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Abstract—Pan-sharpening, which fuses the high-resolution
panchromatic (PAN) image and the low-resolution multispectral
image (MSI), is a hot topic in remote sensing. Recently, deep learn-
ing technology has been successfully applied in pan-sharpening.
However, the existing methods ignore that the MSI and PAN image
are at different resolutions and use the same networks to extract
features of the two images. To address this problem, we propose
a two-stream deep learning architecture, called coupled multiscale
convolutional neural network, for pan-sharpening. The proposed
network has three components, feature extraction subnetworks,
fusion layer, and super-resolution subnetwork. In the feature ex-
traction subnetworks, two subnetworks are used to extract the
features of the MSI and PAN image separately. Different sizes of
convolutional kernels are used in the first layers due to the different
spatial resolutions. Thus, the source images are mapped to the sim-
ilar scale. Then a multiscale asymmetric convolution factorization
is used to extract features at different scales. In the fusion layer,
the two feature extraction subnetworks are coupled. Features at
the same scale are first summed, and then the features of all scales
are concatenated as one feature map. At last, a super-resolution
subnetwork is used to generate the high-resolution MSI. Experi-
mental results on both synthetic and real data sets demonstrate
that the proposed method outperforms the other state-of-the-art
pan-sharpening methods.

Index Terms—Convolutional neural network (CNN), image
fusion, multiscale, pan-sharpening.
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I. INTRODUCTION

PAN-SHARPENING [1]–[3] refers to the fusion of a low
spatial resolution multispectral image (LR-MSI) and a

high spatial resolution panchromatic (PAN) image to obtain a
high spatial resolution MSI (HR-MSI). The demand for pan-
sharpening is increasing since most remote sensing applica-
tions [4]–[7] require images to be high in both spatial and
spectral resolutions.

Over the last 30 years, many methods have been proposed for
pan-sharpening and there are a number of ways to classify these
methods. The latest way is to classify pan-sharpening methods
into four categories:

1) component substitution (CS) based methods;
2) multiresolution analysis (MRA) based methods;
3) variational optimization (VO) based methods;
4) deep learning-based methods.
The CS-based methods and MRA-based methods are the

first proposed families. In the CS-based methods, the MSI is
projected into a new space using spectral transform. Then,
one of the components is replaced by the PAN image. Finally,
inverse projection is performed to obtain the HR-MSI. Repre-
sentative methods include intensity hue saturation (IHS) [8],
Gram–Schmidt (GS) [9], principal component analysis [10], etc.
The MRA-based methods extract the spatial structures of PAN
image and inject the extracted spatial information into the LR-
MSI. Wavelet transform [11] and Laplacian pyramids [12] are
usually used to decompose the image into multiscale channels
and extract high frequency information. Filter estimation [13]
first estimates the filter that models the blur between MSI and
PAN image. Then, a high-pass modulation based model is used
to inject the details. The VO-based methods [14]–[16] consider
the fusion process as an ill-posed inverse problem which is
composed of the LR-MSI fidelity term and the PAN fidelity term.
Some additional priors, such as total variation [17] and nonlocal
similarities [18], can be introduced in the objective function.

Deep learning [19] has achieved great success in computer
vision, image processing, natural language processing, etc. More
recently, deep learning-based inverse problems [20], [21] have
been a frontier of image processing. Deep learning-based meth-
ods, especially convolutional neural networks (CNNs) [22],
have become the most advanced approaches in pan-sharpening.
In [23], the authors proposed a deep neural network (DNN) pan-
sharpening method by stacking the sparse denoising autoencoder
which can be considered as the first method applying deep learn-
ing in pan-sharpening. Then, pan-sharpening based on CNN
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(PNN) [24] was proposed and it achieved promising results. In
the PNN method, the LR-MSI is first upsampled and interpolated
and then stacked with the PAN image to form the input of
the neural networks. The architecture of the neural network is
borrowed from the super-resolution CNN (SRCNN) [25] used in
single image super-resolution. Later, Yuan et al. [26] proposed
a multiscale and multidepth CNN (MSDCNN) architecture for
pan-sharpening. In this method, two subnetworks are introduced
and a multiscale feature extraction block is proposed in one of
the subnetworks. The produced HR-MSI performs well in spatial
structure preserving due to the introduced multiscale feature
extraction.

Then, in [27], the authors proposed a two-stream fusion
network (TFNet) that fused the PAN image and MSI in the
feature level. Two CNNs are used to extract the features of PAN
and LR-MSI separately and the extracted features are fused by
concatenating in the fusion neural network. Yang et al. [28]
proposed PanNet which trained the network in the high-pass
domain instead of the image domain. So it is possible for the
PanNet to generalize to other satellites by using the domain spe-
cific neural network. Shen et al. [29] proposed to combine deep
learning and a variational model together for pan-sharpening.
A deep residual CNN is used to learn the map from PAN
image’s gradient map and LR-MSI to the HR-MSI’s gradient
map. Then the learned gradient prior is imposed in the variational
model. Further, the authors of PNN improved the PNN and
proposed a target-adaptive CNN method [30]. In this method,
a fine-tuning step is performed on the target data using the
pretrained CNN and then the fine-tuned CNN is used as the final
CNN for pan-sharpening. In [31], the authors proposed a remote
sensing image fusion neural network (RSIFNN) which was also
consisting of two feature extraction neural networks. In [32], a
two-step MSI fusion method is proposed which estimates the
spatial information and compensates the spectral information
separately. In [33], a MSI fusion method based on convolutional
autoencoder is proposed. The MSI is enhanced band by band
with the trained neural network. Thus, the spatial details are
well preserved.

To prevent the spectral distortion, Liu et al. [34] combined
a spectral discrimination-based detail injection model and a
shallow–deep convolutional network. To address the short of
ground truth issue, Ma et al. [35] proposed an unsupervised
pan-sharpening method in which a spectral discriminator and
a spatial discriminator are used to preserve the spectral and
spatial information. Further, deep learning methods have been
extended to hyperspectral pan-sharpening. Xie et al. [36] pro-
posed the 3-D generative adversarial networks in hyperspec-
tral pan-sharpening. A loss function is designed to compre-
hensively consider global constraint, spectral constraint, and
spatial constraint. In addition, Zheng et al. [37] proposed an
end–end deep learning-based network for hyperspectral image
super-resolution through a multipath strategy. It can well keep
spectral consistency and enhance the spatial texture information
simultaneously.

From the existing deep learning based pan-sharpening meth-
ods, it can be concluded that deep learning-based pan-sharpening
methods are consisting of three components: feature extraction

subnetwork, fusion layer, and super-resolution subnetwork. Ac-
cording to the position of the fusion layer, these methods can
be classified into two categories. The first category is that the
fusion layer is located in the input layer and feature extraction
subnetwork is abandoned, such as PNN, MSDCNN, and PanNet.
The second category conducts the fusion step in the hidden
layer, such as TFNet and RSIFNN. In the second category,
the networks before fusion step are considered as feature ex-
traction subnetworks for LR-MSI and PAN image separately.
Since feature extraction is contained in the network and the
weights are updated by end-to-end training, the second category
performs better. However, the feature extraction subnetworks
of LR-MSI and PAN image are the same and the fusion layer
usually uses concatenating operator to fuse different features.
In fact, LR-MSI and PAN image reveal the spatial structures at
different scales and similar feature extraction subnetworks also
extract features at different scales. Therefore, the fusion layer
is limited by the concatenation and cannot recover the spatial
structure at all scales.

To overcome this problem, we propose a two-stream deep
learning architecture, called coupled multiscale CNN (CMC) for
pan-sharpening. In the proposed neural network, two separated
feature extraction networks are used to extract the deep features
from LR-MSI and PAN image. Different kernel sizes are used
in the networks such that the extracted features are first mapped
to the same scale. Besides, a novel multiscale asymmetric con-
volution factorization CNN is proposed to extract the multiscale
features of the LR-HSI and PAN image separately. Then a
novel multiscale fusion layer is designed to couple the two
feature extraction subnetworks. It first fuses the features of the
same scales and then concatenates the features in all scales.
Thus, the features of LR-MSI and PAN image are fused at the
same scale. At last, the super-resolution subnetwork is used to
recover the HR-MSI. In the proposed method, the multiscale
information of the observed images are accurately extracted and
characterized by the asymmetric convolution factorization CNN.
So the feature maps fed into the super-resolution layer contain
more latent spectral–spatial information of the HR-MSI than the
traditional SRCNN. Thus, an improved super-resolution result
can be expected. Experiments on both synthetic and real data sets
show that the proposed method outperforms the state-of-the-art
pan-sharpening methods.

Overall, the highlights of the article can be concluded as
follows.

First, a two-stream deep learning architecture is proposed for
pan-sharpening. The MSI and PAN image are fed into the neural
network separately and different convolutional kernels are used
to map the input images into the same scale.

Second, a multiscale asymmetric convolution factorization
CNN is proposed to extract the multiscale features of the input
features. The proposed multiscale feature extraction method has
less parameters and better performance.

Third, a novel feature fusion layer is proposed to make full use
of the input images. The features are first fused at the same scale
and then all the features at different scales are concatenated. In
this way, the spatial structures are preserved without breaking
the spectral structure.
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The remainder of the article is organized as follows. The basic
knowledge for pan-sharpening and deep learning are presented
in Section II. Section III introduces the detailed architecture of
the proposed CMC. Experimental results and comparisons are
shown in Section IV. The conclusion is drawn in Section V.

II. DEEP LEARNING FOR PAN-SHARPENING

In this section, we will formulate the deep learning-based
pan-sharpening methods and present some basic knowledge of
deep learning.

In the pan-sharpening problem, a pair of images YYY ∈ RM×N

andZZZ ∈ Rm×n×B are given. Here YYY represents the PAN image
and ZZZ represents the LR-MSI which has been preinterpolated
using a simple interpolating method. Our goal is to recover the
HR-MSI XXX ∈ RM×N×B . Note here that M > m,N > n; so
there are more parameters to be estimated and this is an ill-posed
inverse problem.

The deep learning based methods learns a nonlinear mapping
relationship from the inputs (Y, ZY, ZY, Z) to the outputs XXX by mini-
mizing the objective function

L = ‖f(YYY ,ZZZ)−XXX‖2F (1)

where f(·) represents the nonlinear mapping achieved by neural
network. DNNs and CNNs are two commonly used neural
networks for nonlinear mapping. In this article, we will use
CNN as our basic architecture for pan-sharpening. So we will
introduce some basic knowledge in the following.

CNN [38], [39] is the most popular neural network in deep
learning and has achieved great success in computer vision and
image processing. In DNN [40], fully connected layers are used
to connect the input and the output. Thus, the parameters in
DNN are numerous, which requires a large amount of training
samples. CNN relieves this problem by local receptive fields and
shared weights. In CNN, each neuron is connected to neurons
in a small subset of its previous layer and the weights of the
convolutional kernel remains the same when the same feature
map is generated in the next layer. As a result, the number of
parameters in the neural network decreases dramatically and
the network is shift, scale, and distortion invariant. In addi-
tion, the correlations in the spatial dimensions are considered
since the input images are not vectorized.

In CNN-based pan-sharpening methods, a super-resolution
subnetwork is located between the output and the input. The
input of the super-resolution subnetwork denoted by SSS0 ∈
RMs×Ns×Ds can be the low-resolution image or the feature
maps. SSS(i)

0 denotes the ith feature map. Then the convolution
over the input feature maps can be expressed as

SSS
(j)
1 = h(wwwj �SSS0 + bj) (2)

wherewwwj ∈ Rk1×k2×Ds , j = 1, 2, . . . , s1 is a convolutional ker-
nel. k1 and k2 represent the kernel size, s1 is the number of con-
volution kernels, and� denotes the 3-D convolution operator. bj
is a bias term. h(·) is the nonlinear active function. A commonly
used active function is the rectified linear unit (ReLu) function
which can be expressed as

h(x) = max{0, x}. (3)

We can apply the convolution operator multiple times by
stacking the convolutional layers with different kernel sizes and
numbers. Usually, three layers are enough to achieve satisfying
results, such as SRCNN, PNN, etc.

III. PROPOSED COUPLED MULTISCALE CNN ARCHITECTURE

A. Motivation

In real applications, the LR-MSI and the PAN image are the
only two source images fed into the neural network. However,
the LR-MSI and the PAN image are obtained by different sensors
and show information at different resolutions in the spatial
domain. The existing CNN-based methods such as PNN and
MSDCNN directly stack the PAN image and LR-MSI (usually
enlarged to the desired size by simple interpolation methods)
together for further processing. In these approaches, the features
of different scales are treated equally, which will decrease the
reconstruction quality. Later, RSIFNN and TFNet are proposed
to solve this problem by introducing feature extraction sub-
networks before the fusion of the two source images. In these
methods, the subnetworks sharing the same architecture are used
to extract the LR-MSI and PAN image’s features. Improved
results can be obtained. However, since the spatial scales of
the source images are different, the extracted features produced
by the same architecture are also at different scales. Directly
fusing features at different scales is not suitable. To overcome
this problem, different architectures should be used in the feature
extraction subnetwork to align and extract the features at a
similar scale.

In addition, the multiscale feature extraction can improve
the reconstruction accuracy and robustness. Since we have two
source images, the architecture of the fusion layer should be
designed to take the difference between different scales into
consideration. Features of the same scale in the two images
should be merged. To this end, we propose to first fuse the
features of the same scale in the fusion layer and then fuse
the features of all scales. By this way, the spectral structure of
LR-MSI will be preserved when fusing the spatial details of the
PAN image.

B. Overview of the Proposed CMC Architecture

The proposed CMC architecture can be divided into three
components: feature extraction subnetworks, fusion layer, and
super-resolution subnetwork. The feature extraction component
contains two subnetworks: LR-MSI subnetwork and PAN sub-
network which process the LR-MSI and PAN image separately.
The outputs of the feature extraction subnetworks are the mul-
tiscale features of the input LR-MSI and PAN image. Then, in
the fusion layer, the two feature subnetworks are coupled and
the extracted multiscale features are fused together as the input
of the super-resolution subnetwork. The complete architecture
of our proposed pan-sharpening architecture is shown in Fig. 1.

C. Feature Extraction Subnetworks

In the proposed CMC architecture, the input is composed of
a LR-MSI and a PAN image which will be fed into the LR-MSI
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subnetwork and PAN subnetwork. In the first layer of the LR-
MSI subnetwork, we use CNN with kernel sizeWm ×Wm ×B
followed by ReLu activation function to extract the features.
Analogously, we add the convolutional layer in the first layer
of PAN subnetwork, but the size of the convolutional kernel
is Wp ×Wp × 1. Since we want to fuse the LR-MSI and the
PAN image in a multiscale fashion, the extracted features before
multiscale feature extraction layers should show the spatial
information at a similar scale. The PAN image and the LR-MSI
have different spatial resolutions. If the same size kernels are
used in the first layer, the extracted features are at different
scales. Therefore, the kernel size in the first layer of the two
feature extraction subnetworks should be different, which means
Wm �= Wp. In addition, the spatial resolution of the PAN image
is higher than the LR-MSI and the LR-MSI is first enlarged by
simple interpolation methods. So the local neighborhood in the
PAN image contains more spatial information than the same
local neighborhood of LR-MSI. In order to contain the same
amount of spatial information, the kernel size in the first layer
of the LR-MSI subnetwork should be larger than that of the
PAN subnetwork. Thus, we have Wm > Wp. The number of
convolutional kernels in the first layers of the two subnetworks
are the same for further progress.

After the first convolutional layer, the feature maps in the
two subnetworks are considered to show the features in the
same scale. As demonstrated in [26], features in different scales
correspond to different spatial structures. So the multiscale
feature extraction can improve the reconstruction accuracy and
robustness in different scenes. In [26], a multiscale feature
extraction block is used where different kernel sizes are used in
the same layer. However, it increases the number of parameters
in the neural network. Inspired by the well-known Inception V3
architecture, we propose a multiscale asymmetric convolution
factorization method to extract the multiscale features. Instead of
using n× n convolutional kernels, we use the 1× n followed
by n× 1 convolution. A graphic comparison of the tradition
multiscale CNN and that the proposed multiscale asymmetric
CNN is shown in Fig. 2. It can be observed that the number of
layers of the network increases and that the nonlinear mapping
is enhanced in the network. On the contrary, the number of
parameters is dramatically reduced. Therefore, different from
the method in [41], we use asymmetric convolution factorization
for different convolutional kernel sizes in the same layer which
can extract rich spatial information.

D. Fusion Layer

In both the LR-MSI subnetwork and the PAN subnetwork,
the multiscale asymmetric convolution factorization is used to
extract features at different scales. So the fusion of the extracted
multiscale features is also an important factor. Thanks to the
different kernel sizes used in the first convolutional layer, the
feature maps fed into the multiscale asymmetric convolutional
layer can be regarded as being in the same scale in both the LR-
MSI subnetwork and the PAN subnetwork. Thus, it is reasonable
to assume that the extracted features by the same kernel size are
also corresponding to the same scale in the MSI and PAN image.

Since the PAN image contains high frequency information and
the LR-MSI contains the spectral information, we first sum
the features extracted by the same kernel size together as the
features corresponding to this scale. The differences between the
proposed method and the other multiscale methods are that we
use two subnetworks to extract the multiscale features separately
and fuse the multiscale features according to their scale. So the
fused features contain rich spatial information without breaking
the spectral structure. After obtaining the fused features in every
scale, we concatenate these features along the spectral mode
to form the output of the fusion layer. Thus, the two feature
extraction subnetworks are coupled and the output of the fusion
layer is the features maps containing rich multiscale information.

E. Super-Resolution Subnetwork

The super-resolution subnetwork used in the proposed method
is inspired by PNN. PNN has been proven to be efficient for
the super-resolution problem. In the proposed method, we have
more convolutional kernels in the first layer of the network than
PNN and SRCNN. This is because we have more features in
the input layer. More convolutional kernels are necessary to
reconstruct the HR-MSI.

F. Training Process

In the proposed CMC method, all the parameters are trained
by minimizing the loss between the reconstructed HR-HSI and
the corresponding ground truth images. The mean squared error
is used to measure the loss function as follows:

L =
1

n

n∑

i=1

‖XXXi − f(YYY i,ZZZi)‖2F . (4)

HereXXXi ∈ RP1×P2×B represents the ith training sample of the
ground truth images, YYY i ∈ RP1×P2 represents the ith training
sample of the PAN images, and ZZZi ∈ RP1×P2×B is the ith
training sample of the LR-MSIs. n is the batch size which
represents the number of training samples randomly selected
from the training set. L is the loss function to be minimized
in the training process. In real applications, due to the limited
training samples, we extract patches from the images as training
samples. P1, P2 are the spatial sizes of the extracted patch.

IV. EXPERIMENTAL STUDY

In this section, the performances of the proposed method and
other state-of-the-art pan-sharpening methods are evaluated on
both synthetic and real data sets.

A. Experimental Settings

The synthetic data sets are collected from three different
sensors including: QuickBird, WorldView2, and WorldView3.
Details about these data sets will be presented later. Since the
HR-MSIs are not available in these data sets, we follow Wald’s
protocol to generate the LR-MSIs and PAN images. Then we
extracted patches from the image pairs as the training set which
will be fed into the network. The size of the patch is 32× 32
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Fig. 1. Flowchart of the proposed method.

Fig. 2. Comparison of the traditional multiscale CNN and the proposed
multiscale asymmetric CNN.

and 200 000 patches are extracted as the training set in all the
synthetic experiments.

In the first layer of the feature extraction subnetwork, the
kernel size is set to Wm = 9 for the LR-MSI subnetwork and
Wp = 3 for the PAN subnetwork. The numbers of convolutional
kernels are both set to 60 in the two layers. {1× 3, 3× 1},
{1× 5, 5× 1}, and {1× 7, 7× 1} kernel pairs are used in the
asymmetric layers. The number of convolutional kernels in the
asymmetric convolutional layer is set to 20 for every scale. After
the fusion layer, the feature maps has a size of 32× 32× 60.

Finally, a four-channel HR-MSI is produced after the super-
resolution subnetwork. The batch size in our experiment is set
to 100 in every iteration and the total iteration number is 200 000.
We use the AdamOptimizer to optimize the loss function and the
learning rate is set to 0.0001 in every layer.

B. Compared Methods and Quality Measures

We compare our proposed pan-sharpening method with some
state-of-the-art pan-sharpening methods including the GS or-
thogonal method [42], atrous wavelet transform (ATWT) [43],
adaptive IHS method (AIHS) [44], sparse fusion of images
(SparseFI) [45], CNN-based pan-sharpening (PNN) [24], and
MSDCNN [26]. The first four methods are traditional pan-
sharpening methods and the last two are deep learning-based
methods. All these methods are implemented using the pa-
rameters suggested by the authors and tested under the same
conditions.

In our experiments, correlation coefficient (CC), root mean
square error (RMSE), Erreur Relative Global Adimensionnelle
de Synthse (ERGAS), spectral angle mapper (SAM), and Q4

are used to evaluate the performances of the compared methods
on the synthetic data sets. CC is used to characterize the ge-
ometric distortion. RMSE can be used to measure the spatial
quality of the reconstructed image. ERGAS shows a global
indication of the fusion quality. The SAM index can evaluate the
quality of the spectral structure. Q4 measures the universal
metric between the fused image and the reference image. All
these quality measures require the reference HR-MSI which
is available in the synthetic experiments. On the contrary, the
reference HR-MSI is not available in real data experiments. So
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Fig. 3. Visual results of the QuickBird data set. (a) LR-MSI. (b) PAN image. (c)–(i) Pseudo color images of the compared results. (j) Pseudo color image of the
reference image.

Fig. 4. Visual results of the WorldView-2 data set. (a) LR-MSI. (b) PAN image. (c)–(i) Pseudo color images of the compared results. (j) Pseudo color image of
the reference image.

TABLE I
QUALITY MEASURES ON QUICKBIRD DATA SET

The best results are showed in bold.

TABLE II
QUALITY MEASURES ON WORLDVIEW-2 DATA SET

The best results are showed in bold.
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Fig. 5. Visual results of the WorldView-3 data set. (a) LR-MSI. (b) PAN image. (c)–(i) Pseudo color images of the compared results. (j) Pseudo color image of
the reference image.

TABLE III
QUALITY MEASURES ON WORLDVIEW-3 DATA SET

The best results are showed in bold.

we use the spectral preservation Dλ, the spatial preservation
DS , and the quality with no reference (QNR) [46] to evaluate
the performances of these methods in real data experiments.

C. QuickBird Data Set Results

QuickBird satellite was launched on October 18, 2001 by
DigitalGlobe. It showed a good performance and offered the
highest resolution at the time it was launched. It has two sensors,
one captures the PAN image at 0.6-m spatial resolution, and the
other sensor captures a 4-band MSI at 2.4-m resolution. It covers
the blue, green, red, and near-infrared band separately.

In this experiment, an MSI of size 2000× 2700× 4 and a
PAN image of size 8000× 10800 are given. Following Wald’s
protocol, we downsample the two images by ratio 4. Then
the downsampled images are used as the LR-MSI and the
PAN image separately and the original MSI is considered as
HR-MSI. Meanwhile, bicubic interpolation algorithm is used
to upsample the LR-MSI to match the PAN image’s size. We
extracted patches from the LR-MSI, PAN image, and HR-MSI
as the input and output of the network. The test LR-MSI has
a pixel size of 64× 64× 4 and the test PAN image has a

pixel size of 256× 256. Fig. 3(a) shows the LR-MSI of the
test image in QuickBird data set and the PAN image is shown
in Fig. 3(b). The captured scene contains a lot of buildings
and seldom homogeneous regions exist. Fig. 3(c)–(i) shows
the pseudo color images of the fused results by the compared
methods and the reference pseudo color image is shown in
Fig. 3(j). It can be observed that there are spatial distortions
in the GS, ATWT, AIHS, and SparseFI methods. Deep learning
based methods (PNN, MSDCNN, and CMC) can preserve the
spatial structures well. Table I shows all the quality measures for
the compared methods on the test image. It also demonstrates
that the deep learning-based methods perform better than the
traditional methods. Among the deep learning-based methods,
PNN and MSDCNN achieve similar quality measures and the
proposed CMC method outperforms the other methods. This in-
dicates that the introduced CMC is efficient for pan-sharpening.

D. WorldView-2 Data Set Results

The WorldView-2 data set was collected by the WorldView-2
satellite. The satellite was successfully launched in October
2009. It runs on a 770-km-high sun-synchronous orbit with a
full-color channel and four multispectral channels. The multi-
spectral channel has the same band as the four bands in the
QuickBird satellite. The PAN image obtained by the full-color
channel has a spatial resolution of 0.5 m and the MSI has a
spatial resolution of 1.8 m.

In the training process, the MSI intercepted in the training
data has a pixel size of 1000× 2000× 4, and the PAN image
has a pixel size of 4000× 8000. The test LR-MSI has a pixel
size of 64× 64× 4 and the test PAN image has a pixel size of
256× 256. In this experiment, the captured scene contains the
city of Washington, including buildings and green vegetation.
Table II shows the quality measures of all the compared methods
on the WorldView-2 data set. Our proposed method achieves
the best results in all quality measures. In Fig. 4, spatial and
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Fig. 6. Visual results of the real data set. (a) LR-MSI. (b) PAN image. (c)–(i) Pseudo color images of the compared results. (j) Pseudo color image of the reference
image.

spectral distortions can be observed in the traditional methods
especially in SparseFI. On the contrary, deep-learning-based
methods produce images that are very similar to the reference
image. The image generated by the proposed CMC method has
seldom differences with the reference image.

E. WorldView-3 Data Set Results

The WorldView-3 data set was collected by the WorldView-3
satellite which was launched by DigitalGlobe in the United

States in August 2014. It runs on a 617-km-high sun-
synchronous orbit and is the world’s highest resolution optical
commercial satellite. It also contains a full-color channel and
four multispectral channels. The multispectral channels are the
same with the QuickBird and WorldView-2 data sets. The spatial
resolution of the PAN image is 0.31 m and the spatial resolution
of MSI is 1.24 m.

In this experiment, images of the Rio city are used and
the size of the MSI used in the training data has a pixel
size of 1200× 1200× 4. The PAN image has a pixel size of
4800× 4800. The captured scene is composed of buildings,
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TABLE IV
QUALITY MEASURES ON REAL DATA SET

The best results are showed in bold.

roads, and grass. Fig. 5 shows the fused results of all the
compared methods. The numerical results of all the compared
methods and the proposed method are shown in Table III. Our
proposed CMC method performs the best in all the quality
measures except for SAM. MSDCNN is 0.0017 lower than our
method in SAM. Although our method is not the best in spectral
preservation, the proposed method gives a robust improvement
in spatial structural preservation in the WorldView-3 data set.

F. Real Data Set Results

In the real data set experiment, we extract a LR-MSI of size
64× 64× 4 from the QuickBird data set. Then the correspond-
ing PAN image has a pixel size of 256× 256. The fused HR-MSI
is 256× 256× 4. The QNR, Dλ, and DS of all the compared
methods on the real data set are shown in Table IV. Note that these
quality measurements only measure the similarities between the
fused image and the low-resolution observation, not the real
fidelity at the real resolution. So these quality measurements
cannot be the only criteria.

From Table IV, we can see that the proposed CMC method
is the best in QNR measurement and the second best in spatial
preservation DS . In spectral preservation Dλ, AIHS and GS
are better than the proposed method. Fig. 6 shows the fused
results of the compared methods. We can see that the results of
GS, ATWT, and SparseFI are blurry. The deep learning-based
methods have sharp edges and the proposed method contains
less noise than the other deep learning methods. This indicates
that the proposed method can successfully recover the HR-MSI
in real data pan-sharpening.

G. Parameter Analysis

Multiscale feature extraction is the key step in the proposed
method. Thus, the kernel sizes Wm and Wp are very important
and we analyze the impact of the two parameters. In the proposed
method, Wm should be larger than Wp. Since we want to map
the PAN image and MSI into the same spatial scale, the ratio
between Wm and Wp is a key factor to our method. Therefore,
we fix Wp to the commonly used kernel size 3 and change Wm

among {7, 9, 11}. To compare the effect of different Wm, we
plot the training loss along the iteration number in differentWm.
Fig. 7 shows the comparison results. It can be seen that the loss
decreases the fastest whenWm = 9 and the loss values of curves

Fig. 7. Training loss versus iteration number with different Wm on the
QuickBird data set.

TABLE V
TRAINING TIME FOR DEEP LEARNING METHODS

Wm = 7, 9 are the lowest when iteration number equals 5000.
Thus, we set Wm = 9,Wp = 3 in our experiments.

H. Training Time Analysis

In this section, we will analyze the training time of the pro-
posed method. We compare our method with other deep learning
based pan-sharpening methods. In the test process, it costs less
than 5 s to fuse the input LR-MSI and PAN image and little
difference can be observed between these deep learning-based
methods. So we only show the training time for PNN, MSDCNN,
and the proposed method in Table V. It can be observed that PNN
is the fastest due to its simple net architecture. The proposed
CMC method is faster than MSDCNN. With the introduced
multiscale asymmetric convolution factorization method, the
number of parameters in the network is smaller; so the training
time is decreased. Meanwhile, the performances of the proposed
method are improved. This means the CMC is effective and
efficient for pan-sharpening.

V. CONCLUSION

In this article, a two-stream deep learning architecture is
proposed for pan-sharpening. The proposed network is com-
posed of feature extraction subnetworks, fusion layer, and super-
resolution subnetwork. In the feature extraction subnetworks,
two separated subnetworks are used to extract features of the
MSI and the PAN image separately. Based on the observation
that the MSI and the PAN image have different spatial resolu-
tions, different sizes of convolutional kernels are used to match
the scale of the two source images in the first layer. A multiscale
asymmetric convolution factorization method is proposed to
extract multiscale features. Then, the two feature extraction
subnetworks are coupled in the fusion layer. Features of the
same scale are first summed and then features of all scales are
concatenated as one feature map. Finally, the super-resolution
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subnetwork enlarges the feature to the desired resolution and
channels. Experimental results on both synthetic and real data
sets show that our method performs better than other state-of-
the-art pan-sharpening methods.

In future, we will use the multiscale CNN to learn the deep
priors and combine the learnt deep priors with the variational
model.
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