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Mapping Human Activity Volumes Through
Remote Sensing Imagery

Xiaoyue Xing , Zhou Huang , Ximeng Cheng , Di Zhu , Chaogui Kang , Fan Zhang , and Yu Liu

Abstract—The spatial concentration of the human activity is a
crucial indication of socioeconomic vitality. Accurately mapping
activity volumes is fundamental to support the regional sustain-
able development. Current approaches rely on mobile positioning
data, which record information about human daily activity but are
inaccessible in most cities due to privacy and data sharing concerns.
Alternative methods are needed to provide more generalized pre-
dictions on extensive areas while maintaining low cost. This study
demonstrates how remote sensing imagery can be used through
an end-to-end deep learning framework for reliable estimates of
human activity volumes. The neighbor effect, representing the in-
herent nature of spatial autocorrelation in the volumes, is incorpo-
rated to improve the network. The proposed model exhibits strong
predictive power and demonstrates great explainability of physical
environment on variations of activity volumes. Landscape interpre-
tations based on hierarchical features provide both object-based
and region-based insights into the coevolvement of landscape and
human activity. Our findings indicate the possibility of extensively
predicting activity volumes, especially in areas with limited access
to mobile data, and provide support for the promising framework
to better comprehend broad aspects of the human society from
observable physical environments.

Index Terms—Deep convolutional neural network (DCNN),
human activity, neighbor effect, physical environment.

I. INTRODUCTION

G LOBAL sustainable development goals (SDGs) require
essential knowledge of where and how crowded people are

to “make cities and human settlements inclusive, safe, resilient,
and sustainable” (UN SDG N.11). Accurate estimations of
fine-grained population distribution have remarkably promoted
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sustainable land-use planning, resource management, and risk
reduction [1]–[3]. Most existing population products count the
census-based residential population, regardless of where peo-
ple are located during the day [3]. Compared with the simply
residential concept, people’s daily attendances in all residence-,
work-, and leisure-related places jointly reflect averaged popula-
tion concentrations on various functional zones over a day, which
are more critical for regional infrastructure allocations [4], [5].
Therefore, it is appropriate to use population counts averaged
over 24 h in certain zones as one of the fundamental socioeco-
nomic characteristics. We define such population as the human
activity volumeV , since it considers collective daytime activities
into the measurement.

A social sensing framework [6] has been recently advocated
to depict multiple facets of the human society from big geo-data,
such as mobile phone records [7], social media data [8], street
view images [9], [10], and so on. Widely generated individual
mobile data have shown the potential to record the activity
volumes and to further assist policymaking related to regional
vitality [5], [11], [12]. In particular, as direct indications of hu-
man presence, mobile positioning data enable disaggregations of
census data with socioeconomic weights [13], [14] and provide
ancillary statistics of population dynamics [15]. Owing to the
high penetration of location-based services (LBS) into a variety
of daily activities, including instant communication, naviga-
tion, online business, and entertainment [16]–[18], geographical
coordinates of most activity locations can be automatically
recorded every time subscribers send location requests and au-
thorize LBS-based mobile applications. This information stands
well for the spatial distribution of individuals’ daily activities,
and yet, the access is impeded by privacy issues and enterprise
data sharing concerns [19]. It is an open and active challenge to
find an appropriate alternative for the positioning records and
broadly predict human activity volumes. Fortunately, the inter-
play between the physical environment and human activity pro-
vides insightful evidences for tackling this problem [20]–[22].

Physical characteristics in built-up structures [23], greening
covers [24], surface temperatures [25], [26], and atmosphere
emissions [27] are greatly shaped by and inversely shapes how
people communicate, produce, and live. This unravels a possi-
bility of estimating human activity volumes based on a glimpse
of the physical environment, which is traceable through remote
sensing (RS) techniques. The RS observations comprehensively
capture the physical environment properties of the Earth’s sur-
face and have advantages in terms of low acquisition cost and
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broadly scanned coverages, including areas with low-frequency
census or sparse network base stations. However, the complex
landscape scenes and their associations with human activities
urge feasible solutions to exploit distinguishable clues from RS
imagery to estimate activity volumes with limited positioning
data as guidance.

Deep convolutional neural networks (DCNNs) [28] are appro-
priate algorithms to capture hidden hierarchies of geographical
patterns. They have shown great ability to detect deep knowledge
for land cover classification [29]–[31], image semantic seg-
mentation [32], [33], object localization [34], [35], and spatial
interpolation [36]. The traditional DCNNs utilize local connec-
tions of features inside a target image. Nonetheless, different
from object-centric photographs in natural image sets such as
ImageNet, precisely estimating the regional characteristics from
RS scenes requires understanding plenty of ground details and
more complex spatial relationships [37]. For most geographical
phenomena, neighbor characteristics are critical for estimating
the centric targets due to their spatial associations, as a mani-
festation of the first law of geography [38]. The concentration
of human activity is typically influenced by neighbor environ-
ments, which have shown close associations with the centric
land cover [37], welfare [39], attractiveness [40], dynamics [41],
[42], and further human–environment interactions [43], [44].
Therefore, RS-oriented strategies and specific network adjust-
ments considering neighbor associations should be taken into
account.

In this research, we develop Neighbor-ResNet, an end-to-end
deep learning model with spatially neighbor augmentation, to
achieve accurate estimations of the human activity volumes.
Using RS images as inputs and LBS data as labels in 18 cities
in China, we find that the end-to-end model shows strong feasi-
bility and generalizability, and introducing the neighbor effect
greatly enhances the model performance. Based on the landscape
interpretation and deviation analysis, our model suggests the
heterogeneity of RS observations reflecting the activity volumes
and deepens our understanding of the interactions between the
human activity and physical environments. In a summary, the
main contributions of this article are as follows.

1) We propose a general data-driven framework to estimate
socioeconomic variables by exploring informative land-
scape knowledge. As the model shows great performances
on measuring the human activity, it exhibits the potential
for estimating the broader socioeconomic indicators at a
fine-grained level.

2) We provide a reliable estimator for an extensive map-
ping of the human activity volumes, which is especially
meaningful in low income regions with sparse network
infrastructures or limited access to mobile positioning
data. Since the spatial scale is consistent with current
census-based population products, our mappings can be
useful complements to reflect averaged activity-based
concentrations. This provides fundamental support for the
regional sustainable development.

3) We investigate the heterogeneity of landscape traces of
the human activity based on hierarchical features, and we

reveal how the neighbor integration improves the estima-
tions. These shed lights on the mechanism advantages of
the proposed model, and provide a new perspective to
understand the interaction between human activities and
physical environments.

II. MATERIALS AND METHODS

A. Data Sources and Preprocessing

We retrieve human activity volumes in 18 cities in China from
Tencent LBS records. The data cover a period of five weekdays
from 18 January 2016 to 22 January 2016. As a major social
network platform in China, Tencent had monthly active users
exceeding 877 million for QQ and 762 million for Wechat by the
first quarter of 2016 [45]. Rapid-developed Tencent LBS plat-
forms can consistently provide services covering various aspects
of daily activities [18] when people send location requests and
authorize related Tencent applications, which have reached 98%
of Chinese internet users in 2017 [46]. Geographical coordinates
of a large proportion of populations can be recorded owing to
the huge subscriber bases. Therefore, Tencent LBS positioning
record is a reliable proxy for the human activity volumes.

In this study, Tencent data are aggregated at a grid level of
0.01◦ in latitude by 0.01◦ in longitude with an area of around
1 km2. Given human mobility, aggregated activity volumes in
a walkable extent employed as a restriction of “neighborhood
of opportunity”[47] are more appropriate to summarize local
vitality than the raw coordinate points. The value of a unit grid
is the total amount of coordinate records located in it during a
certain period. We use the spatial density of activity volumes to
eliminate ground area fluctuations of 0.01◦ × 0.01◦ in different
latitudes and longitudes due to map projection. Given that the
data distribution is heavy tailed, with a skewness of 6.76 and a
kurtosis of 70.3, we balance the dataset by taking logarithms of
the activity densities as training labels, calculated as.

Vi = log

(
1

Ai

1

D

D∑
d=1

C̄id

)
, C̄id =

1

H

H∑
h=1

Cidh (1)

where Vi is the label of the unit grid i, Ai is the ground area
of the grid i (km2), C̄id is the daily record count of the grid i
averaged over H hours (H = 24) of the day d, and it is then
averaged again over the studied five weekdays (D = 5). Cidh is
the raw data representing the total amount of positioning records
located in the grid i within a 1-h period (h− 1, h] at the day d.
Repeated requests of the same user within a period are counted
only once.

RS images are obtained from the open-sourced Google Maps
datasets with three multispectral bands (red, green, and blue;
RGB) at a 19.1-m spatial resolution. True color images with
RGB channels are suitable to reflect the detailed physical living
environment, and they are consistent with human vision cogni-
tion about the physical space. Intuitively, different magnitudes
of activity volumes correspond to distinct RS scenes (see Fig. 1),
confirming it is possible to figure out their associations for the
accurate estimations. Consistent with human activity data, RS
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Fig. 1. Probability density histograms of the human activity volumes in dataset
A, and examples of RS images associated with different volumes, linked by red
dash line.

images are cropped into 0.01◦ × 0.01◦ tiles with the same spatial
extents and coordinate systems (WGS84 Web Mercator in this
study).

B. Neighbor-ResNet Architecture

The physical characteristics and neighbor effects on the
human activity are nonlinear and complex. We propose an
end-to-end architecture called Neighbor-ResNet (see Fig. 2)
by embedding the neighbor knowledge into ResNet-50 [48].
Since the volume data are in raster formats, we fix neigh-
bor patches located at eight nearest units of a target sample.
Surrounding information is included by searching for those
neighbor RS tiles, and then, they are spatially concatenated
from 0.01◦ × 0.01◦ target areas to 0.03◦ × 0.03◦ with the nearest
neighbors. Different from deepening the input channels or con-
catenating feature vectors of parallel image patches, the input
extension explicitly utilizes spatial relationships between center
and neighbor tiles. In addition, the optimal scales to evaluate
the local socioeconomic characteristics have been estimated
to be 600–1000 m [49]. Therefore, we choose 0.01◦ × 0.01◦

as a fixed neighbor extend, approximate to the upper bound
of the optimal scales, to provide enough spatially associated
information regardless of city diversity as well as to simplify
the neighbor extension processes.

The model summarizes individual knowledge of the target
and neighbors and assembles their features via layer-wise con-
volutional operations. The convolution filters, sliding on feature
maps of each layer, can extract interior characteristics when cov-
ering network cells with only target or neighbor information, and
conversely, it can integrate them at adjacent parts, as shown in
the amplified part in Fig. 2. As layers go deeper, the proportions
of integrated features increase as shown in Table I.

TABLE I
NUMERICAL PROPORTIONS OF NETWORK CELLS WITH INFORMATION OF THE

INDIVIDUAL TARGET, NEIGHBORS, AND INTEGRATED PARTS

To maintain the extended spatial knowledge and avoid over-
fitting, we replace the final fully connected layers in ResNet-50
with convolutions generating outputs after the average pooling
3 × 3 × 2048 layer. The output scalar is then an estimated
volume of the 0.01◦ × 0.01◦ area integrating both individual
and associated features of the target RS tile and its neighbors.
All outputs compose the whole regional distributions of human
activity volumes.

C. Network Training

Dataset A in this study contains eight Chinese cities (Harbin,
Beijing, Shanghai, Wuhan, Guangzhou, Kunming, Lanzhou, and
Lhasa) for model training (60%, 45 998 images), validating
(20%, 15 333 images), and testing (20%, 15 333 images). The
locations and RS images are shown in Fig. 3. These cities vary in
their geological landforms, urban landscapes, populations, and
economic development levels. Therefore, they form a diverse
and balanced dataset. In addition, ten randomly chosen cities
apart from those used in model training compose another test
set (dataset B) totally including 110 808 images to evaluate the
model generalizability to new regions.

We use the L1 loss function for back-propagation learning
and weight updating. Hyperparameters are tuned empirically
according to the model performance on validating sets. The
learning rate and batch size are 10−4 and 32, respectively. After
15 000 epochs, the loss of the model convergences to a basically
stable value.

We use Spearman’s rank correlation coefficient (rs), the mean
absolute percentage error (MAPE), and the coefficient of deter-
mination (R2) to assess the rank-fitting performance, absolute
errors, and explained variances of the proposed model, respec-
tively. Among these indices, the MAPE fluctuates greatly and
introduces numerical noises when the denominators (real values)
are small. Additionally, given the heavy-tailed characteristics
of the data, large activity volumes exhibit low frequency but
contain more valuable information about activity concentrations
than those with high frequency [50]. Considering the different
significances of those volume magnitudes, we adopt a weighted
MAPE, as (2) shows, and set the weight as the reciprocal of the
proportion of real volume data in different numerical intervals.

MAPE =
1∑N

j=1
1
pj

N∑
i=1

1

pi

|yi − ŷi|
yi

× 100%

pi =
Nc

N
, yi ∈ [δ · c, δ · (c+ 1))

(2)

where yi and ŷi are the label Vi and the estimated value of the ith
image, respectively; N is the testing size; and Nc is the amount
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Fig. 2. End-to-end framework of Neighbor-ResNet using RS images (denoted as Image1, Image2, . . . , Imagek) to estimate human activity volumes (denoted
as ŷ1, ŷ2, . . . , ŷk). RS image tiles are resized to (3 × 128)× (3 × 128), including 128 × 128 pixels in every target (in red) and neighbor (in blue) unit. Blocks
named “Conv” contain a group of convolutional layers and shortcut structures consistent with ResNet-50 in [48]. We amplify a part of the convolution processes
on pixels in the top circles to show integrated information (in purple) generated by algorithmic convolutions at adjacent parts of the target and neighbor tiles.

Fig. 3. Locations and RS images of the study cities in dataset A used for
network training. The sampled areas, including city centers and suburbs, are
set to be 1.0◦ × 1.0◦, with 10 000 image tiles except for Shanghai due to the
specialty of the city morphology.

of the real volumes in [δ · c, δ · (c+ 1)). We choose the interval
(δ) as 400, the maximum segment length under which the data
do not significantly heavy-tailed distributed, to adjust the MAPE
measurement.

III. RESULTS

A. Accuracy

The proposed model provides an advantage of utilizing
limited volume labels and widely available RS images

TABLE II
ACCURACY ASSESSMENT OF TEST CITIES IN DATASET B

The results in bold indicate better estimation performances in the comparison between
ResNet and Neighbour-ResNet.

for activity volume estimation, with high feasibility and
generalizability. For testing sets in dataset A, Neighbor-ResNet
(rs = 0.942,MAPE = 37.7%) exhibits higher accuracy than
ResNet (rs = 0.894,MAPE = 51.4%). The improved R2

(0.803 for Neighbor-ResNet and 0.675 for ResNet) indicates
that Neighbor-ResNet can explain a greater proportion of the
volume variance from RS observation clues than ResNet can.
For generalization, we apply the well-trained model directly
to cities in dataset B (see Table II). The average (avg) and
standard deviation (std) of R2 (0.601 ± 0.180) imply that,
through the layer-wise feature assembling and evolving, we
generally explore a potential 60.1% explainability of remotely
sensed physical environments on the activity volumes. Spatial
distributions of estimated outputs of Neighbor-ResNet are in



5656 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 13, 2020

Fig. 4. (Left) Spatial distributions of real values, (middle) estimated outputs of Neighbor-ResNet, and (right) ResNet in four test cities: (a) Hefei, (b) Jinan, (c)
Luoyang, and (d) Shenzhen. Distribution comparisons of all test cities are shown in Appendix D, Fig. 12. Breakpoints of the color ramp are determined by the
head/tail breaks [50].

better agreement with the real volumes than those of ResNet
(see Fig. 4). Densely populated urban centers and city-wide
spatial patterns can be clearly recognized in the estimated
mappings. We also find that Shenzhen is an exception, with a
high rank correlation (rs = 0.929) but low absolute accuracy
(MAPE = 74.2%, R2 = 0.068) with the misrecognition of
the south downtown. The specific analysis is provided in
Appendix C.

B. Landscape Interpretation

Exploring the landscape details underpinning the network
recognition gives us some insights into how human activity inter-
plays with physical environments. We decompose the network
to see how layer-wise features evolve through the deep archi-
tecture (in Appendix B). The finding shows how the end-to-end
network captures hidden hierarchies of RS images, from gath-
ering fine-grained information of ground objects to extracting
characteristics of land parcels, and finally, assembling abstract

features as high-level regional representations. Thus, we con-
duct the interpretation from both object-based and region-based
perspectives.

In shallow layers, distinctive ground objects provide physical
clues about volume variations. We use gradient-weighted class
activation mapping (Grad-CAM) [51] to figure out ground indi-
cators of the human activity. The obtained heat maps quantify
relative contributions of input pixels to the estimates and high-
light distinctive ground objects. As summarized in Fig. 5, we find
some informative objects that are commonly shared, regardless
of city specialties.

Through assembling image characteristics and generating
high-level features, our model distinguishes subtle differences
of regional layouts and reveals heterogeneous landscape traces
of the human activity. We cluster the RS scenes based on the
learnt features to analyze such heterogeneity. The images are
grouped by the minibatch k-means method [52] using feature
vectors of the last network layer as representations of the inputs.
Beijing in dataset A and Shenzhen in dataset B are selected as
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Fig. 5. Grad-CAMs for object interpretations. Labels I–VI represent six typi-
cal recognition scenes in 0.03◦ × 0.03◦, each with five examples. RS images
are in the top rows, and corresponding heat maps are in the bottom rows.
When surrounding lands are easily distinguished by color as in Scene I or
built-up areas cover most of the input regions as in Scene II, compact buildings
are highlighted; Scene III shows the situation when constructions border on
farmland or on hillside. Although they have similar hues, the network focuses
on building areas accurately. One explanation is that the coarse texture makes
building areas distinctive from natural objects; Scene IV proves the ability of
our model to recognize different artificial objects. For buildings like industrial
workshops, agricultural greenhouses or airport pavement, large regular shapes,
and highly saturated roof colors may be informative indicators to distinguish
them from crowded downtown buildings; Scene V illustrates that roads and
their intersections are strongly related to human activities. Whether a road exists
indicates accessibility, especially in rural areas; in Scene VI, the model avoids
locating highlighted places on rivers, which plays a negative role on volume
increasing. When bridges appear, the adjacent points linking the bridge and the
shore are highlighted.

analysis cases, since they are metropolises in the north and south
of China, respectively, and cover a wide range of per-unit volume
magnitudes. The activity volumes increase with the growth of
built-up areas, the decrease of green cover rates and transitions
of architectural appearances in two cities [see Fig. 6(a) and (b)],
while the building density shows little variation especially in
Shenzhen. It indicates that increased human activity leads to
built-up area expansion but building density may remains at a
consistent level for daily activity demands. For nearby classes in
high indexes, such as Classes #9 and #10, it is difficult to visually
identify their differences. Nonetheless, they are distinguished
clearly by our model, with real volumes displaying individual
distributions [see Fig. 6(c) and (d)] and their units spatially
clustering in distinct urban functional contexts [see Fig. 6(e)
and (f)]. Detailed analysis is provided in Appendix C-A. These
results demonstrate that high-level distinctions of human activity
traces on landscape layouts can be effectively captured by our
model.

The explainability of the physical environment on human ac-
tivity volumes varies in these feature-based classes [see Fig. 6(c)
and (d)]. We see that medium classes are more accurate. For
classes in lower indexes, the accuracy is influenced by small
population bases and noises. For those in higher indexes, when
construction layouts have been largely covered and fixed, the
increase of activity volumes probably follows or leads to changes
that are less recognizable through RS observations, such as
more effective utilization of interior architectural spaces, larger
transportation capacity, stronger infrastructure support, or more
attractive markets.

C. Neighbor Effect

The neighbor landscape provides knowledge about geograph-
ical contexts of the target area and enhances the estimations, but
its importance is inconsistent under different types of spatial
associations including high–high clustering with the centric
unit as a hot spot (HH), low–low clustering with the center
as a cold spot (LL), low–high clustering with the center as
a low outlier (LH), high–low clustering with the center as a
high outlier (HL), and nonsignificant association with a 95%
confidence interval (NS). Local Moran’s I [53] describes such
associations, that is, the degrees to which observations at certain
areas are spatially autocorrelated to those nearby. It recognizes
autocorrelation types in real volumes based on statistical tests (in
Appendix A). We separately analyze the performance improve-
ment of Neighbor-ResNet on units with different association
types (see Fig. 7). The result shows incorporating neighbor
knowledge is more beneficial for estimating the human activity
in hot spots than cold spots and nonsignificant units, while for
outliers, the effect fluctuates.

We find that on the detailed numerical distributions of ac-
tivity volumes neighbor effects are differentiated by the spatial
associations, as shown in Fig. 8 and Table III. For hot spots
mostly located in urban districts such as units in Classes #9 and
#10 in Shenzhen, neighbor landscape amplifies the difference of
activity concentrations in target areas, leading to larger variances
and larger averages in estimates. This shows the aggregation
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Fig. 6. (a) and (b) RS image samples, (c) and (d) test accuracies, and (e) and (f) spatial distributions of classified landscapes in (left) center Beijing inside the
Sixth Ring Road and (right) Shenzhen. The landscapes are divided into ten classes labeled by numerical ranks of averaged real volumes. The optimal number of
classes is determined by maximizing interclass distances and minimizing intraclass distances. In (c) and (d), correlations between real and estimated volumes of
test data are listed. Black dotted lines in the scatter plot are y = x lines. The top and right histograms show numerical distributions of real and estimated values,
respectively. The classes, sorted from the lowest to the highest correlation rs, are Classes #1, #10, #3, #9, #8, #2, #5, #4, #6, and #7 for Beijing and Classes #1, #3,
#10, #4, #2, #8, #5, #7, #6, and #9 for Shenzhen. The five yellow loop lines in (e) represent the Second Ring Road (R2) to the Sixth Ring Road (R6) in Beijing.
The yellow line in (f) represents the city boundary of Shenzhen.

TABLE III
INDICES DESCRIBING NUMERICAL DISTRIBUTIONS OF REAL VOLUMES, OUTPUTS OF NEIGHBOR-RESNET AND RESNET IN HOT SPOTS (HH), COLD SPOTS (LL),

AND NONSIGNIFICANT AREAS (NS), INCLUDING AVERAGES (AVG), STANDARD DEVIATIONS (STD), SKEWNESS (SKEW), AND KURTOSIS (k)
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Fig. 7. Neighbor enhancement under different spatial associations in four cities: (a) Hefei, (b) Jinan, (c) Luoyang, and (d) Shenzhen. Results of all test cities
are shown in Appendix D, Fig. 13. Unit values are differences of absolute estimation errors of Neighbor-ResNet and ResNet (ErrorNeighbor-ResNet − ErrorResNet).
Negative values mean accuracy improvements using Neighbor-ResNet. Five dot symbols indicate five local autocorrelation types. Pie plots annotate the ratios of
units with error decrease using Neighbor-ResNet. From the results for test cities, Neighbor-ResNet generally performs better on 62.7% of hot spots, 56.9% of cold
spots, and 56.5% of nonsignificant units. The enhancement on outlier units is unstable.

Fig. 8. Probability density histograms of real volumes and outputs of Neighbor-ResNet and ResNet in (a) hot spots, (b) cold spots, and (c) nonsignificant areas.

effect, partly explained by spatially assembled agglomeration
economics in urban growth [54]. For cold spots covering major
suburban areas, such as Classes #1–5 in Shenzhen, charac-
teristics of neighbor environments are different from those of
center areas. They smooth the volume variations and rectify
extreme values. This shows dispersion effect contrary to the
downtown. In nonsignificant areas, neighbor knowledge is also
informative, producing outputs with slightly larger variances
and better agreement with real volumes than those of ResNet.
These results inspire future model designs by separately training

groups of urban districts and suburbs to reinforce the knowledge
of each single effect of neighbors.

D. Constraining Factors

We identify factors limiting the model performance accord-
ing to RS techniques, regional socioeconomic functions, and
specific ground appearances. In addition, we pinpoint units with
the largest deviations in test cities as complementary instances
for the analysis (see Fig. 9).
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Fig. 9. Input RS images of the units with the largest estimate deviations in test cities: (a) center area in Shijiazhuang, covering high-rise buildings; (b) area
in Hefei, with the circular waterway park attracting tourists for its emerald-necklace-like appearance; (c) downtown district in Shenzhen, covering international
financial center (point A) along the south boundary; (d) center area in Dalian, covering high-rise building ranges (points B); (e) area in Tianjin, covering sightseeing
and center economic belts along rivers and the Tianjin railway station (point C); (f) area in Changsha, covering river scenic belt and financial center; (g) area in
Jinan, covering an attractive historic Daming lake (point D); (h) area in Nanchang, covering famous historic pavilion (point E) and developed river tunnels; (i)
suburb in Luoyang, covering a college town (point F); and (j) area in Shenyang, covering the Shenyang railway station (point G). Deviations in these areas are all
underestimated.

1) Building height: Building height is one of the key vari-
ables reflecting the human activity, but it presents limited
information in 2-D scanned RS images. Although we can
use building shadows in 2-D images for height extractions,
it is greatly influenced by photographing orientations and
the relative positions of the satellite, the Sun, and the build-
ings [55]. Instead, 3-D RS techniques, such as laser altime-
ter [56], multiangular observation [57], and airborne light
detection and ranging (LiDAR) [58], present better mea-
surement capability. The dimension limitation reduces
the distinguishability of architecture heights. This partly
explains local deviations in high-rise building ranges [see
Fig. 9(a)–(d)]. In particular, this influence is greater in
Shenzhen because this city has more high rises and larger
population densities after the rapid urbanization.

2) Socioeconomic backgrounds: Particular land functions
and demographic backgrounds are less traceable from
RS images. First, while natural scenes negatively affect
activity increasing in general, functional natural zones
are exceptions, such as sightseeing and economic belts
[Fig. 9(e) and (f)] and tourist attractions [see Fig. 9(b), (h),
and (g)]. Given their low frequency in training data and
the preservation principle of natural scene development,
increases of activity volumes in these functional scenes are
hard to detect. Second, significantly unbalanced demo-
graphic structures cause deviations. Since young adults
have greater presences in mobile networks [59], [60],
recorded activity magnitudes tend to increase in regions
with greater proportions of young people [see Fig. 9(i)] or

rapidly growing cities such as Shenzhen. The infrequent
large volumes are hard to accurately predict (see details
of Shenzhen in Appendix C-B).

3) Specific appearances: Layouts and buildings with special
appearances have unique features that beyond the general
knowledge learnt by our model. Layouts covering de-
marcation lines show discontinuous transformation from
downtown constructions to natural scenes. This causes
underestimations, such as those along city boundary of
Shenzhen and Hong Kong [see Fig. 4(d)] or along coastal
lines in Dalian [see Fig. 4(j)]. Specific constructions may
also be misrecognized by the model. Diverse transport sta-
tions are typical examples. They can be designed similar
to factories with regular bright roofs [see Fig. 9(f)] or with
a unique appearance as a city symbol [see Fig. 9(j)]. High
volumes but low recognizability make those buildings the
sources of deviations.

IV. DISCUSSION

In this work, deviations indicate the explainability limits of
physical environment, which inspire further utilizations and
enhancements. On the one hand, they highlight key areas that
need additional attention for regional management. Deviating
from the general knowledge learned by the model, these re-
gions reveal mismatches between local activity volumes and
the environmental carrying capacity. Overestimation may occur
when local decision-makers have not realized and developed
the potential of the regions, whereas underestimation emerges
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TABLE IV
INDICES DESCRIBING NUMERICAL DISTRIBUTIONS OF REAL VOLUMES IN TEN

LANDSCAPE CLASSES (C) IN SHENZHEN AND THE TEST SET OF BEIJING

The class labels are ranks of averages of all real volumes; thus, the averages of only test
set in Beijing are not strictly increasing.

when physical settings in those regions do not fit well with large
populations. On the other hand, the limits inspire further model
designs considering region diversity. This can be achieved by
preclassifying regions for separate training, such as areas in
downtowns and suburbs or in metropolises and small cities.
Moreover, prior knowledge about city specialties can be added
through input feature enrichment.

Temporal and spatial scales also influence the estimation. The
changing frequency of the human activity is higher than that of
the physical environment. Correspondingly, updating periods of
RS imagery and positioning data are inconsistent. Based on this
concern, our work is conducted with a relatively low temporal
frequency, showing general interplays between daily averaged
human activity and the physical environment. Spatially, owing
to the invariance of convolutional operations, the architecture is
universally fitted for diverse scales regarding different estimated
socioeconomic factors and potential applications. The model is
also promising to generate stratified population mappings across
multiple spatial scales. In addition, the definition of “neighbors”
influences the effectiveness of incorporated information. Al-
though the selected 0.01◦ × 0.01◦ neighbor extend has proved to
be efficient in most cities, it still lacks the flexibility to fit regional
specialties. The model can be further improved by adaptively
adjusting optimal neighbor extensions based on ancillary data,
such as road structures, land use types, and urban morphologies.

V. CONCLUSION

In this study, we develop a new deep-learning-based frame-
work for estimations of human activity volumes from widely
available RS imagery. The model needs only limited cover of
mobile positioning data as the training guidance, and it learns the
generalizable knowledge of physical environments to achieve
extensive predictions. The spatial distributions of human activity
resulting from our model are in agreement with the real data, and
integrating neighbor knowledge enhances the estimation. Our
findings and further interpretations suggest that our model can
capture heterogeneous interactions governing human activity on
different landscapes and neighbor associations.

Through the end-to-end model, we directly build a bridge
between socioeconomic and physical environments and extract
informative landscape traces of the human activity, one of the

Fig. 10. Layer-wise analysis. (a) Examples of feature maps in five convolu-
tional layers. The detailed layer names are consistent with those of ResNet-50
in [48]. (b) Proportions of activated units after the rectified linear unit (ReLU)
activation functions in all test images. The value decreases in deep layers except
for slight increases after max-pooling. Input areas with higher than 3000 activity
volumes (large) or under ten records (small) are compared in the subfigure.
Values in shallow layers have large variances and are more affected by raw input
data since they extract most details of the images, while those in deep layers are
more stable.

critical socioeconomic factors. This framework shows some ad-
vantages and applications: Theoretically, it provides support to
track the coevolvement of the human activity with physical land-
scape through hierarchical RS features; the model enhancement
validates the feasibility of integrating the geographical laws into
networks; and the great predictability reminds us to consider the
collinearity of activity-related indices and environmental factors
when they are both used as explanatory variables in related
tasks. Practically, it provides a universal architecture supporting
a wide range of socioeconomic measurements, such as gross
domestic product (GDP), crime rates, and housing prices; it can
be a reliable human activity estimator with great generalizing
performances on extensive unsampled areas, especially in low-
income countries and regions; and the estimated values provide
a basic magnitude reference to adjust diverse activity data from
different mobile sources, and thus, make them comparable. With
the advantages of the generalizability of the DCNN and scale
invariance of convolutions, future model improvement can be
achieved by enriching input features about region specialties
and utilizing adaptive strategies for scale selections and neighbor
extensions.

APPENDIX A
RECOGNIZING TYPES OF LOCAL SPATIAL AUTOCORRELATIONS

Local Moran’s I [53] measures local spatial autocorrelations.
It can be classified into five types based on a collection of
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Fig. 11. Demographic structures of the whole of China, Beijing, and Shenzhen. The proportions of population aged from 20 to 40 in Shenzhen is larger than the
averaged level around China. Although Beijing and Shenzhen are similar metropolises, the latter has a greater proportion of young adults than the former has.

Fig. 12. (Left) Spatial distributions of real values, (middle) estimated outputs of Neighbor-ResNet, and (right) ResNet in all test cities: (a) Hefei, (b) Jinan, (c)
Luoyang, (d) Shenzhen, (e) Tianjin, (f) Shijiazhuang, (g) Shenyang, (h) Nanchang, (i) Changsha, and (j) Dalian. Breakpoints of the color ramp are determined by
the head/tail breaks [50].
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Fig. 12. (Continued.) (Left) Spatial distributions of real values, (middle) estimated outputs of Neighbor-ResNet, and (right) ResNet in all test cities: (a) Hefei,
(b) Jinan, (c) Luoyang, (d) Shenzhen, (e) Tianjin, (f) Shijiazhuang, (g) Shenyang, (h) Nanchang, (i) Changsha, and (j) Dalian. Breakpoints of the color ramp are
determined by the head/tail breaks [50].

statistical indicators explicitly describing the spatial association
of a certain observation with those nearby.

The local Moran’s I for an observed location i is defined as

Ii = zi
∑
j

ωijzj

where zi and zj are standardized observations at locations i and
j, while wij is the spatial weight element measuring the ith and
jth relationships. We set the weight of the ith observation with its
eight neighbor units to be 1, while others are set as 0. Therefore,
only neighbor values are included in the weighted summations
over j.

We use the normally standard Z-score of the local Moran’s
I and its statistical significance (p-value) to detect local spatial
clusters and outliers. The Z-score can be further translated into
q-values as quadrant numbers of Moran scatter plots [61]. The
five recognition rules are as follows.

1) q = 1, p < 0.05: High–high clustering with the center unit
as a hot spot (HH).

2) q = 2, p < 0.05: Low–high clustering with the center unit
as a low outlier (LH).

3) q = 3, p < 0.05: Low–low clustering with the center unit
as a cold spot (LL).

4) q = 4, p < 0.05: High–low clustering with the center unit
as a high outlier (HL).
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Fig. 13. Neighbor enhancements in all test cities: (a) Hefei, (b) Jinan, (c) Luoyang, (d) Shenzhen, (e) Tianjin, (f) Shijiazhuang, (g) Shenyang, (h) Nanchang,
(i) Changsha, and (j) Dalian. Unit values are differences of absolute estimation errors of Neighbor-ResNet and ResNet (ErrorNeighbor-ResNet − ErrorResNet). Negative
values mean accuracy improvements using Neighbor-ResNet. Five dot symbols indicate five local autocorrelation types: high–high clustering with the center unit
as a hot spot (HH), low–low clustering with the center as a cold spot (LL), low–high clustering with the center as a low outlier (LH), high–low clustering with the
center as a high outlier (HL), and nonsignificant association with a 95% confidence interval (NS). Pie plots annotate the ratios of units with error decrease using
Neighbor-ResNet. The hot spots show larger proportions of the enhancement using Neighbor-ResNet than the cold spots and nonsignificant units do, while the
ratios in the outliers fluctuate.

5) p ≥ 0.05: Nonsignificant association with a 95% confi-
dence interval (NS).

APPENDIX B
NETWORK INTERPRETATION

Based on diverse training samples, our network explores
general knowledge linking human activities with satellite ob-
servations. To understand how the end-to-end network learns,
we decompose and interpret the deep architecture. The network
explores hidden hierarchies [28] of RS images as shown in
layer-wise feature maps [see Fig. 10(a)], from detailed geo-
metric information to land parcel characteristics, and finally,
to high-level regional representations. In Conv1, details are
detected, such as edges and shapes. In Conv2_3, land parcels
are highlighted, such as water areas, farmlands, and paths.
Textural information is clearly detected in Conv3_4. For the
deeper layers at Conv4_6 and Conv5_3, the features are more
abstract. Different channels in one layer highlight diverse parts
and generate different feature maps at the same abstract level.
In addition, valid information becomes sparse when traveling
through the layers [see Fig. 10(b)]. These results demonstrate
how the inputs evolve to the output scalars, from gathering

abundant fine-grained information to abstracting hierarchical
features and assembling them as high-level representations.

APPENDIX C
SHENZHEN ANALYSIS

The estimation result for Shenzhen shows a high rank-
fitting performance (rs = 0.929) but a low absolute accuracy
(MAPE = 74.2%, R2 = 0.068). The spatial distribution com-
parison reveals that the south center of Shenzhen is not con-
sistently recognized. We conduct the analysis by combining
landscape interpretations and deviation assessments.

A. Model Effectiveness

We validate that the model works in Shenzhen, since sub-
tle differences of RS images are recognized with individual
numerical volume distributions and distinct urban functional
contexts. As shown in the histograms [see Fig. 6(c) and (d)],
both real volumes in Beijing and Shenzhen in different classes
follow approximately log-normal distributions with different
averages, standard deviations, skewness, and kurtosis outcomes
(see Table IV). Classes #9 and #10 in Shenzhen in Fig. 6(f)
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Fig. 13. (Continued.) Neighbor enhancements in all test cities: (a) Hefei, (b) Jinan, (c) Luoyang, (d) Shenzhen, (e) Tianjin, (f) Shijiazhuang, (g) Shenyang, (h)
Nanchang, (i) Changsha, and (j) Dalian. Unit values are differences of absolute estimation errors of Neighbor-ResNet and ResNet (ErrorNeighbor-ResNet − ErrorResNet).
Negative values mean accuracy improvements using Neighbor-ResNet. Five dot symbols indicate five local autocorrelation types: high–high clustering with the
center unit as a hot spot (HH), low–low clustering with the center as a cold spot (LL), low–high clustering with the center as a low outlier (LH), high–low clustering
with the center as a high outlier (HL), and nonsignificant association with a 95% confidence interval (NS). Pie plots annotate the ratios of units with error decrease
using Neighbor-ResNet. The hot spots show larger proportions of the enhancement using Neighbor-ResNet than the cold spots and nonsignificant units do, while
the ratios in the outliers fluctuate.
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cluster separately in the south-west and north-west zones, al-
though they have similar construction layouts. This is highly
consistent with the urban spatial arrangement: developing areas
with factories and industries in the north-west and synthesis
high-technological zones in the south-west [62]. Analogously in
Beijing [see Fig. 6(e)], Class #10 continuously locates around
the urban core and has larger proportions in the north, while its
periphery is mostly covered by Class #9. It corresponds to the
concentric circle development and the north-south differentia-
tion in Beijing [63], [64]. The results demonstrate that our model
is effective in distinguishing diverse landscape characteristics in
Shenzhen, with the high Spearman’s rank correlation coefficient
(rs) of 0.929.

B. Sources of Overall Magnitude Deviations

The demographic background of Shenzhen explains the mag-
nitude deviations between estimated and real volumes shown in
Fig. 6(d). Since the positioning data are collected from mobile
networks where young adults have greater presence [59], the
demographic structures influence the recorded activity magni-
tudes. The comparison of demographic structures in Shenzhen,
Beijing, and the whole of China in Fig. 11 demonstrates the
uniqueness of Shenzhen. Distinct from Beijing, as a northern
metropolis that naturally grew via a long history, Shenzhen
experienced a rapid urbanization in the past 35 years and formed
a more youthful demographic structure. It was voted as China’s
Most Dynamic City and the City Most Favored by Migrant
Workers in 2014 [65] and boasted a population of over 10 million
people in 2016. For cities with such positively skewed age
distributions, the recorded activity intensities tend to have over
two times greater values than those of most cities. The infrequent
large volumes of active population are hard to predict based on
the learnt knowledge. This partly explains why Shenzhen shows
general underestimations.

C. Sources of Local Deviations in the South Center

The geographical location of city center partly explains the
local deviations. Shenzhen is a southern coastal city, extending
from east to west. The downtown districts (Luohu, Futian, and
Nanshan) are located along the south boundary adjacent to
Shenzhen Bay and the north of Hong Kong [see Fig. 6(f)]. This
leads to discontinuous transformation from downtown areas to
natural scenes in the north-south direction. The RS observations,
including neighbor water areas of Shenzhen Bay and green
covers in the north of Hong Kong, show negative indicators
for volume increasing based on the knowledge of learned gen-
eral associations. This further illustrates that, while integrating
neighbor knowledge enhances the estimate performance [see
Fig. 7(d)], prior knowledge of directional allocations of neighbor
weights may be beneficial for the estimates.

Architecture layouts also presumably influence the estimates.
Shenzhen has developed simpler architectures comprising many
high rises after rapid growth, without various large and regular-
shaped workshops or greenhouses as in Beijing [compared in
Fig. 6(a) and (b)]. As analyzed in Section III-D, building heights
in the 2-D RS images are harder to recognize than building

the footprint areas. Therefore, large population concentrations
in high buildings tend to be underestimated. Enriching input
features or adding training samples of special cities that have
experienced rapid urbanization analogous to that of Shenzhen
may be promising ways to improve the accuracy and enhance
the model in the future.

APPENDIX D
SUPPLEMENTARY FIGURES

Spatial distributions of estimation results and neighbor en-
hancements in all test cities are shown in Figs. 12 and 13,
respectively.
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