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Soil Moisture Monitoring of the Plant Root Zone by
Using Phenology as Context in Remote Sensing
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Abstract—In this study, the phenological behavior and energy
balance of plants are used as a sensory mechanism for root-zone soil
moisture monitoring using both in-situ and satellite remote sensing
data. The commonly used in-situ measurements are not feasible
for mapping soil moisture at large-scale agricultural areas. Local
direct root-zone soil moisture measurements cannot be reliably
interpolated owing to the high spatial variability of soil structure
and the vegetative content. Remote sensing methods are negatively
affected by vegetation coverage and density regarding penetration
and backscattering characteristics. In order to overcome these
limitations, we propose a root-zone soil moisture estimation method
utilizing a context-aware data clustering process, which can be
applied prior to any statistical analysis, for empirical evaluation
of data. In this aspect, the crops’ phenological stages and soil–air
temperature differences are defined as the two contexts for data
clustering. Parameters such as canopy–air temperature difference,
land surface temperature, and solar radiation with respect to plant
energy and water processes are used for the analysis. The proposed
model is utilized using piecewise linear regression of data obtained
from 16 rainfed wheat parcels distributed across Turkey, under
different climatic and topographic conditions. It is shown that the
proposed context-aware data clustering process enables the nonlin-
ear plant behavior to be analyzed linearly. The correlation value of
the whole season increased from 21% to a range between 78% and
95% for different clusters. The outliers became relevant and the
parameters became significant after the proposed context-aware
data clustering.

Index Terms—Land surface temperature (LST), piecewise linear
regression, plant phenology, remote sensing, soil moisture.

I. INTRODUCTION

THE retrieval of reliable root-zone soil moisture data has
been challenging because of the nonlinear relationship

between surface moisture and root-zone soil moisture and its
spatial variability [1]. Although yield efficiency and water man-
agement in agricultural areas are directly related to root-zone
soil moisture on the basis of phenological stage (PS), remote
sensing methods are generally used for measuring near-surface
soil moisture. The aim of this study was to demonstrate the
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efficiency of PS and soil–air temperature difference as a context
for estimating the soil moisture based on the remote sensing of
plants with known characteristics.

Soil moisture plays a vital role in the surface water cycle.
It is the link in the water exchange process between the land
surface and atmosphere and is a reflection of the groundwater
status [2]. Because water is crucial for crop development, the
ability to estimate and map soil moisture is important for agri-
cultural applications of precision agriculture and sustainability,
such as irrigation scheduling and basin water management.
Moreover, soil moisture has a significant effect on crop yield
estimation [3].

Soil moisture is affected by soil texture, topography, land
cover, and climate. Therefore, soil moisture content varies both
in space and time. There is a physical relationship based on diffu-
sion processes between the surface and root-zone soil moisture
[4]. Conventional in-situ soil moisture estimation methods are
based on single-point observations of a specific location, repre-
senting a small area around the sensor [5], [6]. This point-based
approach is poor for estimating soil moisture of large-scale areas
owing to heterogeneity [7]. Moreover, it is not economically fea-
sible to establish dense networks of agrometeorological stations.
The extrapolation of single-point observations to larger scales
is also time-consuming, complex, and expensive, especially for
heterogeneous regions [8].

Advanced remote sensing technology can be used to esti-
mate soil moisture at large and regional scales. Remote sensing
methodologies that are used for estimating soil moisture are
mainly grouped based on the focused electromagnetic spectrum
regions; these are mainly optical and thermal methodologies,
microwave methodologies, and synergistic approaches [9]. Op-
tical and thermal methodologies are based on the relationship
between soil moisture and soil reflectivity or surface temperature
and soil thermal properties [10], [11]. Studies of soil moisture
and reflection in different soil types have shown that increased
water content reduces reflection in a nonlinear relationship [13],
[14]. Vegetation growth is sensitive to water stress because
drought or dry soil conditions affect the growth.

Therefore, another approach to retrieve soil moisture data is
the use of vegetation indexes, such as the normalized difference
vegetation index (NDVI) and the enhanced vegetation index
(EVI) [15]. A wide variety of drought indices have been devel-
oped based on vegetation indices with different contexts. Kogan
[16] proposed the vegetation condition index to remove the
weather and spatial differences from NDVI by using statistical
NDVI time-series data. The normalized difference water index
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(NDWI), which is not sensitive to atmospheric conditions, has
been proposed based on the relationship between different water
absorption bands [17]. Lie et al. improved NDWI by increasing
the sensitivity and achieving a quick response to changes by
utilizing a normalized multiband drought index (NMDI) [18].
Similarly, it has been shown that soil thermal properties and
surface temperature variations show strong correlation with soil
moisture. Different thermal infrared methodologies based on
thermal inertia and temperature indexes have been proposed
based on the thermal properties of land cover in the thermal
infrared band [19], [20]. Based on the soil moisture and its effects
on evapotranspiration, the crop water stress index (CWSI) was
proposed by Idso et al. [21]. The CWSI method has higher
precision over vegetated surfaces because it is based on a single
canopy energy balance model.

Passive and active microwave methodologies are based on
the backscatter and emission properties of soil influenced by soil
texture, surface roughness, and vegetation [22], [23]. Changes in
the amount of water content affects the scattering and absorption
behaviors of the target surface owing to the changes in the dielec-
tric properties. Active sensors have the advantage of high spatial
resolution with lower soil moisture sensitivity, whereas passive
sensors have higher soil moisture accuracy with coarse spatial
resolution. Synergistic methods have been developed to decrease
the deficiencies of different methods by combining different
approaches, resulting in increased sensitivity to soil moisture.
Optical and thermal data, active and passive microwave data,
and active microwave and optical data are predominantly used
as synergistic methods [9].

Moreover, global satellite-based soil moisture datasets have
been collated, which started with the publication of the first
global multiannual dataset derived from the European Re-
mote Sensing (ERS) Satellites ERS-1 and ERS-2 scatterometer
(SCAT) observations in 2003 [25]. Among these are the Ad-
vanced SCATterometer (ASCAT) by EUMETSAT [26], the Ad-
vanced Microwave Scanning Radiometer-2 (AMSR-2) by JAXA
[27], Soil Moisture Ocean Salinity (SMOS) by ESA [28], and
Soil Moisture Active Passive (SMAP) by NASA [29]. However,
there are several limitations to these methods and the use of
these datasets [29]. Using methodologies or products based on
the passive microwave region of the spectrum has low spatial res-
olution for small catchments and field-based applications [29],
[30]. On the other hand, optical remote sensing methodologies
have the disadvantages of poor temporal resolution, weather
dependencies, and night-time limitation. Furthermore, as the
plants grow, the variations in the crops’ vegetative status affect
the performance of remote-sensing-based soil moisture moni-
toring [23]. As the level of vegetation cover becomes denser,
it rapidly becomes opaque. Therefore, the reflecting energy no
longer represents the soil but a mixture of soil and vegetation
or entirely vegetation. Even though microwave bands can pen-
etrate vegetation, they are also affected by surface roughness
and vegetation cover density [23], [31]. Vegetation reduces the
backscattering coming from the underlying soil and generates
volume scattering [23].

To overcome spatial resolution limitations, disaggregation of
remote sensing data has been developed for estimating root-zone
soil moisture [32], [33]. Most of the root-zone soil moisture

estimation methodologies are based on extending surface soil
moisture estimations. Basically, data assimilation algorithms
have been established by directly using satellite-driven surface
soil moisture data or global soil moisture datasets [34], [35].
Another research area has focused on the assimilation of disag-
gregated remote sensing data with land surface models or hy-
drological models to enhance root-zone soil moisture estimation
[3], [36]. However, the accuracy of the soil moisture retrieval
methods is highly influenced by the complex input parameters
of both empirical equations and physically-based models.

Even though the access to a wide range of datasets has
become easier, the datasets are usually not adequate for direct
analysis. Therefore, a data refinement process has become a
critical step before any statistical modeling. To the best of
our knowledge, even though clustering has been used within
different soil-moisture-related applications, it has not been used
as a data-refinement technique. Van Arkel and Kaleita used
K-means clustering to identify critical sampling locations for
the field-scale near-surface soil moisture determination [37]. To
characterize soil moisture variation on a steep hill slope, Lee
and Kim used cluster analysis based on Euclidean similarity
between soil moisture time series [38]. Matei et al. proposed
the use of context-related data from easy to access web portals
in addition to the local data provided from weather stations in
real time for soil moisture estimation with an average corre-
lation of 68% [39]. Avram et al. demonstrated the advantages
of context-aware data mining over classical data mining with
a case study on soil moisture prediction [40]. In this study,
we proposed a context-aware clustering process, reflecting the
contextual information within the data itself, to overcome the
limitations mentioned above. Remote sensing data and in-situ
measurements from agrometeorological stations that are easy to
access and can be interpolated for the parcels without stations
were fused based on the plant energy and water processes.

II. PLANT ENERGY AND WATER PROCESSES

There is a constant energy, water, and momentum exchange
between the land surface and the atmosphere. This exchange
is regulated by latent heat (λE) and sensible heat (H). λE is
the heat flux from the surface to the atmosphere and associated
with evapotranspiration. H is the heat energy between the surface
and atmosphere and associated with conduction and convection.
In both cases, the rate of exchange is explained by the driving
force and a transfer coefficient corresponding to conductance.
The efficiency of the transfer is described by the resistances that
are reciprocal to conductance. The driving force of the exchange
is the leaf–air temperature difference for H, whereas for λE, it
is the leaf–air water vapor fraction difference

H = gaH Cp (Tc − Ta) =
(Tc − Ta)

raH
ρCp (1)

where
Tc crop canopy surface temperature (°C);
Ta air temperature (°C);
ρ density of air (kg m-3)
Cp molar specific heat of air (29.3 J·mol−1·K−1);
gaH boundary layer conductance (mol·m−2·s−1);
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raH corresponding resistance (m2·s·mol−1);

λE =

(
ec(Tc) − ea

)
raW + rcW

ρCp

γ
(2)

in which
ec(Tc) saturated water pressure at given crop surface temper-

ature (kPa);
ea air vapor pressure (kPa);
raW aerodynamic resistance to vapor transport (s·m−1);
rcW crop canopy resistance to vapor transport (s·m−1);
γ psychrometer constant (kPa°C−1).

Penman approximation can be used to replace the surface–air
vapor pressure difference by vapor deficit of the ambient air and
a term of surface temperature difference within the latent heat
equation [41](

ec(Tc) − ea
)
=

(
ec(Ta) − ea

) − S (Ta − Tc)

= D + S (Tc − Ta) (3)

where (ec(Ta) − ea) = D shows the vapor pressure deficit of
the ambient air and S is the slope of the saturated vapor pressure
temperature relation.

These fluxes must be in balance with the incoming radiation
(Rn), both in short-wave and long-wave ranges, where the ex-
cess energy gives the rate of energy storage. M is the rate of
metabolic storage representing the metabolic reactions, such as
photosynthesis and respiration, and S is the net physical storage.
When the whole canopy is considered, rather than a leaf, M and
S can be neglected

Rn −H − λE = M + S. (4)

Using the energy balance equation, the relation between the
crop canopy surface temperature and the air temperature can be
written as follows [42]

Tc − Ta =
raH (raW + rc) γRn

ρCp [γ (raW + rcW ) + SraH ]

− raHD

γ (raW + rcW ) + SraH
. (5)

The following assumptions were made in (5). S was calculated
at the temperature (Tc+Ta)/2 and it was assumed that S was
constant within each (Tc−Ta) temperature interval. The second
assumption was that the net incoming radiation is not affected by
leaf conditions even though it is a function of leaf temperature.
It is shown that the canopy surface temperature is a function
of air temperature (Ta), humidity, wind speed, and absorbed
net radiation (Rn). Therefore, excess leaf temperature can be
expressed with two terms based on net radiation and vapor
pressure deficit, a parameter of evapotranspiration. The energy
balance relation showing these parameters using a short-circuit
analogy is used to establish the contextual model for root-zone
soil moisture monitoring (see Fig. 1).

Crop temperature (Tc) is an important indicator of the health
of plants. The main determinant of leaf temperature is the rate
of evapotranspiration from the leaf [43]. Plants need root-zone
soil moisture to meet their evapotranspiration needs. If soil

Fig. 1. Plants energy balance circuit with the effecting parameters used for
simulation.

Fig. 2. Simplified representation of crop surface and aerodynamic resistances
for hydraulic flow and heat transfer together with the parameters of reference
soil moisture at 15- and 45-cm depth, atmospheric temperature at 2 m, LST, soil
temperature at 10-cm depth, which are used for contextual model building.

moisture is available, plants can balance their temperature by
evapotranspiration. The cooling mechanism uses the energy of
latent heat to convert liquid water to water vapor, hence soil
moisture is taken away from the plant in the form of evaporating
water. If there is deficiency in soil moisture, the plant produces
chemical and hydraulic signals that trigger physiological re-
sponses, such as stomatal closure, reduction in photosynthesis
rate, reduction in evapotranspiration causing leaf area reduction,
stunted growth, and wilting [44]. Soil moisture deficiency affects
the crops’ development because of the resulting reduced biomass
and quality. Therefore, the contexts for the data clustering and
the input parameters of the estimation model are defined with
regard to these water and energy transfers. A simplified repre-
sentation of the setup used in this study is given in Fig 2.
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Fig. 3. Context-aware clustering approach for root-zone soil moisture
estimation.

III. CONTEXT-AWARE CLUSTERS

The advancement of technology and the large number of
datasets collected by the monitoring of various parameters all
over the world allows access to a higher amount of in-situ
measurements with higher spatial and temporal resolution. The
main idea of context-aware data clustering is to fuse this data
from various sources with remote sensing data and produce
valuable information that cannot be obtained from only one
data source. A context-aware data clustering process enables
the data to be significant within the defined contexts within the
aim of the application. To establish an efficient context-aware
estimation model, a specified plant with known PS transition
dates, whether derived from in-situ or satellite measurements,
should be determined with regard to the aim of the agricultural
application. In this study, we fused in-situ measurements of
selected winter wheat parcels and their PS transition dates with
satellite-imagery-driven parameters to monitor root-zone soil
moisture (see Fig. 3).

A. Phenology

Phenology is the timing of the biological events in plants,
from sowing to maturity. Plants’ climatic and chemical needs
and behavior differ at each PS. These variations are the main
reason for nonlinearity in plant development and life cycle.
Nonetheless, each PS represents a different logical state of this
nonlinear system that switches between linear models [45]. In
other words, a plant’s behavior within each separate PS can be
considered as linear.

Leaf area index (LAI), the percentage of soil covered with
green leaf, increases as the plant grows. Increased LAI is one
of the main problems of remote-sensing-based soil moisture
estimation. The reflecting energy begins to represent not just
soil, but a mixture of soil and vegetation or just vegetation
itself. To overcome this issue of increasing vegetation, the PSs
of winter wheat, based on FAO guidelines, were defined as the
primary context (see Fig. 4) [46]. Up to PS3, when there is more
bare soil than green vegetation, soil moisture can be directly
associated with the input data. However, in PS4, PS5, and PS6,
the context-aware data clustering approach for root-zone soil
moisture estimation is expected to be more efficient. On the other
hand, at the maturity stage until harvest, it will be negatively

affected by wilting. However, soil moisture at this stage is not
essential for agricultural water management.

B. Soil–Air Temperature Difference

The soil–air temperature difference is evaluated using refer-
ence in-situ measurements and defined as the secondary context.
To examine the climatic differences and their effects on the
crop PS, the selected parcels were grouped into two, based on
their latitudes: 37.0°N and 40.0°N. The daily variations in the
10-cm depth soil (Ts), 2-m air temperatures (Ta), and (Ts−Ta)
were analyzed for a year covering the 2016–2017 winter wheat
production season (see Fig. 5).

In summertime, the air temperature is expected to be higher
than the near-surface soil temperature, whereas the opposite is
expected in wintertime. As expected, the soil and air temperature
difference (Ts-Ta) was positive for winter and negative for sum-
mer, with transitional periods corresponding to fall and spring.
In addition, the average of each parcel’s daily (Ts−Ta) values
at the time of Landsat satellite passes was calculated for each
latitude. To analyze the influence of different climatic conditions
on crop growth, the average sowing and PS transition dates of
the related parcels were used for interpretation (see Fig. 6). For
visualization purposes, the five-day moving average values of
the average (Ts–Ta) were used in the graph.

The graphs revealed latitude, and hence climate-related PS
and seasonality differences. The average sowing times were
relatively earlier with a longer seasonal period for the parcels at
40.0°N latitude. A notable difference between the phenological
phase durations was observed. The dormancy phase was longer
at 40.0°N latitude owing to relatively lower temperatures and
snowfall in the wintertime. At a higher latitude, significantly
shorter PS durations follow the longer dormancy phase. Also,
the average harvesting time was earlier for the parcels closer to
37.0°N latitude. It is apparent from the graphs that there was
a transition period especially corresponding to PS4 and PS5.
Moreover, the transition from winter to summer corresponded
to the anthesis stage (PS6).

IV. STUDY AREA

Turkey is located on both the Europe and Asia continents
in the Mediterranean climate zone (see Fig. 7). The climatic
conditions throughout the country changes from one region to
another owing to diverse landscapes. In general, coastal regions
have a milder climate, where the summers are hot and dry and
the winters are mild and wet. On the Mediterranean and Aegean
coasts, the annual precipitation varies from 580 to 1300 mm
[47]. The coastal Black Sea region has a temperate climate
with the highest annual precipitation rate reaching 2200 mm
in the eastern parts. On the other hand, the inland regions have a
mostly continental climate with extremes of high temperatures
in summer and harsh winters with limited rainfall. In total, 65%
of the land is arid and semiarid.

Wheat is the most widely grown cereal in Turkey. Turkey is
home to 23 species of wild wheat and more than 400 cultivated
wheat varieties [48]. Regardless of the irregular topography and
various climates, it is possible to produce winter wheat in almost
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Fig. 4. Series of winter wheat images showing PSs acquired from a TARBIL station.

Fig. 5. Ta, Ts, and Ts–Ta graph of station 02.06.

every region. Taking into consideration its economic impor-
tance, we chose winter wheat for the root-zone soil moisture
monitoring. Throughout Turkey, 16 rainfed winter wheat parcels
that reflect the versatility of climatic conditions and soil types
are used as reference parcels (see Fig. 7).

V. DATA USED AND PARAMETERS

In-situ measurements of the selected 16 parcels were acquired
from agrometeorological stations that are part of Istanbul Tech-
nical University—Agricultural and Environmental Informatics

Fig. 6. Daily (Ts–Ta) average of the selected winter wheat parcels grouped
by their latitude (a) 37.0°N and (b) 40.0°N along with the average PS transition
days and the corresponding day after sowing values.
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TABLE I
IN-SITU MEASURED AND CALCULATED PARAMETERS

Fig. 7. Projection of 16 TARBIL agrometeorological stations covered by 6
Landsat tiles.

and Applied Research Center’s (TARBIL’s) observation network
(see Fig. 7). Every TARBIL monitoring station is equipped
with 35 sensors capable of atmospheric, soil, and phenological
measurements, with a sampling rate of 10–30 min. All the in-situ
measurements that were sampled at the time of satellite passes
were used in the analysis unless otherwise stated.

Atmospheric temperature (°C) at 2 m and solar radiation
(W/m2) was used within the model, whereas soil moisture (cbar)
at depths of 15 and 45 cm and soil temperature (°C) at 10 cm
depth were used as reference parameters (see Table I). Soil
moisture at 30 cm depth (SM30), defined as the corresponding
root zone of winter wheat, was calculated as the mean value of
SM15 and SM45. SM30 was used as a reference parameter for
the estimation model.

Tensiometric soil moisture measurements were used instead
of volumetric measurements because the physical force that
actually holds the water in the soil is more important than the
percentage of water in a given amount of soil for agricultural
applications, especially for irrigation purposes. Tensiometric
soil moisture values varied from 0 to 200 cbar (see Table II).

TABLE II
INTERPRETATION OF TENSIOMETRIC SOIL MOISTURE READINGS

Lower values indicate saturated wet water, whereas higher val-
ues indicate the need for irrigation based on soil type.

The thermal regime of the growing season is one factor that
determines the development of plants [49]. Days warmer than
the normal advance the growth, whereas days cooler than normal
slow the growth. Therefore, besides measuring the in-situ param-
eters, supplementary input parameters devoted to the thermal
regime of the plant were calculated using Ta and solar radiance
(SR) (see Table I). Among them, the growing daily degree day
(GDD) represents the heat value assigned to each day and is
calculated as

Tmax + Tmin

2
− Tbmin (6)

where Tmin and Tmax represent the daily minimum and max-
imum temperatures, and Tbmin is the base temperature below
which plant development stops for a selected plant. In this study,
the base temperature was set to 5 °C and the minimum and
maximum values of the last 24 h were used for the calculations.
This approach allowed GDD to reflect the thermal time of the
plant over the last 24 h instead of a calendar day. To examine the
weekly thermal time influence on the root-zone soil moisture,
7-day GDD was also calculated for the statistical analysis using
the same approach.
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TABLE III
LANDSAT DATA AND CORRESPONDING STATIONS

Parcel-based PS transition dates from sowing to harvesting
were also provided within the TARBIL project. These dates were
computed by a semiautomated image processing software using
the crop and geographical-location-based averages; suspicious
data were visually controlled by operators [50].

In-situ parameters were used together with the satellite
imagery-driven parameters. The evaluation of remote-sensing-
based soil moisture retrieval has shown that high-resolution
satellite imagery does not correlate with a significant im-
provement in the predicting power compared with moderate-
resolution satellite imagery [51]. The Landsat archive is the
longest continuously acquired, moderate-resolution satellite im-
agery archive, which is also free of charge since 2008. Landsat 7
and Landsat 8 satellites Collection-1 Level-1 images were used
together, enabling an 8-day temporal resolution. The images
used in the analysis were tier-1 images, which assured the highest
data quality and suitability for time-series analysis. In total, 16
reference parcels were covered with 6 Landsat tiles (see Fig. 7
and Table III).

The satellite images, including the brightness temperature,
pixel quality, and spectral indices of NDVI, and NDMI bands
were downloaded using the ESPA (EROS Science Processing
Architecture) interface. Taking into consideration the soil mois-
ture effect on the crops’ biomass, 8-day and 16-day interval
NDVI changes were computed (see Table IV). Furthermore, as
a representation of crop canopy surface temperature (Tc), the
8-day interval land surface temperature (LST) was calculated

TABLE IV
REMOTE SENSING DRIVEN MODEL INPUT PARAMETERS

using satellite imagery, where possible owing to weather condi-
tions.

A specified pixel was assigned to each reference parcel. The
selection was based on the images taken by the cameras mounted
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Fig. 8. Landsat-8 NDVI image of March 25, 2017 showing the general location
of TARBIL stations around latitude 37.0°N and NDVI graph of Parcel-857,
observed from station 02.06, from sowing to harvest.

TABLE V
PARAMETERS ANALYZED FOR MODEL DEVELOPMENT WITH

RESPECT TO THEIR ORIGIN

on TARBIL stations to maintain homogeneity. Pixel-based re-
mote sensing parameters were calculated and extracted, and a
dataset was constructed by only using clear pixels based on the
pixel quality band (see Fig. 8).

To evaluate the relationships and construct the proposed
model, hybrid parameters were generated by combining remote
sensing and in-situ parameters considering the plant energy
balance and water processes. As a result, the final dataset was
a combination of all the parameters given in Table V, based on
the measurements on the days of clear pixel satellite passes.

Fig. 9. Landsat 8 imagery showing (a) vegetation proportion, (b) emissivity,
(c) brightness temperature, and (d) LST of station 46.04 and the surrounding
area.

A. LST Retrieval

Landsat 7 ETM+Thermal Infrared band (10.4–12.42μm) and
Landsat 8 TIRS band 10 (10.6–11.2 μm) were used for the com-
putation of LST from Landsat images. Emissivity-corrected LST
was computed using the brightness temperature downloaded
from the ESPA website (see Fig. 9) [52]

TB

1 +
(
λ × TB/p

)
× ln (ε)

(7)

where
TB brightness temperature (K);
λ wavelength of the emitted radiance;
p = h × c / s (p = 1.438 × 10−2 mK);

h Planck’s constant (6.626 × 10−34 J·s);
s Boltzmann constant (1.38 × 10−23 J/K);
c velocity of light (2.998 × 108 m/s);

ε emissivity.

Emissivity values were computed based on the NDVI method
considering three different conditions, which were only soil,
full vegetation cover, and a mixture of both. The proportion of
vegetation (Pv) was used for stating these three conditions [53].
NDVImin corresponds to the soil that is in a nonvegetative state,
which is set as NDVI value of 0.2, and NDVImax represents the
fully vegetated state, with an NDVI value set as 0.5

Pv =

(
NDVI−NDVImin

NDVImax −NDVImin

)2

. (8)

Emissivities for Landsat 7 and Landsat 8 images were calcu-
lated separately based on Pv (see Table VI and Fig. 9).

VI. CONTEXT-AWARE DATA CLUSTERING AND ANALYSIS

We analyzed the descriptive statistics of each parameter for the
timespan from sowing to harvest as one dataset. The parameters’
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TABLE VI
EMISSIVITY CALCULATION FOR LANDSAT 7 AND LANDSAT 8 IMAGES

Fig. 10. Correlation of parameters with SM30 for the whole growing season.

correlations with SM30 were evaluated within the descriptive
analysis. None of the parameters had a standalone significant
correlation with SM30 (see Fig. 10). Piecewise linear regression
was utilized to analyze the relationship between the parameters
and SM30. The parameter selection procedure, which is carried
out in all piecewise linear regression analysis, was demonstrated
using the whole growing season dataset. Regarding the corre-
lation graph given in Fig. 10, LST2 had the highest absolute
correlation value of 0.41. LST2 was chosen as the primary
parameter of regression. The selection of the second parameter
depends on both the correlation rate to SM30 and its weakness
of covariance with the primary parameter, LST2. A statistical
significance value of S is defined as [45]

S = max

{
ABS

[
R2 (EP, x)

cor (PP, x)

]}
(9)

where EP and PP represent the estimation parameter and primary
parameter, respectively. The significance values of the parame-
ters with respect to SM30 as the estimation parameter and LST2

as the primary parameter are given in Fig. 11.
Δ-NDVI1 and Δ-NDVI2 had the highest values and were

selected as the second and third parameters, respectively, based
on the maximum S values. When the regression analysis of the
selected two and three parameters were examined, R2 was still
not significant enough for the estimation of SM30 and adding
more parameters to the regression analysis did not increase the
performance (see Fig 12 and Table VII).

The absence of a nonlinearity context, even though the pa-
rameters were chosen to reflect the nonlinearity, affect the per-
formance of the estimation model. Therefore, we used context-
aware data clustering, with the phenology context, to represent
the overall nonlinear model with piecewise linear models.

The same dataset was clustered into seven clusters using the
PS of each reference parcel as context. For every cluster, the
relation of the parameters to SM30 was analyzed. Each parameter

Fig. 11. Significance values of parameters with respect to SM30.

Fig. 12. Trendline of linear regression when (a) two and (b) three parameters
with the highest correlation and minimum covariance were used.

TABLE VII
R2 VALUES FOR THE WHOLE SEASON ANALYSIS BEFORE

CONTEXT-AWARE DATA CLUSTERING

had different characteristics based on the PS analyzed. PS-based
correlation variations of some selected parameters are given
in Fig 13; note that the soil moisture values in the graphs are
tensiometric values. The lower soil moisture values indicate
adequate wetness and saturation, whereas the higher values
imply dry soil conditions with possible plant stress.

Clearly, a parameter can have minimum correlation in one PS
and maximum correlation in another PS. In the first phenological
phases, the soil moisture can be directly estimated from the
soil-based variabilities. For example, 1/SR has one of the highest
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Fig. 13. Correlation of selected parameters with SM30. (a) NDVI. (b) NDMI.
(c) LST (˚C). (d) Ta-24 h. (e) (LST-Ta). (f) (1/SR).

correlation values for the first PS. In these stages, SR is directly
interacting with the soil. As the vegetative part of the plant
grows and prevents the direct estimation of the soil moisture, the
correlation decreases. This implies that a higher SR decreases
soil moisture content, as expected.

As the plant grows, the vegetative coverage of the soil surface
increases, and it becomes impossible to use only soil-based
parameters. However, other parameters, such as Ta24 h, become
dominant over soil-based ones for the estimation of root-zone
soil moisture. In the last stages, the vegetative characteristics of
the crop changes and the dominance of the parameters change
accordingly.

As discussed in Section III-B, PS4 and PS5 correspond to
transition periods showing both winter and summer charac-
teristics at the higher latitudes because of climate variances.
Therefore, PS3, PS4, and PS5 were clustered again using the
soil–air temperature context for the [(Ts−Ta) > +1 ˚C] values
for further analysis.

VII. RESULTS

As highlighted in the analysis section, the nonlinearity of a
plant’s growing period is one of the main difficulties associ-
ated with estimating soil moisture. Therefore, the dataset was
clustered using the phenology context. When PS clusters were
evaluated, the R2 values became significant enough for soil mois-
ture analysis, with an average R2 value of 0.84 (see Table VIII).
Although the parameters did not have significant correlation
values considering the whole growing season, they may become
significant within the context. This enabled the linear evaluation
of a nonlinear system. Furthermore, these findings confirmed
that the heat and mass transfer by convection or conduction was
predominantly driven by sensible heat components of SR and
LST, especially in the first and the last phenological phases.

TABLE VIII
R2 VALUES WITH RESPECT TO SM30 AFTER DATA CLUSTERING BASED ON

PHENOLOGICAL CONTEXT

TABLE IX
R2 VALUES OF GROUPED PSS WITH RESPECT TO SM30

Fig. 14. Linear regression trendline of clusters where phenological stage is
the context: Phenological Stage (a) 1 and 2 (PS1–2), (b) 3 (PS3), (c) 4 (PS4),
(d) 5 (PS5), and (e) 6 and 7 (PS6–7).

In the first phenological phases, the parameters that correspond
with the direct interaction with soil were more adequate. As
plants grow, evapotranspiration and the cooling effect demon-
strated a significant influence, as represented with the (LST-Ta)
parameter.

The dataset was clustered once more using the PS context.
This time, PSs with similar characteristic responses to soil
moisture content were clustered together. Two new clusters were
defined: PS1 and PS2 (PS1–2) as one cluster and PS6 and PS7
(PS6–7) as another cluster.

Less dependent parameters were needed when combinations
of PSs were used as clusters. Also, the R2 values of 0.91% and
80% were still significant enough for soil moisture estimation
considering different climatic conditions (see Table IX and
Fig. 14).
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TABLE X
R2 VALUES OF STAGES AFTER (Ts–Ta) CONTEXT CLUSTERING WITH

RESPECT TO SM30

Fig. 15. Trendline of linear regression for (Ts–Ta) context clustering of PSs
(a) 3 (PS3), (b) 4 (PS4), and (c) 5 (PS5).

The (Ts–Ta) analysis in Section III-B showed that the most
complex PSs were PS3, PS4, and PS5. This complexity can be
explained by the fact that the reflecting energy is a representa-
tion of both soil and vegetation with different percentages and
increasing density of vegetation. Furthermore, the difference in
climatic and topographic conditions increases this complexity.
Therefore, the (Ts–Ta) context is used as a second context
to cluster the PS3, PS4, and PS5 clusters once more. Further
statistical tests revealed a performance improvement for PS3 and
PS5. Although the findings show a decrease in the performance
of PS4, with 78% R2, it was still significant under the variability
of the topographic and climatic conditions (see Table X and
Fig. 15). These R2 values were also shown to be possible
using only one dependent parameter with the application of a
second context-aware data clustering process. As shown, NDVI
becomes significant as the LAI increases and the reflectance only
represent the vegetation instead of soil. Moreover, the influence
of LST and SR-based parameters on soil moisture based on the
plant energy and water processes can be investigated from the
equations.

The overall R2 values of the clusters varied between 78% and
95%. When each cluster’s regression statistics were examined,
the highest “significance F” value was 0.003, indicating that
the results were statistically significant. The p-values of each
parameter together with the intercepts were less than 0.07. Matei
et al. [39] proposed a data mining system using agrometeo-
rological data from weather stations to estimate real-time soil
moisture. In their proposed system, the average accuracies of
various machine learning algorithms were 68%. Pradhan [54]
proposed a method for growing season root-zone soil moisture
using satellite-driven vegetation indices and physical properties

of soil moisture without the need for in-situ measurements with
an average R2 of 72%.

The context-aware data clustering approach can be used to
explain a nonlinear system with piecewise linearity. While per-
forming statistical analysis, the outliers of the nonlinear system
became relevant within the context. As a result, even though the
performance of a system is expected to decline with a decreasing
number of training samples, the context-aware data clustering
was shown to boost performance.

VIII. CONCLUSION

In this study, plants were used as a sensory mechanism for
defining data clustering contexts based on phenology and soil–
air temperature difference for reliable root-zone soil moisture
retrieval in large-scale areas. Reference soil moisture and soil
temperature data were only used for the model development,
whereas the constituted model was formed by using in-situ
measurements of solar radiation and atmospheric temperature
with remote sensing parameters of NDVI, NDMI, and LST.
Importantly, root-zone soil moisture at 30-cm depth was mod-
eled without using soil structure and characteristics data for
large-scale agricultural areas.

The performance of the proposed model was evaluated by
using 16 rainfed winter wheat parcels distributed at different
locations in Turkey. Wide-spread distribution of the parcels high-
lighted the convenience of the model under different climatic and
soil conditions.

No significant correlation was found between the parameters
and root-zone soil moisture before context-aware data cluster-
ing. Hence, the correlation of linear regression was only 21%.
Thereafter, phenological-stage-based clusters demonstrated a
significant performance improvement with 80% to 93% co-
efficient of determination. In light of these observations, we
confirmed that clustering using PSs enables linear analysis and
can be used as a solution for modeling the nonlinear character
of a plant’s life cycle. The study has also shown that it is
possible to group PSs based on their characteristics without any
performance loss.

A secondary data clustering context, the soil–air temperature
difference, was proposed for phenological clusters that are af-
fected by different vegetation density percentages and winter–
summer transition temperatures. Further analysis performed on
the PS3, PS4, and PS5 demonstrated a general improvement up
to 95% coefficient of determination. Chronological timing of the
biological systems is not the same every year. As a result, the
PSs of agricultural products shift. This is mostly owing to the
change in the seasons and the climatic conditions resulting in
variations in the atmosphere and soil temperatures. The analysis
provided an insight into this potential change from year to year
by defining a context out of it.

The calculation of both contexts was possible using remote
sensing techniques. After analyzing the time-series dataset as
a whole, each cluster was analyzed individually. Usually, the
reduced number of training samples is expected to have a neg-
ative impact on the performance of the estimation model as a
result of clustering. In this case, including a context-aware data
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clustering step before an estimation model enhanced the model’s
performance. The context-aware data clustering allows the use
of piecewise linear regression analysis within clusters, as the
defined contexts explain the time variance. Therefore, the model
was obtained using the piecewise linear regression analysis. The
proposed method is applicable for different agricultural appli-
cations using various estimation techniques, including machine
learning, owing to the nature of context awareness.

Cloud cover can negatively affect passive remote sensing sys-
tems in springtime, which can also affect the number of sampling
days and the continuity of the data. Another drawback of the
proposed model is the time delay between the root-zone soil
moisture level and vegetation moisture level and the time delay
of observing theses effects with remote sensing technologies. We
plan to compensate for this by performing a time-series analysis
of wavelet coefficients of the identified parameters in the next
phase of this study. We also intend to perform a performance
comparison by implementing a machine-learning-based estima-
tion model in a future study. The data used in this study only
cover one growing season of a particular crop type. The effect
of using data from more than one season and the performance
of the model when more crop types are introduced to the model
are also planned for future studies.
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