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Multistep Prediction of Land Cover From Dense
Time Series Remote Sensing Images With

Temporal Convolutional Networks
Jining Yan , Xiaodao Chen, Yunliang Chen , and Dong Liang

Abstract—Time series prediction (TSP) of land use/land cover
(LULC) is an important scientific issue, but forecasting LULC
changes at lead times of multiple time steps at fine time scales
remains problematic. Especially in the context of current rapid
economic and social development, the traditional one-step predic-
tion models with a five-year or ten-year cycle cannot meet the
application needs of land management departments. Temporal
convolutional networks (TCNs) outperform other traditional TSP
approaches. Therefore, we have proposed a pixel-level multistep
TSP (pMTSP) approach that employs TCNs to carry out multistep
prediction of land cover from dense time series remote sensing im-
ages, making up for the shortcomings of low accuracy, coarse time
granularity, and labor-consuming of the current LULC prediction
approaches. The results of comparative experiments with seasonal-
trend decomposition procedure based on LOcally wEighted regreS-
sion Smoother and autoregression (STL-AR), seasonal autoregres-
sive integrated moving average , and dynamic harmonics regression
using single enhanced vegetation index time series, as well as the
comparative experiment with the cellular automata-Markov model
using real moderate resolution imaging spectroradiometer image
time series, showed that the pMTSP can accurately extrapolate
the change trend of the time series in fine-scale and obtain highly
consistent prediction results with actual data, performing better
than the other four contrasting algorithms in 23-step LULC pre-
diction. The pMTSP can be used for multistep, fine-time-scale, and
long time-series land cover prediction, which is of great guiding
significance for the sustainable development and utilization of land
resources.

Index Terms—Dense time series, land use/land cover (LULC),
multistep prediction, pixel-level, temporal convolutional networks
(TCNs).

I. INTRODUCTION

T IME series prediction (TSP) of land use/land cover
(LULC) [1], [2] is an important scientific issue that can
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help better understand the land use process, as well as changing
laws and trends [3], [4], so as to support land use planning and
decision-making for land use planners and resource managers
in the future [5]. Scientists from all over the world have paid
close attention to the subject of land cover change prediction,
proposed many excellent prediction algorithms and models, and
achieved many successful results. For example, on the pixel
level, some classical regression and prediction algorithms, such
as seasonal-trend decomposition procedure based on LOcally
wEighted regreSsion Smoother (LOESS) and autoregression
(STL-AR), seasonal autoregressive integrated moving average
(SARIMA) [6], dynamic harmonics regression (DHR), and ro-
bust iteratively reweighted least squares (RIRLS) [7], [8], have
been used to fit and predict the surface reflectance (SR) [9],
leaf area index (LAI) [10], and other indexes of LULC. In
addition, some postclassification algorithms, such as the cellular
automata (CA)-Markov model [11] and the artificial neural
network-based cellular automaton (ANN-CA) model [12], have
been used to predict future land use situations based on historical
classification results.

However, as for the previously used pixel-level LULC predic-
tion algorithms, the prediction accuracy is generally not high,
might be due to the defects of the model itself (for example,
because STL often fails to extract the seasonality component
accurately when seasonality shift and fluctuation exist [13], all
STL-based time-series models cannot get accurate forecasting
results), or not suitable for long time series forecasting [14] [such
as the ARIMA-based algorithms, including autoregressive inte-
grated moving average (ARIMA), SARIMA, etc.], or less gen-
erally applicable for nonlinear and nonstationary data sets [15]
(such as the Fourier-decomposition-based algorithms, including
DHR and RIRLS, etc.). As for the postclassification methods,
the input data of the models is the LULC classification results
of each time point, which may often be imprecise and ignore
temporal dependencies that can be derived from remote-sensing
time series [16], [17]. If the classification results of multiple
time phases are input into the prediction model at the same
time, it is easy to produce error accumulation, which makes the
final prediction result less accurate. In addition, it is particularly
time-consuming and laborious to make land use classifications
at each time point [18]. Hence, the time granularity of the
experimental data used in the previous studies was relatively
coarse, and the forecast results were often at five-year or ten-year
intervals. In the context of the current rapid economic and
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social development, urban land use changes are more frequent.
If we continue to use five or ten years as the forecast unit,
the method will not be able to meet the application needs of
land management departments [19]. In addition, most of the
previous research work has focused on predicting the results at
the next time step, which is called a one-step prediction, but
cannot predict multiple time series into the future [20]. That is
to say, LULC prediction results for future fine time scales are
not available, preventing land use planning at finer timescales.
Therefore, choosing a novel time series analysis model and using
dense time series land cover satellite data to make multistep land
cover predictions at fine time scale will be of great significance
for urban land use planning and environmental protection [21].

Temporal convolutional network (TCN), one of the members
of the convolutional neural network (CNN) [22], [23] family, can
be used to fit and predict long time series with high precision and
high efficiency due to its simple structure and novel network. Be-
sides, it outperforms canonical recurrent networks such as long
short-term memory networks [24] while demonstrating longer
effective memory and has been successfully used in handwritten
text recognition [25], action segmentation and detection [26],
and so on. Hence, in this article, we propose a pixel-level
multistep TSP (pMTSP) approach that employs TCNs to carry
out multiple time steps prediction of land cover from dense time
series remote sensing images on the pixel-level. Fully consider-
ing the inherent periodic characteristics of land cover time series,
the pMTSP divides the long time series remote sensing images
into time sequences with annual cycle, and then realizes the
high-precision sequence-to-sequence prediction with the help
of the TCN’s flexible receptive field and temporal convolution
features. The pMTSP is capable of predicting the entire subse-
quence in one-shot manner, overcoming the error transmission
and accumulation problems of the recursive one-step forecasting
method which uses isolated time points to make direct mul-
tistep forecasting. In addition, the pMTSP makes pixel-level
prediction from remote sensing images, effectively avoiding
the problems of error accumulation, coarse time granularity,
and labor-consuming caused by the postclassification prediction
approaches.

The remainder of this article is organized as follows. In the
next section, we summarize the related work and put forward the
problems and challenges faced by multistep LULC prediction.
Section III introduces in detail the background knowledge and
implementation process of the pMTSP approach. Section IV de-
scribes the experiments and result analysis as well as comparison
and validation. Finally, in Section V, we provide a summary and
conclude the article.

II. RELATED WORK

According to the review results of the state-of-the-art land
cover prediction, the popularly used land cover prediction meth-
ods can be classified into two types— pixel-level prediction
methods and postclassification prediction methods.

A. Pixel-Level Prediction Methods

Pixel-level prediction methods are those that forecast LULC
in the future using past time series remote sensing pixels. The

popularly used methods include STL-AR, SARIMA [6], DHR,
and RIRLS [7], [8], and so on.

1) STL-AR: The STL model is able to decompose a series
into trend, seasonal, and residual components based on a
LOESS [27]. It cannot be directly used to forecast future
values without the help of the autoregression (AR) model.
STL and AR have been used to model and predict the 2007
LAI values using six years (2001–2006) of the Moder-
ate Resolution Imaging Spectroradiometer (MODIS) LAI
product [28]. Since STL decomposition can isolate noise
components in time series, the STL-AR model is more
sensitive to noise in the data. However, the STL assumes
that trend and seasonal components are smooth and slowly
changing [13], which reduces the final prediction accuracy
to some extent.

2) SARIMA: The SARIMA model is formed by including
additional seasonal terms in the ARIMA model, which
is a class of model that captures a suite of different
standard temporal structures in time series data. Based
on the assumption that the time series is a set of stochastic
variables that depend on the time t, SARIMA can interpret
the whole time series according to some rules or mathe-
matical methods. However, one of the limitations of the
SARIMA model is the stationarity of a time series, and it
is often difficult for a time series to meet this modeling
requirement in practice. Consequently, it is necessary
to transfer a nonstationary time series into a stationary
one by differencing before the SARIMA prediction is
applied [28]. In addition, the SARIMA model is a typical
short-term forecasting approach, and it is not suitable for
long time series analysis [14].

The SARIMA model has been used to model MODIS
LAI time series, from 2001 to 2006, and predict 2007 LAI
values. The comparative results showed that the SARIMA
model gave better prediction results than STL-AR.

3) DHR and RIRLS: The DHR and RIRLS models both use
the Fourier harmonic component to fit the previous time
series and predict future values. The DHR model has an
advantage of expressing seasonal or periodic components,
so it is suitable for analyzing the time series with re-
markable seasonal variations. The three components of
the time series-trend, season, and residual-can be fitted
by the Fourier harmonic components. But unlike the ordi-
nary Fourier analysis, the harmonic coefficients of each
component vary with time change, which also reflects
the dynamic characters of the model. Benefitting from
these multiscale sine and cosine components, the DHR
model could fit the time series as much as possible to
obtain a relatively smooth result. This model has been
used to analyze the LAI time series products, and the
annual prediction results showed that it was very effective
in predicting the short-term LAI on a pixel basis [10].

According to the data quality of the time-series remote
sensing images, along with a long-term trend component,
the RIRLS model can also be transformed into three other
typical types—a simple model with only four coefficients,
an advanced model with six coefficients, and full model
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with eight coefficients [9]. The simple model has been suc-
cessfully applied to the continuous change detection and
classification algorithm of land cover for a Landsat scene
located in New England, USA, but it had problems when
used for places where intra-annual changes occurred [7].
The similar idea of the advanced model has been employed
in the continuous monitoring of forest disturbance algo-
rithm for one Landsat scene located between Georgia and
South Carolina, USA [29]. Furthermore, the full model
has been successfully used for detecting forest disturbance
from a satellite image time series [30].

Due to the DHR and RIRLS models, both being capable
of modeling the seasonality of the data, the prediction
values will not be influenced by vegetation phenology and
sun angle differences [9]. However, due to the fact that the
classical Fourier analysis is less generally applicable for
nonlinear and nonstationary data sets [15], the accuracy of
extrapolated predictions for surface reflectivity time series
is not high.

Therefore, the conclusion is that we should develop a better
forecasting model to obtain more accurate land use prediction
results in advance.

B. Postclassification Prediction Methods

Postclassification prediction methods utilize classified land
use data of each previous period to predict future land cover.
Due to the need to perform land use classification for each time
point, the efficiency of these methods is very low. Therefore,
the most common strategy adopted with these methods is to
use fixed time interval land use classification results, such as
one year, five years, or ten years, to make advance predictions
using Markov and its improved models. For example, López
et al. [31]successfully predicted land cover and land use change
in the urban fringe for the next 20 years using Markov chains
and regression analyses; Yirsaw et al. [11] employed a CA-
Markov model to predict future LULC changes for the year
2020, based on the mapping results of the years 1990, 2000, and
2010, and validations with the actual data showed an overall
satisfactory result; Saputra and Lee [12] applied an ANN-CA
model to predict LULC changes in 2050 and 2070 in North
Sumatra, Indonesia, and the comparison between the predicted
and the real LULC maps for 2010 illustrated high agreement.

However, one of the disadvantages of this strategy is coarse
time granularity, leading to the fact that it cannot provide land
use change details at fine time scales. If we use the postclas-
sification land use time series to make multistep predictions,
the classification error of each time point will accumulate and
lead to less accurate forecasting results. In addition, this strategy
ignores temporal dependencies and change periodicity that can
be derived from remote-sensing time series, which directly affect
the final prediction accuracy.

Through the above review of two typical commonly used
LULC prediction algorithms, the main issues can be identified
as the following.

1) Low prediction accuracy, not only for pixel-level pre-
diction methods but also for postclassification prediction
methods.

2) Previous work mainly focused on the prediction of the next
time point, but little research focused on the prediction of
future multistep time series.

3) Coarse time granularity, which is very obvious for the
post-classification prediction methods and is not be able
to meet the current application needs of land management
departments.

4) Laborious and time-consuming nature, which are the
most obvious disadvantages of postclassification predic-
tion methods. Therefore, we propose the pMTSP approach
employing TCNs to predict multiple-time-step land cover,
from dense time series remote sensing images on the pixel-
level, making up for the shortcomings of low accuracy,
coarse time granularity, and labor-consuming of current
TSP approaches.

III. MULTISTEP PREDICTION OF LAND COVER

The overall technical solution of the multistep prediction of
land cover from dense time series remote sensing images with
TCNs mainly includes the following three steps:

1) remote sensing pixel series preprocessing;
2) TCN-based multistep pixel series prediction; and
3) performance evaluation and optimization.

A. Data Preprocessing

Resulting chiefly from varying atmospheric conditions and
sunsensor-surface viewing geometries [32], the remote sensing
pixel series may be affected by prevalent noise. Hence, the direct
method is to suppress outliers using high-pass, low-pass, band-
pass, or band-stop filters to reduce the influence of low-quality
data [33]. Considering the noise characteristics of the time-series
remote sensing images, the Whittaker filter was adopted because
it can provide a better fit to the raw time series data than
the Fourier analysis, asymmetric Gaussian model, or double
logistic model [34]. In addition, in order to realize the multistep
prediction, the long time-series remote sensing images should be
divided into several pixel vectors, and the length of each vector
is the same as the annual change cycle of the original time series.

B. TCN-Based Multistep TSP

1) Background Knowledge of the TCN: There are two impor-
tant components of the TCN: one is the 1-D fully convolutional
network (1-D FCN) architecture [26], and the other is the causal
convolutions. Therefore, the TCN can be simply expressed as
TCN = 1D FCN + causal convolutions.

1) 1-D FCN: In FCN, all hidden layers are all convolutional
layers, which is different from using a fully connected
layer to obtain a fixed-length feature vector after the
convolutional layer in classic CNN [35]. The FCN can
accept input images of any size, and its output is the same
size as the input images, thanks to upsampling after the last
convolutional layer, i.e., deconvolution [26]. If the input
images become 1-D series data, then the FCN becomes
1-D FCN, which can take a sequence of any length and
map it to an output sequence of the same length.
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Fig. 1. Dilated causal convolution with dilation factors d = 1, 2, 4 and filter
size k = 3.

2) Causal Convolutions: Due to the input image size of
CNN needs to be fixed, it is not suitable for dealing with
sequence problems [26], [36], and so causal convolution
is applied to deal with these issues. Yet a simple causal
convolution is challenged by sequence tasks with long
histories, the dilated convolution, which enables an ex-
ponentially large receptive field [37], to be employed.

Specifically, the dilated convolution has a dilation rate
parameter apart from the size of the convolution kernel,
which is mainly used to indicate the size of the dilation,
and this is its main difference from the simple causal
convolution [38]. For a 1-D sequence input X ∈ Rn and
a filter f : {0, . . . , k − 1} → R, the dilated convolution
operation F on element s of the sequence is defined as
the following:

F(s) = (X ∗d f)(s) =
k−1∑
i=0

f(i) ·Xs−d·i (1)

where d is the dilation factor, k is the filter size, and
s− d · i accounts for the direction of the past. Then, the
architectural elements in a TCN can be illustrated in Fig. 1.
When d = 1, the dilated convolution reduces to a regular
convolution; if the filter size k is chosen to be larger and
the dilation factor d increases, the receptive field of the
TCN will be increased. Thus, dilated convolution can be
used to deal with long sequence problems.

2) TCN-Based Multistep Prediction: Given a time series
Q = q1, q2, · · ·, qn∗T , whereT is the period andn ∗ T represents
the total length of the time series. Our goal is to predict the next
multistep values of Q. In general, as for time series forecasting,
is to predict the observation at the next time step, called one-step
prediction, as only one time step is to be predicted. If we want
to predict the next T -step values, the common way is to split the
multistep prediction problem into several one-step prediction
subproblems [39], as follows:

qn∗T+1 = model1(q(n−1)∗T+1 + q(n−1)∗T+2 + · · ·+ qn∗T )
qn∗T+2 = model2(q(n−1)∗T+2 + · · ·+ qn∗T + qn∗T+1)
· · · · · ·
q(n+1)∗T = modelT (qn∗T + · · ·+ q(n+1)∗T−2 + q(n+1)∗T−1).

(2)

However, this method does not take into account the inherent
periodic characteristics in the time series, and the last prediction
result in the time series is based on its previous prediction result,
which easily causes error transmission and accumulation, result-
ing in the accuracy of the prediction result gradually decrease as
the prediction step length increase. Therefore, we adopted the
multiple output strategy, which involved developing one model
that was capable of predicting the entire forecast sequence in a
one-shot manner, as the following:

[qn∗T+1, qn∗T+2, . . . , q(n+1)∗T ]
= model(q(n−1)∗T+1, q(n−1)∗T+2, . . . , qn∗T ).

(3)

In fact, this prediction method is to divide the time series into
several vectors according to the period T , and the length of each
vector is T . The input and output of the prediction model are
vectors, not individual sequence points. But the “model” in (6)
must be trained on the previous values to get accurate multistep
prediction results. Therefore, the first step of the pMTSP is to
transform the time series Q into several vectors with length of
T . Then, each vector was put into the TCN model for iterative
training. Once the model training was complete, it could be used
to predict the next multistep values. Finally, the predicted vector
would be reverse-transformed into a time series, which was the
multi-step prediction results. The overall technical solution is as
shown in Fig. 2.

In addition, in order to improve the accuracy of multistep
prediction results as much as possible, the TCN construction
process needed to consider the characteristics of the time series.
In this study, the initial filter size k was set equal to the period T
of the time series, and the model input parameter size must also
be fit for the time-series vector, so as to consider the data of one
period as a whole.

C. Performance Evaluation and Optimization

In order to evaluate the forecasting performance of the
pMTSP, as well as reverse optimize parameters of the TCN
model, we chose the following two methods.

1) Time Dimension Evaluation: The time dimension evalua-
tion is mainly used to compare the actual remote sensing
pixel series with the multistep prediction results using two
metrics—one is the root-mean-square error (RMSE), and
the other is the Pearson correlation coefficient (PCC) [40].
Their calculation formulas are as follows:

RMSE =

√∑m
i=1 (ai − pi)

2

m
(4)

PCC =

∑m
i=1 (ai − a) · (pi − p)√∑m

i=1 (ai − a)2 ·
√∑m

i=1 (pi − p)2
(5)

where a represents the actual time series value, a rep-
resents the mean value of the actual value, p represents
the prediction results, p represents the mean value of
the prediction results, and m represents the length of the
time series data. If the PCC value is small or the RMSE
value is large, the “epochs” parameters, as well as other
parameters, can be considered to adjust if necessary.
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Fig. 2. Overall technical solution of the pMTSP.

2) Spatial Dimension Evaluation: Spatial dimension evalua-
tion is used to compare the difference between the actual
and the multistep prediction results of the same time point.
The peak-signal-to-noise ratio (PSNR) and structural sim-
ilarity index measure (SSIM) two well-known objective
image quality metrics were adopted [41]. The PSNR is
the ratio of the energy of the peak signal to the average
energy of the noise, usually expressed in decibels (dBs).
The calculation formula of PSNR is as follows:

PSNR(aI, pI) = 10 · log10
(

MAX2
I

MSE(aI, pI)

)
(6)

where

MSE(aI, pI) =
1

M ·N
M∑
i=1

N∑
j=1

(aIij − pIij)
2 (7)

whereaI and pI denote the actual and predicted grey-level
images, MAXI is the maximum gray value, generally
assigned 255 (8-b grey-level image), and i, j denote the
width and length of the image. The larger the PSNR value,
the smaller the difference between the predicted and the
actual images.

SSIM is a full-reference image quality evaluation index
that measures image similarity from three aspects: lumi-
nance (L), contrast (C), and structural (S). The calculation
formula of SSIM is as follows:

SSIM(aI, pI) = L(aI, pI) · C(aI, pI) · S(aI, pI) (8)

where ⎧⎪⎪⎨
⎪⎪⎩
L(aI, pI) =

2·μaI·μpI

μ2
aI+μ2

pI

C(aI, pI) =
2·σaI·σpI

σ2
aI+σ2

pI

S(aI, pI) =
2·σaIpI

σaI+σpI

(9)

where μaI and μpI denote the mean values of actual
and predicted images, σaI and σpI denote the standard
deviation of actual and predicted images, and σaIpI is
the covariance of both images. The value range of SSIM
is 0− 1. The larger the SSIM value, the more similar
between the predicted and the actual images.

In addition, since the proposed pMTSP approach would
be compared with the typical postclassification predic-
tion method, the K-means [42] unsupervised classification
method was introduced to perform land use classification
for the actual data and the prediction results and then to
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Fig. 3. Trend curve of the training loss with the training times.

evaluate the classification accuracy equivalent to the actual
land use results.

IV. VALIDATION AND RESULTS

Validation of the pMTSP was conducted using a typical index
product of LULC-enhanced vegetation index (EVI), which can
demonstrate sharper growing season peaks and exhibits greater
sensitivity to canopy structure differences than other vegetation
indexes such as the normalized difference vegetation index
[33], [43]. In order to make comparisons with those benchmark
prediction methods, the experimental data adopted: 1) a single
randomly selected EVI time series, measuring prediction ac-
curacy in time dimension; and 2) the real MODIS image time
series, verifying its ability to solve practical LULC-prediction
problems.

A. Multistep Prediction in Single EVI Time Series

1) Experimental Data: The experimental data used were a
randomly selected EVI time series from an actual MODIS Terra
16-day composite data (MOD13Q1), which was collected from
January 1, 2001 to December 19, 2018, a total of 18 years (414
time points), in Wuhan, China. The advance prediction step was
set to 12 months. That is, using the previous 12-m EVI time
series (23 time points) to predict the next 12-m EVI time series
(23 time points). In our validation experiments, we chose 17
years of the dataset (from 2001 to 2018, 391 time points) for
model training and the last year of the dataset (2018, 23 time
points) for validation.

2) TCN-Based TSP: The TCN is a typical TSP algorithm
based on iterative optimization. Hence, the determination of the
iteration number is a very important issue. In our experiment,
we set the initial maximum number of training sessions to 7000
during the model training process and compared the trend of
the training loss with the training times to select a “relatively
suitable number.” Here, the “relatively suitable number” means
that the iteration number cannot be so large as to make the model
overfit and time-consuming or so small as to result in a low
prediction accuracy [44]. The trend curve of the training loss
with the training times was as shown in Fig. 3.

Fig. 4. Predicted and actual EVI curves using the pMTSP method.

As can be seen from Fig. 3, the loss value gradually decreased
and stabilized after 5000 training sessions with the number of
training rising. Therefore, we had reason to believe that the 5000
may be the “relatively suitable number” of training sessions.
The comparison chart of the 12-m-lead-prediction results and
the actual time series are as shown in Fig. 4.

As can be seen from Fig. 4, the 12-m-lead-prediction time
series closely fit the actual time series. Except for mid-July to
mid-September, the prediction results of other time intervals
were almost identical to the actual values. This may be due to
the abrupt change of EVI time series in mid-July leading to
the parameters of the TCN model being unable to adjust in time.
However, even during the periods of deviation, the maximum rel-
ative deviation error was not more than 5%. The overall 0.01915
RMSE value and 0.9960 PCC value also strongly demonstrated
the high multistep prediction accuracy of TCNs.

3) Comparative Experiments: In order to measure prediction
accuracy in the time dimension, we chose three frequently used
pixel-level prediction methods, STL-AR, SARIMA, and DHR,
to carry out comparative experiments. All of the comparative
experiments used the same 16-d MODIS EVI time series with
the pMTSP test. All experiments used 17 years of the dataset
(from 2001 to 2018, 391 time points) for model training and the
last year of the dataset (2018, 23 time points) for validation.

1) STL-AR: The STL model was used to decompose the
EVI time series into trend, season, and residual subcom-
ponents, then perform TSP on each subcomponent using
the AR model; prediction results of each subcomponent
were combined to get the final results. The results of the
23-step prediction using STL-AR are shown in Fig. 5.

As can be seen in Fig. 5, the 12-m-lead-prediction curve
deviates far from the actual curve, and the maximum rela-
tive deviation error from July to September reached about
20%. In the actual EVI time series, the two months are
in the turning range of the EVI value from the prosperity
to the decline. That is to say, the STL-AR model cannot
quickly capture the changing trend, leading to huge errors
in timing transition intervals. In addition, although the
prediction series has similar growth or declining trends
to the actual value overall, it cannot perceive the change
details, eventually leading to the predicted land cover
results not being consistent with the actual situation. The
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Fig. 5. Predicted and actual curves using the STL-AR method.

Fig. 6. Predicted and actual EVI curves using the SARIMA method.

0.0686 RMSE value and 0.9536 PCC value also reflect the
deficiency of STL-AR model.

2) SARIMA: The SARIMA model was mainly used to an-
alyze univariate time series with trend and seasonal el-
ements through setting seasonal autoregressive order P,
seasonal difference order D, seasonal moving average
order Q, and time step m of a single seasonal cycle. In
this comparative experiment, these four parameters were
set to 1, 1, 1, and 23, respectively. The results of the 23-step
prediction using SARIMA are shown in Fig. 6.

As can be seen from Fig. 6, the 12-m-lead-prediction
curve has the same downward and upward trends as the
actual value. The 0.9967 PCC value also illustrates the
high degree of fit. However, around August, the maximum
relative deviation error between the predicted and actual
values still reaches about 20%, which shows that the
SARIMA model is weak in predicting the time-varying
intervals. The 0.0554 RMSE value also reflects the defi-
ciency of the SARIMA model.

3) DHR: The DHR model uses the dynamic Fourier harmonic
component to fit the previous time series and predict
the future values, and its dynamically changing sine and
cosine components can be used to fit historical time series
with high accuracy. However, the DHR model has weak
extrapolated prediction ability, so the prediction accuracy

Fig. 7. Predicted and actual EVI curves using the DHR method.

TABLE I
RMSE, PCC, AND TOTAL RUNNING TIME OF pMTSP, STL-AR,

SARIMA, AND DHR

for the future is not high. The results of 23-step prediction
using DHR are shown in Fig. 7.

As can be seen from Fig. 7, the 12-m-lead-prediction
curve has the same change trend as the actual value. But the
maximum relative deviation error between the predicted
and actual values still reaches about 20%, which may lead
to a wrong prediction type of LULC. The 0.0598 RMSE
value and 0.9965 PCC value also reflect the deficiency of
DHR model.

4) Discussion: From the above experimental results, it can be
concluded that: 1) STL-AR, SARIMA, and DHR can accurately
extrapolate the change trend of the time series, but the relative
deviation error between the predicted and actual values during
the growth trend change intervals is very high. The pMTSP
results can be a close fit to the actual time series, except for
some small deviation errors in the turning points of the series.
2) Through comparing the RMSE and PCC results between
the predicted and the actual values, it can be concluded that
the pMTSP has the best results, followed by SARIMA and
DHR, and the STL-AR is the worst. However, in terms of total
running time, the STL-AR has the highest working efficiency,
and the pMTSP has the longest running time, taking 1018 s
for 5000 iterations of the TCN model training (see Table I).
In summary, the pMTSP can accurately extrapolate the change
trend of the time series and obtain highly consistent prediction
results, performing better than STL-AR, SARIMA, and DHR
overall in multi-step TSP.

B. Multistep Prediction in Real MODIS Image Time Series

1) Experimental Data: The experimental data used were a
real 18-year EVI time series of MOD13Q1, collected from
January 1, 2001 to December 19, 2018, in Wuhan, China. In the
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nearly past 20 years, Wuhan has experienced rapid urbanization
development such as urban expansion and urban transformation,
which is suitable as a research object for multistep prediction of
land cover. Just like the parameter setting of the single EVI time
series experiment, the prediction step was also set to 12 months,
the first 17 years of the dataset (from 2001 to 2018, 391 time
points) was used for model training, and the last year of the
dataset (2018, 23 time points) was used as the ground truth for
validation. Notably, the Whittaker filter was used to suppress
outliers, reduce the influence of low-quality data, and filter the
noise of each pixel series.

2) TCN-Based Land Cover Prediction: According to the
network building experience in the experiment of single EVI
time series, the number of training sessions was set to 5000
during the TCN model training process. In addition, because the
LULC prediction experiment was performed on the pixel-level,
the training and prediction process of each pixel was indepen-
dent. Hence, the entire calculation process could be accelerated
using multigraphics processing units (GPUs) in parallel [45].
Therefore, we successfully applied for two computing nodes
from China’s Tianhe-2 supercomputing clusters, and each node
has four Nvidia Tesla K80 GPUs. The experimental MODIS
EVI time series was divided into eight subcomponents in the
spatial dimension, and these eight subcomponents were parallel
performed with land cover prediction based on a batch job
mechanism [46]. The final 23-step prediction results are shown
in Fig. 8. For simplicity, only four of the prediction results, which
were evenly distributed in the four seasons of the year 2018, are
shown for comparison with the actual images. In addition, the
histograms for and differences between the actual and prediction
images were also calculated.

As can be seen in Fig. 8, from the analysis of image texture
features [47], the TCN prediction results have almost the same
texture features as the actual data, which is also supported by
the fact that the four different images do not reflect obvious
texture features. Therefore, we believed that the 12-m-lead-
TCN-prediction method could accurately predict the overall
land cover situation of the next 12 months, which also reflected
the advantages of the pMTSP; from the analysis of image
grayscale characteristics, the prediction results of the two points
of 20 180 306 and 20 181 219 were almost the same as the actual
data of those time points, and the 20 180 610 and 20 180 914
prediction results were slightly different from the actual data.
This may be due to the fact that the EVI value is in the transition
period from June to September, and the parameters of the TCN
model cannot be adjusted in time. However, it can be seen from
the four difference histogram images that most of the differences
between the actual and predicted values were between −0.1 and
0.1, which strongly supported the high accuracy of the TCN’s
prediction results.

In addition, in order to quantify the prediction accuracy over-
all, the RMSE, PCC, PSNR, and SSIM results between the actual
and TCN-predicted values were calculated (see Fig. 9).

As can be seen from Fig. 9, except for a few small areas,
the RMSE values in most areas are less than 0.1 or close to
0, the PCC values are larger than 0.9 or close to 1, the PSNR
values at 23 time points are greater than 115 dBs, and the SSIM

values at 23 time points are larger than 0.97 or close to 1, which
strongly illustrate that the results obtained by the pMTSP are
very slightly different from the actual values, both in spatial and
time dimensions. In other words, the 23 MODIS EVI images
predicted by TCNs for the next 12 months are highly similar to
the actual obtained images.

3) Comparative Experiments With CA-Markov: In order to
further evaluate the prediction accuracy of the pMTSP in the
spatial dimension, we chose the commonly used postclassifi-
cation prediction method CA-Markov to carry out comparative
experiments. Because the input of CA-Markov model was land
use classification results, it would have been too time-consuming
to perform land use classification for all of the 414 EVI images.
Hence, we only chose four typical time points to compare. The
details are as follows.

1) Taking into account the rapid development of Wuhan city,
we chose to employ the land use classification results of
2016 and 2017 to predict the land use situation for 2018.
Therefore, eight MODIS EVI images collected on March
6, June 10, September 14h, and December 19 in 2016 and
2017 were selected.

2) In order to maximize the fine-scale prediction of CA-
Markov, we performed K-means unsupervised classifi-
cation on the EVI images in 2016 and 2017, with the
classification number set to 10. It should be noted that the
classification number set to 10 was only to finely compare
the accuracy of CA-Markov and pMTSP. The numbers
1 to 10 were not given clear names for land use types,
but generally represented grassland, forest, impervious,
water and their subtypes. The CA-Markov model we used
was integrated in TerrSet software, which is an integrated
geographic information system and remote sensing soft-
ware developed by Clark Labs at Clark University for the
analysis and display of digital geospatial information [48],
[49].

3) The actual and TCN prediction results for March 6, June
10, September 14, and December 19 in 2018 were also
performed K-means unsupervised classification, with the
classification number set to 10.

The final prediction results by CA-Markov, the K-means clas-
sification results of actual data, and the K-means classification
results of TCN prediction values were as shown in Fig. 10.

As can be seen from Fig. 10, the unsupervised classified
results of the actual data and TCN prediction values were almost
the same in most areas, except for a few minor differences.
However, the prediction results of CA-Markov model were
obviously different from the actual classified results, especially
for the prediction of image texture information. For quantitative
evaluation, we randomly selected cross-validation samples in
the actual classification results and evaluated the relative overall
classification accuracy (OCA) and relative kappa coefficient
(Kappa) of the TCN-predicted classification results and the CA-
Markov prediction results [50]. The word “relative” here means
that we assumed that the cross-validation samples selected from
the actual classification results were completely correct, and all
the accuracy evaluation results were based on this assumption
(see Table II).
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Fig. 8. Comparison of the pMTSP results with the actual images. Images a1, a2, a3, and a4 are the TCN prediction results; b1, b2, b3, and b4 are the actual
values; c1, c2, c3, and c4 are the differences between the actual and prediction images; and d1, d2, d3, and d4 are the histograms of each of the difference results.
In order to display results intuitively, the TCN prediction, actual, and difference images are all given false colors. The same color bar is used for the actual and
prediction values, and the difference results adopt a separate color bar.

TABLE II
ACCURACY COMPARISON OF THE POST-pMTSP CLASSIFICATION AND CA-MARKOV PREDICTION RESULTS
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Fig. 9. RMSE, PCC, PSNR, and SSIM results between the actual and TCN-predicted values. (a) RMSE. (b) PCC. (c) PSNR & SSIM.

Fig. 10. K-means unsupervised classification results of the actual and TCN prediction values, as well as the prediction results by CA-Markov. The numbers
1 to 10 refer to the classification labels, and different categories display different colors on the classified images. (a1) TCN Prediction Result(20180306). (a2)
TCN Prediction Result(20180610). (a3) TCN Prediction Result(20180914). (a4) TCN Prediction Result(20181219). (b1) Actual Result(20180306). (b2) Actual
Result(20180610). (b3) Actual Result(20180914). (b4) Actual Result(20181219). (c1) CA-Markov Result(20180306). (c2) CA-Markov Result(20180610). (c3)
CA-Markov Result(20180914). (c4) CA-Markov Result(20181219).

As can be seen from Table II, all of the relative OCA and
Kappa values of the post-pMTSP classification results were
better than those of the CA-Markov. In other words, the agree-
ment between the TCN-predicted classification results and the

actual LULC types was higher than that of the CA-Markov
model. Therefore, the conclusion was that the pMTSP method
outperformed the postclassification CA-Markov model in LULC
prediction.
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C. Discussion

Through testing by single EVI time series and real MODIS
image time series, the main characteristics of pMTSP could be
obtained.

The advantages of this multistep LULC prediction method
are as follows.

1) The pMTSP, using the TCN deep learning algorithm to
perform multistep land cover prediction, can accurately
extrapolate the change trend of the time series and obtain
highly consistent prediction results with actual data.

2) The pMTSP performs land cover prediction from dense
time series remote sensing images on the pixel-level and
can effectively solve the problems of low accuracy, coarse
time granularity, and labor-consuming in the postclassifi-
cation prediction methods.

3) Through training the historical data of the entire time
series and then predicting the change trend in the fu-
ture, the pMTSP is possible to fully consider temporal
dependencies and change periodicity that can be derived
from remote-sensing time series, to improve the prediction
accuracy.

4) Based on the idea of sequence-to-sequence prediction, the
pMTSP is capable of predicting the entire time sequence in
one-shot manner, overcoming the error transmission and
accumulation problems of the recursive one-step forecast-
ing method which uses individual sequence points to make
direct multistep forecasting.

The pMTSP also has the following limitations.
1) The pMTSP results can be a very close fit with the actual

time series, but there are still some small deviation errors
in the turning points of the series.

2) Compared with the postclassification methods, the
pMTSP can greatly save manpower. But the pixel-level
LULC multistep prediction is still very computationally
demanding. Though eight GPUs of China’s Tianhe-2 su-
percomputing clusters were adopted, the 18-year EVI time
series (a total of 162 736 pixels with 414 time points)
23-step prediction in Wuhan city still took more than 24
days [51], [52].

3) Since the pMTSP method works on the pixel-level, it is
more suitable for performing multistep land cover predic-
tion from a slightly lower spatial resolution remote sensing
images. For LULC prediction using submeter level remote
sensing data, the pixel-level prediction method may cause
more noise pollution for the final results [53].

V. CONCLUSION

In order to solve the problems faced by the current LULC
prediction issues that include low prediction efficiency, coarse
time granularity, and labor-consuming, we propose the pMTSP
approach. This approach employs a simple structure and novel
deep learning network, i.e., the TCN, to perform multistep
LULC prediction. The results of comparative experiments with
STL-AR, SARIMA, and DHR using single EVI time series,
as well as the comparative experiment with CA-Markov model
using real MODIS image time series, showed that the pMTSP

can accurately extrapolate the change trend of the time series
on a fine scale and obtain highly consistent prediction results
with the actual data, performing better than the other four
contrasting algorithms in multistep LULC prediction. In addi-
tion, the pMTSP performs LULC prediction from dense time
series remote sensing images on the pixel-level and can obtain
fine time scale LULC prediction results that are able to meet
the application needs of land management departments in the
context of current rapid economic and social development.

However, its computationally demanding nature is the most
prominent problem faced by the pMTSP. The time series of
each pixel needs to go through two stages of model training and
prediction, but the iterative training of the TCN model is very
computationally demanding. In practical application scenarios,
a remote sensing image often contains millions, or even tens of
millions, of pixels, and the workload of pixel-level multistep
prediction is very heavy. In future work, we plan to use an
unsupervised classification algorithm to cluster the time series
with similar change characteristics, then choose one of the time
series curves of the same category for model training, and finally
use the transfer learning method [54] to transfer the model
parameters of the trained time series to the pixel series that are
not involved in training, reducing model training times so as to
improve the working efficiency of the entire model.

APPENDIX

FOLLOWING ABBREVIATIONS ARE USED IN THIS MANUSCRIPT

TSP Time series prediction
LULC Land use/land cover
TCN Temporal convolutional network
LOESS LOcally wEighted regreSsion Smoother
STL-AR Seasonal-trend decomposition procedure based on

LOESS and autoregression
SARIMA Seasonal autoregressive integrated moving average
DHR Dynamic harmonics regression
CA Cellular automata
pMTSP Pixel-level multistep time series prediction
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