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Improved Mapping Results of 10 m Resolution Land
Cover Classification in Guangdong, China
Using Multisource Remote Sensing Data

With Google Earth Engine

Ying Tu"”, Wei Lang

Abstract—Land cover information depicting the complex inter-
actions between human activities and surface change is critically
essential for nature conservation, social management, and sustain-
able development. Recent advances have shown great potentials of
remote sensing data in generating high-resolution land cover maps,
but it remains unclear how different models, data sources, and
inclusive features affect the classification results, which hinders its
applications in regional studies requiring more accurate land cover
data. Informing these issues, here we developed a robust framework
to improve the mapping results of 10 m resolution land cover clas-
sification in Guangdong Province, China using thousands of manu-
ally collected samples, multisource remote sensing data (Sentinel-1,
Sentinel-2, and Luojia-1), machine learning algorithms, and a free
cloud-based platform of Google Earth Engine. Results showed that
an overall accuracy of 86.12 % and a Kappa coefficient of 0.84 could
be achieved for land cover classification in Guangdong for 2019. We
found that random forest models achieved better performance than
classification and regression trees, minimum distance, and support

Manuscript received July 3, 2020; revised July 26, 2020 and August 22, 2020;
accepted August 28, 2020. Date of publication September 7, 2020; date of current
version September 21, 2020. This work was supported in part by the National Key
Research and Development Program of China under Grant 2016 YFA0600104, in
part by the National Natural Science Foundation of China under Grant41801163,
in part by the Natural Science Foundation of Guangdong Province under Grant
2018A030313221, in part by the National Key Scientific and Technological
Infrastructure project “Earth System Science Numerical Simulator Facility”
(EarthLab), and in part by donations from Delos Living LLC and the Cyrus
Tang Foundation to Tsinghua University. (Corresponding author: Bing Xu.)

Ying Tu and Le Yu are with the Ministry of Education Key Laboratory
for Earth System Modeling, Department of Earth System Science,Tsinghua
University, Beijing 100084, China (e-mail: tu-yl19@mails.tsinghua.edu.cn;
leyu@tsinghua.edu.cn).

Wei Lang and Tingting Chen are with the Department of Urban and
Regional Planning, School of Geography and Planning, Sun Yat-sen Uni-
versity, Guangzhou 510275, China, and also with the China Regional
Coordinated Development and Rural Construction Institute,Sun Yat-sen
University, Guangzhou 510275, China (e-mail: langw3@mail.sysu.edu.cn;
chentt53 @mail.sysu.edu.cn).

Ying Li, Junhao Jiang, and Yawen Qin are with the Department of Ur-
ban and Regional Planning, School of Geography and Planning, Sun Yat-sen
University, Guangzhou 510275, China (e-mail: liying268 @mail2.sysu.edu.cn;
jiangjh26 @mail2.sysu.edu.cn; qinyw5 @mail2.sysu.edu.cn).

Jiemin Wu is with the Department of Remote Sensing and Geographic Infor-
mation Engineering, School of Geography and Planning, Sun Yat-sen University,
Guangzhou 510275, China (e-mail: wujm23 @mail2.sysu.edu.cn).

Bing Xu is with the Ministry of Education Key Laboratory for Earth System
Modeling, Department of Earth System Science,Tsinghua University, Beijing
100084, China, and also with the Center for Healthy Cities, Institute for China
Sustainable Urbanization, Tsinghua University, Beijing 100084, China (e-mail:
bingxu@tsinghua.edu.cn).

Digital Object Identifier 10.1109/JSTARS.2020.3022210

, Le Yu, Ying Li, Junhao Jiang, Yawen Qin, Jiemin Wu

, Tingting Chen"”, and Bing Xu

vector machine models. We also found that features derived from
Sentinel-1 data and Sentinel-2 spectral indices greatly contributed
to the classification process, while the feature of Luojia-1 data was
not as much important as other configurations. A comparison be-
tween our results and several existing land cover products in terms
of classification accuracy and visual interpretation further vali-
dated the effectiveness and robustness of the proposed framework.
Our experiments and findings not only systematically elucidate the
role of classification methods and data sources in deriving more
accurate and reliable land cover maps but also provide certain
guidelines for future land cover mapping from regional to global
scales.

Index Terms—Google Earth Engine (GEE), high-resolution land
cover mapping, Luojia-1, machine learning, Sentinel-2, Sentinel-1.

I. INTRODUCTION

AND cover, as a key element for earth system science, pro-
L vides fundamental information for understanding the com-
plex interactions between human activities and surface change.
Land cover maps play an important role in natural resources
management, including biodiversity conservation, carbon cy-
cling, climate change, ecosystem protection, and hydrological
process [1]-[6]. They are also essential to studies of public
health, sustainable development, and urban planning [7]-[10].
Under this context, there has raised a growing demand for
broad-scale and high-precision land cover products.

The advent and development of remote sensing technology
have greatly facilitated the application of land cover mapping.
During the past few decades, numerous global land cover (GLC)
datasets have been developed and applied with resolution rang-
ing from 300 m to 1 km, using coarse resolution satellite
imagery such as AVHRR, MODIS, and SPOT [11]-[15]. For
regional-scale studies, popular national products such as the 1
km LCC85-05 for Canada[16], the 250 m DLCDv1 for Australia
[17], and the 1:50 000 scale national LULC database for India
[18] have caught much spotlight by the remote sensing commu-
nity. However, the relatively coarse resolution and considerably
low accuracies of these land cover datasets make it difficult
to provide sufficient details of the Earth’s surface [19]-[21].
Consequently, they are far from satisfactory for many sophisti-
cated applications such as the identification of cropping types,
evaluation of disasters, and management of urban transportation.
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It was not until the 2010s when Gong et al. [22] reported the
first 30 m resolution GLC product of Finer Resolution Observa-
tion and Monitoring of GLC (FROM-GLC30) maps using more
than 8900 scenes Landsat TM/ETM+ images. Since then, sev-
eral 30 m resolution GLC products, including FROM-GLC-seg
[23], FROM-GLC-agg [24], and GlobeLand30 [25], have been
produced and released. Recently, the first 10 m resolution GLC
map for 2017, FROM-GLC10, was developed by Gong et al.
[26] with an overall accuracy of 72.76%. Based on the theory
of “stable classification with limited sample,” a seasonal sample
set collected from the 30 m resolution Landsat 8 images in 2015
[27] was successfully transferred to classify the 10 m resolution
Sentinel-2 images in 2017 [26]. However, this product has some
potential shortcomings, especially when it comes to regional-
scale research: 1) Notable misclassifications between cropland,
grassland, and forest. Due to the spatially mixed vegetation
structures, seasonal variations of vegetation, and the temporal
inconsistency between Landsat and Sentinel data, the classifica-
tion accuracy for these vegetation types is relatively low [28]; 2)
Usage of limited features. The predictors are mainly depending
on Sentinel-2-based features such as spectral and derived remote
sensing indices, without considering other information that is
highly correlated with land covers such as nighttime light (NTL)
and incident microwave radiation [29], [30]; and 3) Uncertainty
of models. A unified model is used to classify GLC, which may
lead to biased performance for localized experiments. To sum
up, for regional-scale studies that require higher data quality, it
is of great importance to discuss the impact of models, data
sources, and feature selections on the classification results,
thus gaining experiences to produce more accurate land cover
maps.

In recent years, a free cloud-based platform, Google Earth
Engine (GEE), has caught much spotlight by the remote sensing
community. GEE stores petabyte scales of over 40 years of
remotely sensed, climate-weather, geophysical datasets, and
additional ready-to-use products [31]. It also enables users to
discover, analyze, and visualize geospatial big data in powerful
ways without needing access to supercomputers or specialized
coding expertise [32]. A series of survey studies, ranging from
regional to global scales, have been carried out based on GEE,
including land cover and land use classification [26], [33]-[36],
crop mapping and yield estimation [37]-[41], forest mapping
[42], [43], surface water detection [44], [45], etc.

Leveraging the research advances, this study will explore land
cover classification in Guangdong Province, China, based on a
collection of thousands of manually collected samples, using
multisource remote sensing data (Sentinel-2, Sentinel-1, and
Luojia-1) with the GEE platform. Our ultimate goal is to develop
a robust and cost-effective framework for provincial land cover
mapping, thus present an update and improvement results of
10 m resolution land cover classification in Guangdong for
2019. Specifically, we seek to answer the following scientific
questions.

1) Which model achieves relatively robust and accurate per-

formance for land cover classification?

2) What is the relative importance of inclusive features and

how do different data sources contribute to the classifica-
tion process?
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3) How is the performance of our results compared with
existing land cover products (such as the FROM-GLC10
product), and what are the similarities and differences
between them?

An improved understanding of these issues is needed to guide

and move forward the campaign of land cover classification from
regional to global scales.

II. STUDY AREA AND DATA
A. Study Area

We choose Guangdong Province (20°13'N-25°31'N,
109°39’N E-117°19E) in China as the study area (see Fig. 1).
Located on the north shore of the South China Sea, Guangdong
possesses a total area of about 178405.85 km? with a population
of 115.21 million in 2019. The landscape of Guangdong slopes
from north to south: the northern part is mostly mountainous,
while the south is mainly covered by plains and hills. As shown
in Fig. 1, there are 21 prefecture-level cities in Guangdong.
Among them, Guangzhou and Shenzhen are among the most
populous and important cities in China and have now become
two of the world’s most populous megacities.

B. Sentinel-2 Optical Data

Sentinel-2 is a wide-swath, high-resolution, multispectral
imaging mission with a global 5-day revisit frequency. As shown
in Table VII, the Sentinel-2 data includes 12 spectral bands:
four visible and NIR bands at 10 m, six red edge and SWIR
bands at 20 m, and two atmospheric bands at 60 m spatial
resolution. In this study, the Level-2A product acquired in 2019,
which provided surface reflectance values, was used for further
analysis [46].

C. Sentinel-1 SAR Data

The Sentinel-1 mission provides ground range detected
(GRD) data from a dual-polarization C-band Synthetic Aper-
ture Radar (SAR) instrument. SAR instruments are capable
of acquiring meaningful data in all weather conditions (even
clouds) during daytime and nighttime. The signal recorded in
GRD data is the backscatter coefficient that measures the inci-
dent microwave radiation scattered by the radiated terrain. The
scattering behavior depends on the geometry of terrain elements
and their electromagnetic characteristics. The data has a spatial
resolution of 10 m. We acquired the full coverage of Sentinel-1
covering the study area in 2019.

D. Luojia-1 NTL Data

Developed by Wuhan University in China, the new genera-
tion of Luojia 1-01 remote sensing satellite was successfully
launched on 2 June 2018 [47]. Compared with previous NTL
data such as the Defense Meteorological Satellite Program’s Op-
erational Linescan System, Luojia-1 imagery has a finer spatial
resolution (about 130m) and a higher radiometric quantization
(14 bits), and it does not suffer the problems of saturation and
blooming [48]. The advantages of this new data can signifi-
cantly enhance the detection capacity of artificial lightings, thus
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Fig. 1.  Study area of Guangdong Province in China.
bringing new insights and possibilities to the research works on
urban and environment [49]. We acquired the national Luojia-1 1. Sampling 2. Data preprocessing
NTL imagery for 2018 from the Hubei Data and Application — m
Center.! This data was produced using 275 scenes of Luojia-1 :
NTL images acquired between July and October that covered the Vsl et Cloud f'te""g T
. . . . . Isual interpretation .
land region of China [50]. Before image matching, NTL images Cloud Taskmg CUEVED
were processed through cloud-contaminated data exclusion and l_l_l Feature extraction
i i (NDVI & NDWI) Composite for
stray lights removal [50]. The root mean square error of the tie Validation Training '
points was 0.983 pixels and 195.491 m for independent check- SEmmpies SSmplos o l
points after the planar block ad;ustment [50]..More 1nformfc1t10n l S——
about this data can be found in [50]. We clipped the national '
Luojia-1 NTL imagery based on the administrative boundary of Multi-source data composite —
Guangdong Province and later uploaded it to the GEE platform.
3. Classification
I METHODS (CAR'IT 'MD RF, SVM)
Fig. 2 presents the flowchart of the proposed framework,
. . . . Classification results
which consists of three main procedures: sampling, data pre- '
processing, and classification. All these steps can be undertaken @ 2 o
internally and seamlessly on the GEE platform. +
Highest Noj
. . . accuracy?
A. Classification System Adjustment Lves

We adopted the classification system of FROM-GLCI10,
which divided land cover into ten types of cropland, forest,
grassland, shrubland, tundra, wetland, water, impervious sur-
face, bareland, and snow/ice. According to FROM-GLC10, we
calculated the proportion of each land cover type and discovered
that there was no tundra or snow/ice covering in Guangdong, a
subtropical zone. As a result, we later excluded these two types
in the adjusted classification system.

B. Sampling

We initialed a visual interpretation based on high-resolution
satellite images from the Google Earth software. In total, 5000

![Online]. Available: http://www.hbeos.org.cn/, Accessed: Jul. 2020

Best model

Other existing land
cover products

Land cover map for
Guangdong, 2019

Comparison

Fig. 2. Flowchart of the proposed framework.

sample points were collected for training and 1455 for the
validation process (see Table I). Their spatial distributions, as
shown in Fig. 9, covered most of the study area. Both training and
validation samples were randomly generated by the computer at
first and then manually interpreted.
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TABLE I
SUMMARY OF TRAINING AND VALIDATION SAMPLES

Number of training Number of validation

Type samples samples
Cropland 801 211
Forest 1427 238
Grassland 376 195
Shrubland 378 100
Wetland 226 100
Water 492 201
Impervious 950 220
Bareland 350 190
Total 5000 1455
® 05 —— Cropland
S04 —— Forest
B Grassland
% 0.3 # —— Shrubland
; ! Wetland
{:‘-30-2 —— Water
= —— Impervious
® 0.1 /\ ‘ —— Bareland
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0.0 |
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Fig. 3. Sentinel-2 spectral curves for training samples of each type. The curve
of each type was obtained through calculating the “average” and “standard
deviation” of the surface reflectance of all training samples (belonging to this
type) for each given band in the processed cloud-free Sentinel-2 mean composite
for 2019.

Fig. 3 displays the spectral curves for the training samples of
each land cover type. For each type, we calculated the “average”
and “standard deviation” of the surface reflectance of all training
samples (belonging to this type) for each given band in the
processed cloud-free Sentinel-2 mean composite for 2019 (see
Section III-C) to obtain the curve. We found that the spectral
characteristics had a high similarity among cropland, forest,
grassland, and shrubland, whereas water and bareland were
relatively distinguishable compared with other land cover types.

C. Data Preprocessing

For the Sentinel-2 optical imagery, to mitigate the limitation
that arises due to cloud cover, we first filtered the whole-year
archive with the percentage of cloudy pixels less than 3%
using the “CLOUDY_PIXEL_PERCENTAGE” band informa-
tion. Second, we did a pixel-based quality check to screen
and filter out the poor-quality surface reflectance values using
cloud mask and quality assessment information in the Sentinel-
2 metadata. These two processes not only ensured that most
of the study area had at least 5 scenes of images’ coverage
(see Fig. 4) but also eliminated the observations contaminated
by clouds and shadows from the Sentinel-2 archive. We then
calculated the Normalized difference vegetation index (NDVI
= (NIR-Red)/(NIR+Red)) and Normalized difference water
index (NDWI = (Green-NIR)/(Green+NIR)) values from the
retained reflectance in the Green, Red, and NIR bands for each
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Fig. 4. Numbers of available observations in total for the Sentinel-2 optical
data in Guangdong, 2019 after cloud filtering and removal. Noted that only
images with cloudy pixel percentage less than 3% were used.
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pixel. These two spectral indices were later combined with the
original spectral bands of Sentinel-2 data (see Table VII) as
input features into the machine learning algorithms. Finally,
we calculated the average pixel values in the image collections
to merge the whole-year Sentinel-2 archive and derived the
cloud-free Sentinel-2 mean composite for 2019.

Given that there were different combinations of instrument
mode and polarization in the Sentinel-1 data, we chose a
homogeneous GRD subset by selecting GRD scenes with a
dual-polarization (i.e., VV and VH) from the instrument mode
of the interferometric wide swath. We acquired the Sentinel-1
composite for 2019 by calculating the average values of VV and
VH of all the obtained SAR images.

Finally, all the Sentinel-2, Sentinel-1, and Luojia-1 data were
resampled to 10 m spatial resolution to get the multisource
data composite, which corresponded to the fine resolution of
Sentinel-2. The multisource data composite had 17 bands in
total (14 for Sentinel-2, 2 for Sentinel-1, and 1 for Luojia-1).

D. Machine Learning Algorithms

To find out the best classifier that is more suitable and ro-
bust for provincial land cover classification, we here include a
group of machine learning algorithms including classification
and regression trees (CART), minimum distance (MD), random
forest (RF), and support vector machine (SVM) to conduct
model-to-model comparisons of mapping performance. These
algorithms have been widely used for remote sensing classifica-
tion [52]-[55]. A brief description of these inclusive models is
provided below.

CART is an umbrella term used to refer to the decision tree
classifier, first introduced by Breiman et al. [56] in 1984. CART
identifies relationships between a single continuous response
(dependent variable) and multiple, continuous and/or discrete,
explanatory (independent) variables, through a binary recursive
partitioning process, where the data are split repeatedly into
increasingly homogeneous groups (nodes), using combinations
of variables (rules) that best distinguish the variation of the
response variable.

In MD classification, a sample (i.e., group of vectors) is
classified into the class whose known or estimated distribution
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most closely resembles the estimated distribution of the sample
to be classified [57]. The measure of resemblance is a distance
measure in the space of distribution functions such as the Eu-
clidean distance [58].

RF is a machine learning algorithm consisting of a large
ensemble of regression trees. It is operated by constructing a
multitude of decision trees at training time and outputting the
class that is the mode of the classes (classification) or mean
prediction (regression) of the individual trees [59], [60]. The
majority “vote” of all the trees is used to assign a final class
for each unknown. RF corrects for the overfitting problem of
decision tree (CART) algorithms [61]. The relative importance
of each band can be evaluated by systematically comparing the
performance of the trees that use a specific band, and those that
do not [62].

SVM is a supervised nonparametric learning technique aim-
ing to determine the location of optimal decision boundaries
separating different classes [63]. The nearest data points to the
resulting hyperplane that are used to measure the margin are
called support vectors [64], which takes the advantage of dealing
with limited training sets and high-dimensional data.

In this study, the selected four algorithms were implemented
using the ee.classifier package in GEE (smileCart, minimumDis-
tance, smileRandomForest, and libsvm representing for CART,
MD, RF, and SVM, respectively) to model the relationship
between explanatory features and response land cover types.
All models were tuned to derive the best-fitting parameters (see
Table VIII).

E. Accuracy Assessment and Method Comparison

We used the calculated overall accuracy and Kappa coefficient
[65] from the confusion matrix as major indicators to compare
the classification performance of different models. We also
calculated the variable importance derived from the RF model
to differentiate the relative contribution of inclusive variables.
Additionally, since we had included multisource datasets with
different spatial resolutions into the classifiers, it would be useful
to identify specific types of data sources with a higher contri-
bution to the classification performance, thus gaining potential
insights of data selections for regional land cover classification
practices. Therefore, we conducted another set of classification
comparison using different combinations of inclusive features.

1) Sentinel-1 (VV and VH).

2) Sentinel-2 60 m (B1 and B9).

3) Sentinel-2 20 m (BS5, B6, B7, B8A, B11, and B12).

4) Sentinel-2 10 m (B2, B3, B4, and BS).

5) Sentinel-2 spectral indices (NDVI and NDWI).

6) Sentinel-2.

7) Sentinel-1&2 (Sentinel-1 and Sentinel-2).

8) All (Sentinel-1, Sentinel-2, and Luojia-1).

All the above-mentioned eight scenarios were trained and
validated using the same samples as described in Section III-B.
Moreover, we conducted a comparison between our results
and several land cover products including the 1 km China’s
land-use/cover dataset (CLUD),? the 500 m MODIS land cover

2[Online]. Available: http://www.resdc.cn/
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TABLE I
CLASSIFICATION RESULTS OF DIFFERENT MODELS IN TERMS OF OVERALL
ACCURACY AND KAPPA COEFFICIENT

Model Overall accuracy (%) Kappa coefficient
CART 80.21 0.77
MD 81.58 0.79
RF 86.12 0.84
SVM 66.80 0.61

product (MCD12Q1),? the 30 m FROM-GLC30 product* [22],
and the 10 m FROM-GLC10 product’ [26] from the perspectives
of classification accuracy and visual interpretation. The classifi-
cation systems of CLUD and MCD12Q1 were converted to the
adjusted classification system of this study (Section III-A) based
on the cross-walking table in Table IX.

IV. RESULTS
A. Comparison of Different Models

Table Il compares the classification results of different models
and Fig. 10 shows the corresponding land cover maps for Guang-
dong Province in 2019 based on the selected four classification
models. In general, the RF model achieved the best performance
for land cover classification (overall accuracy of 86.12% and
Kappa coefficient of 0.84), followed by MD and CART models
with slightly lower overall accuracies of 81.58% and 80.21%
(Kappa coefficients of 0.79 and 0.77), respectively. In contrast,
the SVM model yielded the lowest overall accuracies of 66.80%
and the lowest Kappa coefficient of 0.61. As for specific land
cover types, our results revealed that all the four models could
classify forest and impervious surface types rather well, with
user’s accuracies higher than 80% [see Fig. 5(a)]. However, as
for cropland, grassland, water, and bareland types, the difference
among models was huge. For example, the user’s accuracy of
the SVM model for grassland was only 30.77%, much lower
than the other three ones [see Fig. 5(a)]. In terms of producer’s
accuracy, the RF model achieved a promising result (ranging
from 78.65% to 96.23%) for all the eight land cover types and
had the highest producer’s accuracy for grassland, shrubland,
wetland, impervious surface, and bareland types among the four
comparative models [see Fig. 5(b)]. Given the fact that the RF
model outperformed the others, we adopted this model for land
cover classification in Guangdong as well as for subsequent
analysis.

B. Feature Contributions

Fig. 6 shows the relative importance of different input features
derived from the RF importance analysis implementation in
GEE. All training samples were used for the evaluation of feature
importance here. Features derived from Sentinel-1 data (VV
and VH) and Sentinel-2 spectral indices (NDVI and NDWI)
greatly contributed to the classification process. In contrast, the

3[Online]. Available: https:/Ipdaac.usgs.gov/products/med12q1v006/
4[Online]. Available: http://data.ess.tsinghua.edu.cn/
>[Online]. Available: http://data.ess.tsinghua.edu.cn/
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Fig. 5. Comparison of (a) user’s accuracy and (b) producer’s accuracy of
different models for each land cover type. UA and PA denote user’s accuracy
and producer’s accuracy, respectively.
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Fig. 6. Relative importance of features using all training samples in the RF
model (ranging from O to 1). The larger the value, the more important the feature.

feature of NTL showed lower importance than other configura-
tions. This could have been caused by the relatively low spatial
resolution of Luojia-1 data (130 m), despite the fact that we had
resampled all the data to 10 m for land cover classification.

We further compared the classification performance with
different combinations of features (see Table III). For the mul-
tispectral data of Sentinel-2, when the spatial resolution of
inclusive features grew from 60 to 10 m, the classification
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TABLE III
CLASSIFICATION RESULTS OF DIFFERENT SCENARIOS IN TERMS OF OVERALL
ACCURACY AND KAPPA COEFFICIENT

Scenario Overall accuracy (%)  Kappa coefficient
Sentinel-1 46.60 0.38
Sentinel-2 60 m 57.87 0.51
Sentinel-2 20 m 76.91 0.73
Sentinel-2 10 m 78.49 0.75
Sentinel-2 spectral indices 64.81 0.59
Sentinel-2 82.13 0.79
Sentinel-1&2 83.09 0.80
All 86.12 0.84

accuracy increased accordingly (57.89% for 60 m, 76.91% for
20 m, and 78.49% for 10 m). For multisource remote sensing
data, when features from Sentinel-1 and Sentinel-2 data were
both considered into the RF model, a higher overall accuracy of
83.09% and a higher Kappa coefficient of 0.80 were obtained,
as compared to scenarios when only Sentinel-1 or Sentinel-2
data was used. The highest overall accuracy (86.12%) and
Kappa coefficient (0.84) occurred when all the features from
the three data sources were utilized. Moreover, to assess the
contribution of features to different land covers, we compared
classification accuracy for each land cover type under different
scenarios (see Table X). Results showed that Sentinel-1 data
could distinguish water rather well, with a user’s accuracy of
72.64% and a producer’s accuracy of 70.19%. But it had a
difficulty in classifying other land cover types, especially for
grasslands, shrublands, and wetlands (see Table X). In contrast,
when only using the Sentinel-2 data, the classification accuracy
for each land cover type was relatively ideal, with a user’s
accuracy ranging from 63.00% to 95.45% and a producer’s
accuracy ranging from 66.54% to 94.87%. The contribution of
Luojia-1 data was mainly reflected in improving the classifica-
tion accuracy of cropland and grassland types. Compared with
the scenario where only Sentinel-1 and Sentinel-2 data was used,
after adding the feature of Luojia-1 data (i.e., Scenario: All), the
user’s accuracy of cropland and grassland types increased by
3.32% and 14.87%, respectively, and their producer’s accuracy
increased by 8.17% and 7.64%, respectively. These findings
demonstrated that although the importance of features might
differ among data sources with different spatial resolutions, they
all contributed to the improvement of classification performance.

C. Land Cover Map for Guangdong, 2019

Fig. 7 presents the classified land cover map for Guangdong
Province in 2019 using all the features derived from the three
data sources and the RF model. Forests covered most of the
study area, while the impervious surfaces mainly distributed on
the Pearl River Delta. The Leizhou Peninsula was dominated by
croplands. Statistically, within the 178405.85 km? land cover
area of Guangdong Province in 2019, croplands accounted for
19.58%, forests accounted for 56.84%, grasslands accounted for
1.05%, shrublands accounted for 6.41%, wetlands accounted
for 2.40%, waters accounted for 3.95%, impervious surfaces
accounted for 8.85%, and barelands accounted for 0.92% (see
Table IV). The confusion matrix based on the RF model, as
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Fig. 7. Land cover map for Guangdong Province in 2019.

TABLE IV
STATISTICS OF LAND COVER COMPOSITION FOR GUANGDONG, 2019

Type Area (km?) Proportion (%)
Cropland 34929.04 19.58
Forest 101408.90 56.84
Grassland 1867.05 1.05
Shrubland 11433.75 6.41
Wetland 4282.63 2.40
Water 7049.09 3.95
Impervious 15785.63 8.85
Bareland 1649.75 0.92

shown in Table V, denoted that the proposed framework could
classify land cover types cropland, forest, grassland, water,
impervious, and bareland rather well, with a user’s accuracy
ranging from 80.53% to 95.91% and a producer’s accuracy
ranging from 74.49% to 96.23%. In contrast, shrubland and
wetland types had a relatively low classification with a user’s
accuracy of 60.00% and 70.00% and a producer’s accuracy of
83.33% and 78.65%, respectively (see Table V).

D. Comparison With Other Land Cover Products

A quantitative assessment was carried out among three land
cover products of the 30 m FROM-GLC30 in 2017, the 10 m
FROM-GLC101in 2017, and our 10 m results in 2019 (we did not
include CLUD and MCD12Q1 here due to their coarse spatial
resolutions). Using the same validation samples, we obtained
an overall accuracy of 52.92% (Kappa coefficient: 0.45) for
the FROM-GLC30 product and an overall accuracy of 71.34%
(Kappa coefficient: 0.67) for the FROM-GLC10 product, both
lower than our derived land cover results (overall accuracy of
86.12% and Kappa coefficient of 0.84). As shown in Table VI,
except for special cases such as cropland and forest types, our
results had a significant improvement over FROM-GLC30 in
terms of user’s accuracy (ranging from 24.09% to 74.21%) and
producer’s accuracy (ranging from 11.53% to 57.50%). As for
FROM-GLC10, our results had a 0.42%-63.16% increase in
user’s accuracy for the eight land cover types (see Table VI).
Among them, the accuracy of the analogy between forest,
grassland, shrubland, and impervious surface was not much

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 13, 2020

FROM-GLC10
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Fig. 8. High-resolution images, land cover maps of our results, and land cover

maps of FROM-GLC10 in four zoomed areas: (a)—(c) Jieyang city (116°33'E,
23°34'N); (d)—(f) Dongguan city (114°04’E, 22°49’N); (g)—(i) Shaoguan city
(113°30'E, 24°32'N); (j)—-(I) Zhanjiang city (110°03’E, 21°37’N). Red ovals
highlight some significant difference between our results and FROM-GLC10.

different, while our results significantly improved the accuracy
of cropland, wetland, water, and bareland types (more than
10%).

Fig. 11 compares land cover maps among five products (the
1 km CLUD in 2018, the 500 m MCD12QI in 2018, the 30 m
FROM-GLC30 in 2017, the 10 m FROM-GLC10 in 2017, and
our 10 m results in 2019) in the Pearl River Delta area, one
of the most densely urbanized regions in South China. All the
different land cover systems were unified and converted to the
classification system used in this study. In general, land cover
maps of these five products had a good spatial agreement: the
Golden Delta area located at the mouth of the Pearl River was
dominated by impervious surfaces, while forests and croplands
covered most of the remaining area (except for MCD12Q1).
In terms of spatial resolution, three 10-30 m products (FROM-
GLC30, FROM-GLCI10, and our results) presented more spatial
details, as compared to those of the 1 km CLUD and the 500 m
MCD12Q1 products.

A detailed visual comparison further validated the effective-
ness and robustness of our proposed framework. Fig. 8 displays
high-resolution images, land cover maps of our results, and land
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TABLE V
CONFUSION MATRIX OF LAND COVER CLASSIFICATION RESULTS DERIVED FROM THE RF MODEL. UA AND PA DENOTE
USER’S ACCURACY AND PRODUCER’S ACCURACY, RESPECTIVELY

Type Cropland  Forest Grassland Shrubland Wetland Impervious Water Bareland UA (%) PA (%)
Cropland 186 10 4 1 3 1 4 2 88.15 79.49
Forest 8 216 1 11 2 0 0 0 90.76 81.20
Grassland 13 4 176 0 0 0 1 1 90.26 95.14
Shrubland 5 31 3 60 0 0 1 0 60.00 83.33
Wetland 4 3 0 0 70 19 4 0 70.00 78.65
Water 4 0 0 0 13 181 3 0 90.05 88.73
Impervious 5 0 0 0 1 0 211 3 9591 85.77
Bareland 9 2 1 0 0 3 22 153 80.53 96.23

TABLE VI V. DISCUSSION

COMPARISON OF CLASSIFICATION ACCURACY FOR EACH LAND COVER TYPE
UNDER DIFFERENT SCENARIOS. UA AND PA DENOTE USER’S ACCURACY AND
PRODUCER’S ACCURACY, RESPECTIVELY

Type UA (%)
FROM-GLC30 FROM-GLCI10 Our results
Cropland 91.47 77.73 88.15
Forest 92.02 90.34 90.76
Grassland 17.95 84.10 90.26
Shrubland 20.00 59.00 60.00
Wetland 1.00 57.00 70.00
Water 65.67 78.11 90.05
Impervious ~ 71.82 85.91 95.91
Bareland 6.32 17.37 80.53
Type PA (%)
FROM-GLC30 FROM-GLC10  Our results
Cropland 37.84 60.74 79.49
Forest 59.84 70.49 81.20
Grassland 37.63 66.94 95.14
Shrubland 39.22 89.39 83.33
Wetland 33.33 100.00 78.65
Water 77.19 86.26 88.73
Impervious  63.45 66.08 85.77
Bareland 100.00 75.00 96.23

cover maps of FROM-GLCI10 in four zoomed areas. Overall,
land cover maps of our results and FROM-GLC10 both had a
good agreement with the ground truth. But there were some sub-
tle differences between these two products, especially between
several easily confused land cover types such as forest, cropland,
and grassland (highlighted as red ovals in Fig. 8). For instance,
located in Rongcheng district of Jieyang city, the zoomed area in
Fig. 8(a) was mainly covered by impervious surfaces and crop-
lands. However, most of the croplands were wrongly classified
as grasslands in FROM-GLC10 [see Fig. 8(c)]. Similar misclas-
sifications were also discovered in Dongguan city [see Fig. 8(d)],
where some small pieces of croplands were incorrectly identified
as grasslands in FROM-GLCI10 [see Fig. 8(f)]. Fig. 8(g) and
(j) were two rural areas located in the city of Shaoguan and
Zhanjiang, respectively, whose dominant land cover types were
forests and croplands. As seen in FROM-GLC10, many forests
were mistakenly recognized as croplands [see Fig. 8(i) and (1)].
Besides, a piece of barelands was correctly detected in our results
[see Fig. 8(k)], but failed to be identified in the FROM-GLC10
product [see Fig. 8(D)].

A. Strengths and Future Implications

Taking Guangdong as a starting point, this study investigates
the potential of accurately high-resolution land cover mapping
at a large scale with the utilization of machine learning algo-
rithms, multisource remote sensing data, and the GEE platform.
Compared with other existing land cover products, a higher
classification accuracy was obtained in our results using the
same validation samples (see Table VI) and the derived land
cover map was observed to better aligned with the ground truth
(see Figs. 8 and 11).

Machine learning algorithms have been widely adopted for
remote sensing classification [52]—[55]. In this study, using the
same training and validation samples, we tested multimodel
performance in land cover classification. Our results revealed
that RF models achieved the best performance in both computa-
tional expanse and classification accuracy. Compared with other
classifiers such as SVM, the selection of RF could yield a net
increase in the overall accuracy of 19.32% and in the Kappa
coefficient of 0.23 (see Table II). Since the protocol of RF is to
assign the final class based on the majority “vote” of all built
trees, such kind of strategy is especially suitable for processing
high dimensional features. The efficiency and robustness of RF
models in land cover mapping have also been observed and
discussed in our previous experiments [66], [67].

To investigate the impact of data sources on classification
performance, we calculated the relative importance of inclusive
features from the RF model and compared eight classification
scenarios under different features combinations. We discovered
that the strategy of integrating multisource data sources, which
provided complementary information to separate between dif-
ferent classes, contributed to classification results. For example,
when features from Sentinel-1 and Sentinel-2 data were both
considered into the RF model, a higher overall accuracy of
83.09% was obtained, as compared to scenarios when only
Sentinel-1 or Sentinel-2 data was used (see Table III). We also
discovered that the spatial resolution of data sources played an
important role in land cover classification. As shown in Fig. 6,
the most contributory features were derived from Sentinel-1
data (VV and VH) and Sentinel-2 spectral indices (NDVI and
NDWI). Both of them had a spatial resolution of 10 m. On
the contrary, the NTL feature derived from the 130 m Luojia-1
data showed the lowest importance among all (see Fig. 6). For
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the multispectral data of Sentinel-2, the classification results
of using 10 m bands were better than that of using 20 m or
60 m bands (see Table III). These experiences suggested that
leveraging multiple data sources with a higher spatial resolution
was helpful in generating more accurate land cover maps.

The utilization of the GEE platform has greatly improved
work efficiency. GEE consists of a multipetabyte analysis-ready
data catalog colocated with a high-performance, intrinsically
parallel computation service [31]. Unlike the traditional way that
downloads massive data to the local for subsequent analysis,
GEE enables users to directly process and analyze enormous
multitemporal remote sensing data in Google’s cloud and thus
helps save much time. Apart from that, it provides a Git repos-
itory for storing, sharing, and script versioning of users’ codes
that leads to more user collaboration [31]. Following the pro-
posed framework, multitemporal land cover mapping, ranging
from regional to global scales, could be effectively done on GEE
in the future once training and validation samples are ready.

B. Limitations and Uncertainties

Since we used the whole-year Sentinel-2 archive to derive the
cloud-free Sentinel-2 mean composite for 2019, the seasonal
effect of land cover types was neglected. This might have led
to a misclassification among vegetation types (such as forest,
grassland, and shrubland). Based on the differences in pheno-
logical characteristics, Zhu et al. [68] discovered that multitem-
poral optical images (i.e., images from different seasons) were
helpful in better distinguishing vegetation types. Future work
could consider seasonal compositing strategy [69] instead of
the annual composite.

The time difference among datasets might cause uncertainty
in the classification and comparison results. On the one hand,
the target classification year of this study was 2019 while the
Luojia-1 data was obtained in 2018. We did not select the
Luojia-1 data for 2019 because the data coverage for that year
is incomplete. On the other hand, even though we had tried our
best to choose existing products corresponding to the target year
2019, there was still a one-year’s or two-years’ interval between
our results and the four comparative land cover products (CLUD
and MCD12Q]1 for 2018, FROM-GLC30, and FROM-GLC10
for 2017). Nevertheless, given that land cover would not change
dramatically over the years, we assumed the effect of this dif-
ference to be insignificant.

Despite its advantages, GEE is restricted by some limitations,
which can be classified into three categories according to Tami-
minia et al. [32]: 1) Computation. In our case, GEE would run
into memory issues when processing is performed on a huge
number of datasets. 2) Dataset. The Sentinel series is the only
dataset on GEE that meets the scope of this research (with a
spatial resolution of 10 m and the full coverage of Guangdong),
and it is only available from 2015 to the present. 3) Algorithms.
Even though GEE has provided a few classic machine learning
algorithms (such as RF), deep learning algorithms are not yet
supported directly by GEE. All those limitations of GEE would
hinder its capacity for large-scale, high-resolution, historical,
and accurate land cover mapping at present.
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VI. CONCLUSION

Leveraging thousands of manually collected samples, multi-
source remote sensing data, machine learning algorithms, and
the GEE platform, this study aims to develop a robust and cost-
effective framework for accurately high-resolution land cover
mapping at a large scale. Following this framework, we con-
ducted land cover classification in Guangdong Province, China,
using various open-source geospatial data layers (Sentinel-1
SAR, Sentinel-2 optical, and Luojia-1 NTL data) and a complete
sample set (5000 for training and 1455 for validation). Results
showed that RF models achieved the best performance for land
cover classification (overall accuracy of 86.12% and Kappa coef-
ficient of 0.84), as compared to other models of CART, MD, and
SVM. We also found that features derived from Sentinel-1 data
and Sentinel-2 spectral indices had a great contribution to the
classification process while the feature of Luojia-1 data showed
the lowest importance among all configurations. Using the same
validation samples, we obtained a higher classification accuracy
over other existing land cover products, and the derived map was
discovered to be more correspond with the ground truth. This
study systematically elucidates the role of classification methods
and data sources in generating more accurate and reliable land
cover maps. Our product could serve as critical variables for
future applications such as biodiversity conservation, climate
change, and urban planning. The derived 10 m resolution land
cover map for Guangdong in 2019 can be downloaded.®

APPENDIX

TABLE VII
BAND INFORMATION FOR THE SENTINEL-2 DATA

Name  Resolution Wavelength Spe(;trgl
description

Bl 60 m 443 .9nm (S2A) / 442.3nm Aerosols
(S2B)

B2 10 m 496.6nm (S2A) /492.1nm Blue
(S2B)

B3 10 m 560nm (S2A) /559nm (S2B)  Green

B4 10 m 664.5nm (S2A) / 665nm Red
(S2B)

B5 20 m 703.9nm (S2A) / 703.8nm Red Edge 1
(S2B)

B6 20 m 740.2nm (S2A) / 739.1nm Red Edge 2
(S2B)

B7 20 m 782.5nm (S2A) / 779.7nm Red Edge 3
(S2B)

B8 10 m 835.1nm (S2A) / 833nm NIR
(S2B)

BSA 20 m 864.8nm (S2A) / 864nm Red Edge 4
(S2B)

B9 60 m 945nm (S2A) /943.2nm Water vapor
(S2B)

B11 20 m 1613.7nm (S2A) / 1610.4nm  SWIR 1
(S2B)

B12 20 m 2202.4nm (S2A)/2185.7nm  SWIR 2
(S2B)

[Online]. Available: https:/drive.google.com/drive/folders/ 1jMmM6VXKS
yNpAQOM4ATZO0c3DSwxtGa46]?usp=sharing
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Fig. 9. Spatial distributions of (a) training samples and (b) validation samples for the study area of Guangdong in 2019.

() CART (OA=80.21%, Kappa=0.77) (®) MD (OA=81.58%, Kappa=0.79)

(©) RF (OA=86.12%, Kappa=0.84) (d) SVM (OA=66.80%, Kappa=0.61)
[[TcCropland [[Grassland [[fWetland [l Impervious 0 100 20 400 km ’X
I Forest [MShrubland @ Water [l Bareland f t f + { N

Fig. 10 Land cover maps for Guangdong Province in 2019 using different classification models. (a) CART. (b) MD. (c¢) RF. (d) SVM.
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Comparison of different land cover products in the Pearl River Delta area (21°52'N-23°53'N, 112°07'N E-114°49'E). (a) CLUD in 2018 (1 km), provided

by Chinese Academy of Sciences. (b) MCD12Q1 in 2018 (500 m), provided by USGS. (b) FROM-GLC30 in 2017 (30 m), provided by Tsinghua University. (d)
FROM-GLC10 in 2017 (10 m), provided by Tsinghua University. (d) Our results in 2019 (10 m).

TABLE VIII

IMPLEMENTATION PACKAGES AND OPTIMAL PARAMETERS FOR
THE SELECTED FOUR MODELS

Model Package in GEE Optimal parameters
CART ee.classifier.smileCart() /
MD ee.classifier.minimumDistance() metric: 'mahalanobis’
RF ee.classifier.smileRandomForest()  numberOfTrees: 120
SVM ee.classifier.libsvm() kernelType: ' RBF ',

gamma: 0.01,
cost: 1024

TABLE IX

CROSS-WALKING TABLE FROM CLUD AND MCD12Q1 TO THIS STUDY

Target type Conversion type
This study CLUD MCDI12Q1
Cropland Paddy Croplands
Dry land Croplands mosaics
Forest Forest Evergreen needleleaf
Sparse woods Evergreen broadleaf
Other woods Deciduous needleleaf
Deciduous broadleaf
Mixed forest
Grassland Dense grass Woody savannas
Moderate grass Savannas
Sparse grass Grasslands
Shrubland Shrub Closed shrublands
Open shrublands
Wetland Tidalflat Permanent wetlands
Bottomland
Swampland
Water River and canal Water bodies
Lake
Reservoir and pond
Impervious Urban Urban and built up
Rural settlement
Industry-traffic land
Bareland Bare soil Bare soil and rocks

TABLE X
COMPARISON OF CLASSIFICATION ACCURACY FOR EACH LAND COVER TYPE
UNDER DIFFERENT SCENARIOS. UA AND PA DENOTE USER’S ACCURACY AND
PRODUCER’S ACCURACY, RESPECTIVELY

Type UA (%)
Sentinel-1  Sentinel-2  Sentinel-1&2  All
Cropland 58.77 82.94 84.83 88.15
Forest 68.49 90.34 90.76 90.76
Grassland 20.00 69.23 75.38 90.26
Shrubland 10.00 63.00 59.00 60.00
Wetland 4.00 69.00 69.00 70.00
Water 72.64 89.55 88.56 90.05
Impervious  57.27 95.45 9591 9591
Bareland 34.74 77.89 78.95 80.53
Type PA (%)
Sentinel-1  Sentinel-2  Sentinel-1&2  All
Cropland 4429 66.54 71.31 79.49
Forest 37.05 80.52 81.20 81.20
Grassland 35.45 88.82 87.50 95.14
Shrubland 20.41 84.00 84.29 83.33
Wetland 10.81 80.23 76.67 78.65
Water 70.19 87.80 88.12 88.73
Impervious  57.53 83.67 84.06 85.77
Bareland 58.93 94.87 95.54 96.23
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