite function and, then, transferred to the next
composite function after fusion. In the first skip connection of
each block, we setupa 1 x 1 x 1 convolution to ensure that the
input and output are consistent. The two connection modes are
shown in Fig. 1.

B. ResNet and DenseNet Under Aggregation View

Inspired by deeper aggregation, we used the residual and
dense structures in the HSI classification network. In the DFRN,
we use @ to represent the summation operation as

T =1 DY-1P... DY ()

In the DFDN, we use concatenation ® instead of @, as

T =1 QY-1®... Y. (2)

These two equations describe similarities in the aggregation
of features in the DFRN and the DFDN. The output of each basic
unit is the result of the nonlinear transformation of the feature
aggregation of the previous unit. Both DenseNet and ResNet
aggregate features from the previous basic units differently.
The ResNet aggregates features by summation, whereas the
DenseNet aggregates features by concatenation.

DenseNet and ResNet train the networks with more than
100 layers due to feature aggregation. In our HSIs, both the
DFRN and the DFDN are relatively deep networks; thus, feature
aggregation can create a large number of shortcut connections
[27], [29]. It helps to not only enhance the ability of learning
deep features, but also alleviate the gradient disappearance
and explosion problems. From the forward propagation neural
network perspective, feature aggregation enables features to be
extracted at each layer without the influence of intermediate
nonlinear transformation units.

The form of aggregation is also diversified, including the
summation of ResNet and the concatenation of DenseNet. The
summation aggregation ensures that each layer feature is not
directly read by subsequent layers. On the other hand, the loss
of information during transmission increases with the increase
of the number of network layers. The concatenation aggregation
method can effectively pass each layer of information to all its
sublayers; as a result, we believe this model has the potential to
learn the best combination of input feature maps.



III. DFAN FOR HSI CLASSIFICATION

The spatial features of HSIs are relatively sparse, and there is a
large amount of redundant information in the spectrum. Shallow-
layer networks with several convolutional layers cannot extract
deep features effectively, leading to the poor generalization. The
performance of migration to other HSIs is not as expected and
accurate classification of geographic objects cannot be achieved.
However, without the corresponding aggregation methods, only
stacking the 3D-CNN structure often results in several problems
such as the risk of overfitting [30] the model. Therefore, from
the perspective of aggregation view, this study designs two deep
3D-CNN models based on different aggregation methods for
considering the strong complementary information between the
traditional block of 3D-CNN:ss. In addition, we also built a deep
network to extract more discriminating features of HSIs and
adopted a fusion mechanism to make full use of the network
features. Three consecutive residual and dense blocks are con-
sidered with no transition layer among them for avoiding feature
information loss. The features of the three layers are not only
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Fig. 2. Network structure of the DFRN.

transferred to the next block, but are also fused at the end of the
block.

A. Deep Feature Residual Network

The network structure of the DFRN is shown in Fig. 2. The
input 3-D data cube of HSIs, followed by a 3 x 3 x 3 3-D
convolution (64 filters), BN and Relu, is connected to the residual
block. All the structures include three parts with 16, 32, and 64
filters, respectively. The three blocks excel in extracting low-,
middle-, and high-level HSI features.

The proposed network consists of three residual blocks with
each containing multiple composite functions (see Fig. 3). The
composite functions are essentially the same for the residual
and dense connections, including BN—Relu-3 x 3 x 3Conv-
BN-Relu-3 x 3 x 3Conv [31]. BN makes a normalization
operation and the Relu layer generates a nonlinear operation
and increases the complexity of the neural network. To avoid
gradient dispersion and explosion, BN normalizes the input of
the upper layer, which prevents the feature from being either too
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large or too small in the input field of the activation function.
The skip connection between the composite function is used for
information transfer.

Considering that the numbers of feature maps produced by
different blocks are not matched very well, we introduce the
feature fusion mechanism to explore the complementary infor-
mation implied in each block. The numbers of feature channels
are 16, 32, and 64 in the low-, middle-, and high-level residual
blocks, respectively. We used a 1 x 1 x 1 3-D convolution to
match the feature maps of the first and second blocks by turning
the number of feature maps for aggregation from 16 and 32 to
64, respectively. After feature aggregation, two sets of BN +
Relu are used to accelerate the network regularization. Finally,
a GlobalAveragePooling3D is used to send information to the
classifier. We use the softmax classifier and RMSprop optimizer
[32] to optimize the loss function.

B. Deep Feature Dense Network

The network structure of the DFDN is shown in Fig. 4. The
input 3-D data cube of HSIs, followed by a 3 x 3 x 3 3-D
convolution (64 filters) and max-pooling, is connected to the
dense block. All the structures include three parts, in which three
blocks are used to extract low-, middle-, and high-level HSI
features.

Oxewyos

| Buijoodasbelany|eqols || BuijoodaBessny[eqolo ‘

The DFDN consists of three dense blocks with each block con-
sisting of multiple composite functions (see Fig. 5 ). Although
the composite function in the dense structure also contains two
3-D convolutions, the first convolution is used as the bottleneck
layer (1 x 1 x 1 3-D convolution with 128 filters) to reduce
the parameters of the model, whereas the second 3 x 3 x 3
convolution (32 filters) is used to extract the feature map. Dense
connectivity is used in the three dense blocks and concatenation
is used for aggregation between each function.

Like the DFRN, we also introduced a feature fusion mecha-
nism into the DFDN to make use of complementary information
after each block for deep feature extraction. In the DFDN,
concatenation aggregation is used and it is not necessary to
consider the matching of the number of feature channels. After
feature aggregation, a GlobalAveragePooling3D is used to send
information to the classifier. We use the softmax classifier and
RMSprop optimizer to optimize the loss function.

Inspired that deep features are more discriminative, we add an
auxiliary classifier after the high-level block for the DFDN and
the DFRN to help training the model, which could enhance the
importance of deep features in the final fusion features. The total
loss of the DFDN and the DFRN is a sum of the loss of the final
classifier and the auxiliary classifier, where « is the coefficient
of loss of auxiliary classifier, as

3)

Losstotar = Loss + ax0.5 Lossauxiliary -
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IV. EXPERIMENTS AND RESULTS

To evaluate the performance of the DFAN model, this article
introduced three representative HSI datasets, namely, the Indian
Pines, the Pavia University, and Kennedy Space Center datasets.
All sampled data were divided into three groups, namely the
training set, validation set, and test set [31]. During the test, we
integrated the best-retained models and calculated the mean and
standard deviation of the multiple sets of overall accuracy (OA),
mean accuracy (AA), and kappa coefficient (k) [33]. The input
data for the HSI datasets were normalized to unit variance. For
all the datasets, we trained 200 epochs and the batch size was
16. We conducted experiments for the DFDN and the DFRN in
each dataset, hoping to select the optimal learning rate for the
two models from {0.01, 0.03, 0.05, 0.001, 0.003, 0.005, 0.0001,
0.0003, 0.0005}. According to the results, the learning rate was
set to 0.0003 for the DFDN and 0.0005 for the DFRN. For the

coefficient of loss of auxiliary classifier, a is set to 0.5 after
experiments.

The experimental hardware platform was a desktop computer
with the CPU of Intel i5-8500k, the GPU of GTX1080Ti, and
the memory of 16 GB. We discussed the influences of the ratios
of the training dataset, the neighboring pixel block size, and
the number of composite functions and selected the optimal pa-
rameter set for the Indian Pines, Pavia University, and Kennedy
Space Center datasets, respectively.

A. Experimental Datasets

The Indian Pines dataset was obtained by the AVIRIS spectral
imager in northwestern Indiana in 1992. This dataset contains
145 x 145 pixels with 16 classes. The Pavia University dataset
was collected by the ROSIS sensor over the Pavia region of
northern Italy in 2001, and the data size was 610 x 340 with
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DFRN(M x N =19 x 19; ¢ = 3; ratio = 2:1:7).

nine kinds of ground cover. The Kennedy Space Center dataset
was acquired by the AVIRIS instrument in Florida in 1996. It
contains 512 x 614 pixels with 176 bands and 13 categories.

B. Ratios of Training Datasets in the DFAN

The DFAN is relatively sensitive to the sample size and
training set. Therefore, the model performances under different

ratios of training, validation, and test sets are discussed (Table I).
The numbers of composite functions in the DFRN and the DFDN
models are 3 and the neighboring pixel block sizes are 11.
Finally, the DFDN achieves the highest accuracy with a ratio
of 5:1:4 of training, validation, and test sets, whereas the DFRN
chose aratio of training, validation, and test sets is 4:1:5. For the
dense connection structure, due to the continuous reuse feature,
feature utilization is high and can achieve high accuracy.
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TABLE I
TRAINING TIME, TEST TIME, AND OA UNDER DIFFERENT TRAINING DATASET RATIOS ON THE INDIAN PINES DATASET FOR DFDN AND DFRN

DFDN DFRN
Ratios Training time (s) Test time (s) OA (%) Training time (s) Test time (s) OA (%)
1:1:8 2326.39 25.88 94.40 3365.26 33.95 94.24
2:1:7 4050.70 22.56 98.51 5859.62 30.14 98.84
3:1:6 5771.66 19.41 99.43 8351.96 25.84 99.43
4:1:5 7504.27 16.36 99.57 10851.72 21.64 99.74
5:1:4 9227.60 13.62 99.80 13330.61 17.78 99.58
TABLE II

TRAINING TIME, TEST TIME, AND OA FOR DIFFERENT NEIGHBORING PIXEL BLOCK SIZES ON THE INDIAN PINES DATASET FOR DFDN AND DFRN

Neighboring pixel block DFDN DFRN
size (M=N) Training time (s) Test time (s) OA (%) Training time (s) Test time (s) OA (%)
9 2834.48 15.26 97.54 3833.39 19.11 96.83
11 4050.70 22.56 98.51 5859.62 30.14 98.84
13 5573.12 31.77 98.74 8401.61 43.96 98.73
15 7429.04 42.95 99.09 11445.32 58.42 99.29
17 9512.79 57.08 99.30 14950.47 81.80 99.25
19 11911.28 74.28 99.05 18760.19 105.53 99.41
TABLE I

DFDN PARAMETERS, TRAINING, TEST TIME, AND PRECISION COMPARISON TABLE OF MIXED FUNCTION CHANGES ON THE INDIAN PINES DATASET

Number of DFDN DFRN
composite P Training ti Test ti OA (% P Training ti Test ti OA(%
functions (¢) arams raining time (s) est time (s) (%) arams raining time (s) est time (s) (%)
3 1242128 9512.79 57.08 99.30 816736 14950.47 81.80 99.25
4 1730576 13374.15 76.47 98.75 1108160 19441.60 103.31 99.46
5 2257040 17752.21 98.26 99.23 1399584 23875.10 125.55 99.33
6 2821520 / / / 1691008 28321.18 147.65 99.20

C. Neighboring Pixel Block Sizes in the DFAN

Comprehensively considering the training time and OA with
limited small-size training samples, the ratio of training, valida-
tion, and test sets was 2:1:7 for the DFDN and the DFRN. The
number of composite functions is 3 for the two models. From
Table II, in the DFDN, the neighboring pixel blocks ranging
fromM X N=9x9toM x N=19 x 19 (M x N refers to
the spatial size of the sample) present the results fluctuating in
OA. From the analysis point-of-view, the larger the neighboring
pixel block, the larger the receptive field of the model, the more
local information, thus the accuracy of the model increases
with the increase of the neighboring pixel block. However, the
DFDN does not behave this way, the highest OA was obtained
while the neighboring pixel block is M X N = 17 x 17. In the
DFRN, the OA increases with an increase in neighboring pixel
blocks, but the trend of accuracy increases fluctuates slightly.

The neighboring pixel block of M x N =19 x 19 may be a good
choice.

D. Number of Composite Functions in the DFAN

The number of composite functions is the most intuitive
control factor for the model depth. In the deep aggregation
network, the depth of the network model can be deepened by
the choice of aggregation mode. The neighboring pixel block
is M x N = 17 x 17, training set ratio is 2:1:7 for the Indian
Pines dataset and the depth variation of the DFDN is shown
in Table III. The DFDN model achieved the highest accuracy
when the composite function was 3. Due to hardware limitations,
higher memory cannot be provided, thus the accuracy of the
hybrid function is not discussed. When the depth increases, the
probability of high accuracy will decrease slightly due to the
risk of overfitting. As shown in Table III, the neighboring pixel
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TABLE IV
PERFORMANCE OF DFDN AND DFRN ON THE INDIAN PINES DATASET WITH PREPROCESSING

Pretreatment DFDN DFRN
method Training time (s)  Test time (s) OA(%) Training time (s) Test time (s) OA (%)
No 11911.28 74.28 99.05 19049.94 107.22 99.40
Gussian 11901.63 74.51 99.62 19065.19 106.59 99.72
Median 11903.89 74.50 99.12 19092.48 106.48 99.05

TABLE V
PERFORMANCE OF DFDN ON THE INDIAN PINES DATASET WITH DIFFERENT GAUSSIAN FILTER SLIDING WINDOW SIZES

Sliding window DFDN DFRN
size Training time (s) Test time (s) OA(%) Training time (s) Test time (s) OA (%)
3 11896.41 74.35 99.36 19131.88 106.77 99.60
5 11901.63 74.51 99.62 19065.19 106.59 99.72
7 11950.85 73.75 99.47 19288.45 106.37 99.30
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blocks for the DFRN on the Indian Pines datasetis M x N =17
x 17, with a training set ratio of 2:1:7. The DFRN achieves the
highest accuracy when the composite function is 4. However,
the accuracy gain from depth decreases, so that a significant
threshold effect is formed.

E. Discussion on the Accuracy of the Training and
Validation Sets

Since the curve variation is large on the training and the
validation sets, the model attempts to preprocess the data using
different filter methods, which reduces the data noise. Table IV
shows the performance of the DFDN and DFRN on the Indian
Pines dataset. For the DFDN and DFRN, the neighboring pixel
block is M x N =19 x 19, the number of composite functions
is 3, and the training set ratio is 2:1:7. The accuracies under
Gaussian and median filters were compared. It can be seen that
the classification accuracy has been improved after processing
the data with a Gaussian filter.

For the DFDN and DFRN model, a Gaussian filter is selected
for preprocessing and the influence of the filter sliding window
size on the accuracy of the model is further discussed. Table V
shows the performance of the DFDN and DFRN when Gaussian
filters are used. It was found that a Gaussian filter with a sliding
window of 5 has been selected on the training and validation
curve, which will improve the OA and have a certain inhibitory
effect on the fluctuation.

F. Experimental Results

We evaluated the performance of the DFAN on the Indian
Pines, Pavia University, and Kennedy Space Center datasets.
Using the DFDN and DFRN for the Indian Pines dataset, the
neighboring pixel block size was 19, the number of composite
functions was 3, and the training set ratio was 2:1:7. The Pavia
University dataset was with the neighboring pixel block size of
19, the number of composite functions of 5, and the training set
ratio of 1:1:8 for the DFDN and DFRN. Using the DFDN and

DFRN for the Kennedy Space Center dataset, the neighboring
pixel block size was 17 and 19, respectively, the number of com-
posite functions was 3, and the training set ratio was 2:1:7 and
1:1:8, respectively. To evaluate the performance, we compared
the models in this study with the SAE [14], 3D-CNN [19],
SSRN [20], 3D-DenseNet [31], 3D-ResNet [34], and MSDN
[33] models (see Tables VI and VII, Figs. 6 and 7). For SAE, the
training set ratio was 6:2:2. For 3D-CNN, SSRN, 3D-DenseNet,
3D-ResNet, MSDN, DFDN, and DFRN methods, the training
set ratio was 2:1:7 for the Indian Pines dataset, and 1:1:8 for the
Pavia University dataset. To further explore the performance of
the proposed models, we compared the DFDN (M x N = 17 x
17, ¢ = 3; ratio = 1:1:8) and the DFRN (M x N=19 x 19, ¢ =
3; ratio = 1:1:8) with the MSDN and FDSSC [35] on Kennedy
Space Center dataset (see Table VIII and Fig. 8). MSDN is
proposed to make full use of different scale information in the
network structure and combined scale information throughout
the network, which integrated feature aggregation and dense
connection. FDSSC is a refinement of SSRN, which could
converge faster and achieve better classification accuracy with
limited small-size training samples.

Compared with other outstanding HSI classification algo-
rithms, the DFAN achieved the highest accuracy on the Indian
Pines dataset. The highest OA was 99.62% for the DFDN (M x
N=19 x 19; ¢ = 3; ratio =2:1:7) and 99.72% for the DFRN (M
x N=19 x 19; ¢ = 3; ratio = 2:1:7). With the Pavia University
datasets, the highest OA was 99.90% for the DFDN (M x N =
19 x 19; ¢ = 5; ratio = 1:1:8) and 99.91% for the DFRN (M
x N =19 x 19; ¢ = 5; ratio = 1:1:8). For the Kennedy Space
Center dataset, the DFRN (M x N =19 x 19; ¢ = 3; ratio =
2:1:7) and DFRN (M x N = 19 x 19; ¢ = 3; ratio = 1:1:8)
achieved the highest accuracy. Meanwhile, the OA was 99.69%
for the DFDN (M x N = 17 x 17; ¢ = 3; ratio = 1:1:8) and
99.78% for the DFDN (M x N =17 x 17; ¢ = 3; ratio = 2:1:7)
that were higher than MSDN and FDSSC. For the ratio of 2:1:7
and 1:1:8, the DFRN (M x N = 19 x 19; ¢ = 3) had a higher
accuracy than DFDN (M x N =17 x 17; ¢ = 3).
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TABLE VI
CLASSIFICATION ACCURACIES (%) OF DIFFERENT METHODS FOR THE INDIAN PINES DATASETS

DFDN(MxN=19x19,  DFRN(MxN=19x19,

No SAE 3D-CNN SSRN 3D-DenseNet  3D-ResNet MSDN =3) o=3)
1 81.82 94.44 100 97.22 100 100 100 100
2 82.16 96.10 99.02 99.31 100 99.21 98.63 99.61
3 77.54 97.11 99.65 99.31 99.64 98.46 100 99.83
4 68.11 95.86 97.06 97.66 95.98 97.66 98.82 97.66
5 94.36 93.72 98.29 100 100 99.71 100 100
6 94.45 98.46 99.81 100 99.42 99.61 100 100
7 94.70 100 100 99.70 100 100 100 100
8 94.36 100 100 100 100 99.70 100 100
9 82.56 100 0 100 100 91.67 100 100
10 81.28 97.91 100 99.65 100 100 99.71 99.56
11 84.47 99.57 98.95 97.89 99.18 99.53 99.94 99.82
12 83.77 93.99 100 98.57 94.93 99.28 98.57 99.28
13 96.42 100 100 98.57 100 99.28 100 100
14 92.27 98.75 99.66 100 98.87 99.89 100 100
15 80.63 90.13 100 100 99.28 99.63 100 100
16 81.82 90.67 97.18 95.65 91.89 97.18 97.06 97.59
OA 85.47£0.58  97.34£0.82  99.34£0.78  99.50£0.74  99.08+0.70  99.41+0.39 99.62+0.23 99.72+0.01
AA 86.31=1.14  96.67+0.71  93.10£0.60  99.05+0.68  98.70+0.74  98.80+0.35 99.55+0.28 99.55:0.21
K 83.42£0.66  96.97+0.93  99.25+0.89  99.40+0.87  98.95+0.79  99.33+0.40 99.57+0.35 99.68+0.57
TABLE VII
COMPARISON OF CLASSIFICATION ACCURACY OF DIFFERENT METHODS ON PAVIA UNIVERSITY DATASETS
No SAE 3D-CNN SSRN 3D-DenseNet  3D-ResNet MSDN DFDN(MxN=19x19, c=5) DFRN(Mx*N=19x19, c=5)
1 87.24 97.93 99.98 99.79 99.62 99.28 99.89 99.87
2 89.93 99.95 99.87 99.99 100 99.90 100 99.99
3 86.48 92.50 99.29 99.58 99.70 98.58 100 100
4 99.95 92.19 100 99.97 99.46 99.96 99.54 99.83
5 95.78 100 100 99.75 98.72 99.91 100 100
6 97.69 98.94 99.98 100 100 99.93 100 100
7 95.44 98.30 99.91 99.81 99.63 98.57 99.91 99.44
8 84.40 98.92 97.73 99.63 99.43 98.25 99.66 99.56
9 100 96.49 100 99.69 100 100 99.34 100
OA  90.58+0.18 9833041 99.69+0.17  99.88+0.02  99.79+0.03  99.57+0.04 99.90+0.02 99.91:£0.04
AA  92.99+0.39 97254031 99.64+0.17  99.80+0.02  99.62+0.05  99.38+0.04 99.81=0.02 99.850.02
K 8721£025 97.79£021 99.59+0.22  99.85+0.03  99.72+0.04  99.430.05 99.87+0.04 99.88+0.04

The experiment outputs the loss and accuracy changes of
the DFDN (M x N = 19 x 19; ¢ = 3; ratio = 2:1:7) and
the DFRN (M x N = 19 x 19; ¢ = 3; ratio = 2:1:7) on the
Indian Pines dataset (see Fig. 9), and the DFDN (M x N =
17 x 17; ¢ = 3; ratio = 1:1:8) and the DFRN (M x N =
19 x 19; ¢ = 3; ratio = 1:1:8) on the Kennedy Space Center
dataset (see Fig. 10), as well as the DFDN (M x N = 19 x
19; ¢ = 5; ratio = 1:1:8) and the DFRN (M x N = 19 x 19;
¢ = 5; ratio = 1:1:8) on the Pavia University dataset during

training and validation (see Fig. 11). In the Indian Pines and
Kennedy Space Center datasets, there was a large fluctuation in
the loss of the validation set, but the accuracy still achieved good
results and the training loss and accuracy maintained suitable
trends. For the Pavia University dataset, the volatility on the
validation set was significantly weakened and essentially stable
in the interval [0, 1]. The validation accuracy of the DFRN is
slightly different from that of the DFDN. The DFDN variation
on the 0-25 round validation set shows lateral fluctuation but it
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TABLE VIII
COMPARISON OF CLASSIFICATION ACCURACIES OF DIFFERENT METHODS ON KENNEDY SPACE CENTER DATASETS
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No MSDN FDSSC

DFDN(MxN=17x17; ¢=3;

DFRN(MxN=19%19; c¢=3;

DFDN(MxN=17x17; ¢=3;

DFRN(M*N=19x19; ¢=3;

ratio=1:1:8) ratio=1:1:8) ratio=2:1:7) ratio=2:1:7)
1 93.04 100 100 100 100 100
2 96.08 100 100 99.48 97.63 100
3 91.59 98.19 97.95 100 100 100
4 89.10 100 98.02 100 98.29 100
5 93.85 87.34 99.20 98.45 100 100
6 97.60 100 97.93 100 98.77 100
7 98.84 100 100 100 100 100
8 94.75 98.10 100 100 100 100
9 93.33 100 100 100 100 100
10 95.32 100 100 100 100 100
11 100 99.73 100 100 100 100
12 95.60 100 100 100 99.72 100
13 99.32 100 100 100 100 100
OA 9553 99.28 99.69 99.93 99.78 100
AA 9526 98.72 99.47 99.84 99.66 100
K 95.02 99.19 99.65 99.92 99.76 100
= e
4 — valacc 2.0 — val acc
= val loss = val loss

3 15
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Fig. 9. Loss and accuracy changes in training and validation in the Indian Pines dataset of (a) the DFDN (M x N = 19 x 19; ¢ = 3; ratio = 2:1:7) and (b) the

DFRN (M x N =19 x 19; ¢ = 3; ratio = 2:1:7).
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Loss and accuracy changes in training and validation in the Kennedy Space Center dataset of (a) the DFDN (M x N = 17 x 17; ¢ = 3; ratio = 1:1:8)
and (b) the DFRN (M x N =19 x 19; ¢ = 3; ratio = 1:1:8).
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Fig. 11.
the DFRN (M x N =19 x 19; ¢ = 5; ratio = 1:1:8).

tends to converge quickly. From the perspective of aggregation
view, whether it was the DFRN or the DFDN, although different
aggregation methods were adopted, the network model can be
further transmitted because of the aggregation itself, thereby
extracting the depth features.

The DFAN model performs well in Indian Pines, Kennedy
Space Center, and Pavia University datasets, effectively improv-
ing the classification accuracy of HSIs. For the Indian Pines and
Kennedy Space Center datasets, the DFRN model was chosen
to be more accurate, whereas on the Pavia University dataset,
the accuracy of the DFDN is basically the same as that of the
DFRN, but choosing the DFDN was more conducive to verifying
the stability of the validation set. Therefore, the accuracy of the
DFRN is higher than the DFDN when the training samples are
limited. On the contrary, if the training samples are sufficient,
the performance of the DFDN is better. Moreover, the DFDN
has a faster convergence speed during training. When faced with
different HSI dataset, the corresponding aggregation method can
be chosen more flexibly, according to the number of training
samples and the convergence speed requirement. This is very
advantageous in the classification of HSISs.

V. CONCLUSION

The DFRN and the DFDN proposed in this study are typ-
ical extensions of DFAN. The model performs well in Indian
Pines, Pavia University and Kennedy Space Center datasets,
effectively improving the classification accuracy of HSIs. The
DFRN is based on residual learning and uses the summation
aggregation method. When the training samples are limited,
it has a higher classification accuracy than the DFDN. The
DFDN is based on dense connectivity and uses concatenation
aggregation. The performance of the DFDN is better than the
DFRN while the training samples are sufficient. Moreover, the
convergence speed of the DFDN is always faster than the DFRN
during training process. The most direct effect of aggregation is
to deepen the network, strengthen the flow of information, and
achieve the feature extraction of spectral-spatial information of
different HSIs. In addition, considering that different layers can
extract features of different sizes and provide complementary
information, a fusion mechanism is adopted to utilize multilayer
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Loss and accuracy changes in training and validation in the Pavia University dataset of (a) the DFDN (M x N =19 x 19; ¢ = 5; ratio = 1:1:8) and (b)

features. There are several ways to feature aggregation. We can
design a more reasonable model for classifying HSIs from the
perspective of multiple aggregation views.

In future, we will focus on using different aggregation patterns
to extract different forms of features, discuss the application of
deep networks in HSI classification, enhance feature extraction,
and design more easily generalized models.
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