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Abstract—The forest dynamics are usually explained by the
precipitation and temperature through fixed effects models using
ordinary least squares and geographically weighted regression
methods. However, forest dynamics were found insufficiently ex-
plained by meteorological factors as the fixed effects models were
not designed to account for random effects. In this study, we utilized
three types of forests located in the Gulf of Mexico Coast region,
including softwood, hardwood, and mixed forests to investigate the
underlying forest dynamics to meteorological variations by incor-
porating random effects into fixed effects models. Four types of
linear mixed effects models (LMMs) were developed for regressing
the normalized difference of vegetation index (NDVI) against two
explanatory variables: precipitation and temperature. By assuming
that the intercept and slope parameters estimated from LMMs
would vary randomly, we intended to explore if the amount of
variation in the NDVI variables could be reduced by the use of
random effects variables. The results suggested that the random
intercept and random slope model fitted the data better than the
random intercept model with higher R2, lower Akaike information
criterion, and Bayesian information criterion values. The R2 value
indicated that the explanatory power of the LMM varies between
forest types. Moreover, this study revealed that a linear mixed
effects model could significantly reduce the unexplained variance
by introducing random effects variables, and forest dynamics is a
synthetic result of the mixed effects of temperature and fixed effects
of precipitation.

Index Terms—Forest dynamics, linear mixed effects model
(LMM), precipitation, temperature.

I. INTRODUCTION

C LIMATE change is of the fundamental importance to the
changes in vegetation conditions [1]. Climatology has a

specific role in explaining vegetation phenological changes [2].
It has been demonstrated that the worldwide changes in the
functional diversity in forests are measurable and predictable
[3]. For instance, the distribution of vegetation can be explained
by climatic factors, such as precipitation, temperature, potential
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evapotranspiration, water surplus, and water deficit [4]. Changes
in the precipitation and temperature patterns were found related
to the spatial vegetation distribution [5]–[7]. As previous studies
have noted, factors, such as precipitation and temperature, could
alter vegetation patterns, and which were believed capable of
explaining the climate-related variation in forests [8]. Some
regions are affected primarily by a single climatic factor: ei-
ther temperature or precipitation. For instance, Wang et al. [9]
suggested that the vegetation growth in North America’s mid to
high latitudes is very sensitive to the temperature changes and
can be partly explained by changes in the trends of temperatures.
Karnieli et al. [10] also demonstrated that temperature could be
applied to explain vegetation changes over the North American
continent and have found that the normalized difference of
vegetation index (NDVI) and temperature relationship varies
with location, season, and vegetation type. Moreover, the trend
and magnitude of the NDVI values for most forests were found
correlated with the spatiotemporal variability of precipitation in
North America’s low latitude [5]. Some climate change-induced
alterations to forests were compounded simultaneously by the
temperature and precipitation. For instance, the distribution and
structure of the Gulf of Mexico (GOM) mangroves forests
were found significantly influenced by both precipitation and
temperature [11]. Li and Meng [12] have examined the effects
of climate change on forest dynamics across the Gulf Coast of
the United States and found that the seasonality of precipitation
and temperature can explain forest dynamics.

NDVI is a commonly used greenness indicator, which in-
dicates the presence, amount, and vigor of green vegetation
[2], [5], [13]–[15]. Vegetation activities and dynamics can be
quantified by NDVI at a landscape [16], [17], regional [16],
[18], [19], [20], and global scale [10], [21]. NDVI has been used
to parameterize the models relating to phenology for ecological,
climatic, and agricultural applications [2], [16]. Additionally,
NDVI has also been utilized to indicate spatiotemporal forest
dynamics under climate change conditions [12]. For addressing
the spatial controls of changes in the vegetation, researchers
attempted to use the climate-NDVI data relationship. Liu et al.
[22] show that the spatial heterogeneity of the climate-NDVI
relationship is driven by vegetation type and climate conditions.
Moreover, the climate–NDVI relationship also exhibits seasonal
variations [23]. For instance, Gómez-Mendoza et al. [5] have
found that phenological changes in NDVI are related to the
annual and seasonal cycles of temperature and precipitation. It
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was believed that the implication of the spatiotemporal dynamics
of climate-NDVI relationships is valuable for the understanding
of land surface ecosystems and environmental management [7],
[23].

Usually, linear regression models were developed and utilized
to quantify relationships between forest dynamics and meteo-
rological factors. Much of these research attempts to explore
the climate-related changing patterns of forests by using fixed
effects approaches, such as ordinary least squares (OLS) and
geographically weighted regression (GWR). However, the clas-
sic linear regression, such as OLS, is not suitable for analyzing
spatially correlated observations and measurements [24]. The
GWR is a local modeling technique to estimate model coeffi-
cients with spatially varying relationships and spatial autocor-
relation of model residuals [17]. In a comparative analysis of
GWR and OLS methods, Propastin and Kappas [1] presented
an application of the GWR regression model that could provide
a more accurate prediction than the OLS regression model.
The GWR model is a common form of statistical modeling
that was applied in various fields of geographic applications.
Previous studies have attempted to apply GWR models to assess
the relationship between vegetation systems and meteorological
factors. For instance, Zhao et al. [6] demonstrated that GWR
could spatially reflect different effects of climate factors on the
vegetation. Propastin and Kappas [1] pointed out that the spatial
patterns in the intercept and slope parameters estimated from the
GWR models revealed different responses of the vegetation to
precipitation. Li and Meng [12] proved that the GWR model has
the capacity of capturing the spatial and temporal heterogeneity
patterns of forest dynamics to climatic changes.

Winter [25] explains the random effect as a factor that is
usually nonsystematic and unpredictable and influences the data.
The method for considering both fixed and random effects of co-
efficient estimation was known as the linear mixed effects model
(LMM) [26]–[28]. LMM is applicable to a diverse set of applica-
tions and domains in the forestry. For instance, Moore et al. [29]
incorporated random effects in regression models to account for
the temporal autocorrelation in the phenological dynamics of
vegetation. Additionally, to deal with spatial variabilities, LMM
can relax the assumption of independence. For instance, LMM
considers the spatial dependence and spatial heterogeneity in
modeling processes to deal with the spatial effects of forests
with different spatial patterns of tree locations [28], [31]–[33].
Previous studies have demonstrated that the LMM is capable
of characterizing the variance parameters of random effects in
model residuals and of obtaining more accurate predictions than
those derived from general fixed effects models. For instance,
the LMM method fitted data better than the OLS method as it
emphasizes the local information through characterizing spatial
covariance structure and removing the effects of spatial autocor-
relation in model residuals [30]. Breidenbach et al. [34] found
that the use of LMM can improve the estimates and reduce the
bias, which is present in the estimates of fixed effects models.
Meng et al. [28] pointed out that the LMM can more closely
indicate the spatial characteristics of forest biomass than fixed
effects models.

Understanding forest dynamics in relation to climate change
is essential for analyzing the impact of forest changes on

regional biodiversity [35]. By exploring the GOM forest vari-
ations under climate change conditions, this study provides a
good understanding of the landscape dynamics of the GOM
Coast region and helps to promote the sustainable development
of the GOM ecosystems. The forests around the GOM are one of
the most biologically diverse ecosystems and rely on favorable
temperatures and appropriate precipitation patterns [36]–[39].
To study this region is valuable for understanding global cli-
mate change and its ecological consequences [11]. The coastal
environments along the GOM are altered by the consequences
of climate change [40]. As such, changes in the temperature and
precipitation within the GOM coastal region were expected to
be able to explain forest dynamics in this study. Previously, there
have been many discussions on the spatiotemporal variation of
vegetation in response to climate change using the multivariate
regression analysis. However, the mixed effects of fixed and
random impacts of variables have seldom been considered in
the literature. To obtain an improved estimate of the relationship
between forest dynamics and climate change, we hypothesized
that both fixed and random effects exist in regression models
that are used to explain forest dynamics. The goal of this
study is to understand how forest dynamics are explained by
meteorological factors that are influenced by underlying fixed
and random effects. To achieve this objective, a comparative
analysis was conducted to assess the model performance of the
model using fixed effects variables, and the model of using both
fixed effects and random effects variables and the coefficient
of determination (R2), The Akaike information criterion (AIC)
and Bayesian information criterion (BIC) were generated for the
model performance assessment. By using precipitation, temper-
ature, and NDVI data ranging from March 2009 to February
2010, we intended to explore the importance of random effects
to address forest dynamics within softwood, hardwood, and
mixed forests dominated areas in the GOM coastal region. The
model applied in this study to estimate forest dynamics will be
a useful tool for assessing the GOM forest resilience to climate
change.

II. MATERIAL AND METHODS

A. Study Area

A total of 244 counties were defined as the coastal counties
that intersect an inland buffer area located 100 miles (approxi-
mately 160 km) from the coastline of the GOM (see Fig. 1). The
major climate type of this area is humid subtropical [41]. The
average annual precipitation is 1452 mm and the average annual
temperature is 19.0 °C. The majority of precipitation occurs
as rain throughout the whole year. The study area is mainly
occupied by the forest and agricultural land uses extending from
eastern Texas to the Florida Keys, which varies greatly due
to the influential factors, such as climate change and human
disturbance [39].

B. Data Source

We obtained meteorological data at 4-km grid cell resolu-
tion for a period from March 2009 to February 2010. The
data included monthly precipitation and temperature obtained
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Fig. 1. Study area: the GOM coastal region.

from the parameter-elevation regressions on independent slopes
model dataset, which was produced by the Natural Resources
Conservation Service, National Water and Climate Center in
partnership with Oregon State University. The byseason pre-
cipitation for spring (March–May), summer (June–August), fall
(September–November), and winter (December–February) was
generated separately through an accumulation of respective
monthly precipitation values. The whole-year precipitation was
defined as an accumulation of precipitation values from March
2009 to February 2010. Similarly, the byseason temperature
was obtained through the computed averages of monthly tem-
perature values. The whole year’s temperature was obtained
by averaging the temperature values from March 2009 to
February 2010.

NDVI is one of the most widely used multispectral vege-
tation indices in remote sensing. It is formulated based on the
reflectance measurements in the red and near-infrared portion of
the spectrum. Forest biomass and dynamics characteristics could
be represented by NDVI at the landscape scale [1], [17], [28]. In
this study, we employed NDVI to quantify forest greenness and
biomass. The NDVI data were obtained based on the MODIS
16-day composite NDVI (MOD13Q1) product at a 250-m spatial
resolution. The monthly NDVI was generated using the two
16-day composite in a month period. To be consistent with
the meteorological data, the preparation of the byseason and
whole-year NDVI was implemented by averaging the 3 of and
12 of monthly NDVI values, respectively.

Propastin and Kappas [1] indicated that the magnitude and
the sign of regression model parameters obtained at different
locations could exhibit a large difference. Therefore, to improve
the regression model performance and reduce the model vari-
ance the study area was classified into three forest types (i.e.,
softwood, hardwood, and mixed forests), according to the Na-
tional Land Cover Database [42]. After removing invalid values,
the precipitation, temperature, and NDVI were extracted from
the byseason and whole-year raster data layers to an attribute
table. The attribute was then aggregated, respectively, based on
softwood, hardwood, and mixed forests dominated areas located
across a total of 244 coastal counties for the regression analysis.

C. Linear Mixed Effects Models

An LMM is an expansion of a typical linear regression model.
In the LMM, random effects refer to the effects of variables that
are assumed to be a random sample varying randomly around
a population mean [34]. The LMM can be written as a single
combined model with fixed and random effects. The combined
model is expressed as

yi = (β0i + b0i) +

n∑
j = 1

(β1ij ∗ xij)

+

n∑
j = 1

(b1ij ∗ xij) + εi (1)

εi ∼ N
(
0, σ2

)
i.i.d (2)

b0i ∼ N
(
0, σb0i

2
)
i.i.d (3)

b1ij ∼ N
(
0, σb1ij

2
)
i.i.d. (4)

Here, β0i and β1ij are the fixed effects coefficients to be esti-
mated from data; b0i and b1ij are the random effects coefficients;
i is the ith observation; j is the jth variable. The random effects
b0i and b1ij are assumed to be independent for different i; the εi
of different i is assumed to be independent of the random effects.
In essence, each random effect unit has its random regression line
such that the intercept is β0i + b0i and the slope is β1ij + b1ij.
The LMM could account for the variation by introducing random
effects for the intercept and slope parameters [28], [29], [43]. In
this study, the intercept and slope parameters of the model were
assumed to vary randomly unit by unit in the LMM. Each random
effect unit was assigned a different intercept and a different
slope, as a result, NDVI could have different correlations with
meteorological variables for different units. By incorporating
random intercepts and slopes, the precipitation and temperature
are allowed to account for NDVI variations across random effect
units where the true distribution is unobservable due to the spatial
dependence. The random effect unit can be an area where the
observations were grouped into clusters resulting from the unob-
served geographical factors, for instance ecological, geological,
topographic, and soil conditions [28]. In this study, the linear
mixed effects modeling was performed using the SAS MIXED
procedure [44]. The variance components (VCs) structure was
specified as the covariance structure, which models a different
VC for each random effect unit.

To investigate the relationship between NDVI and meteoro-
logical variables, we regressed byseason and whole-year NDVIs
against the precipitation and temperature. The mixed effects
approach allowed us to account for the variation in NDVI by
treating intercepts and slopes as random terms. Therefore, we
proposed the following four options for the random configura-
tion (see Table I).

1) The random intercept and random slopes of both precipi-
tation and temperature, which included fixed coefficients,
such as the random intercept and random slopes of both
precipitation and temperature;

2) The random intercept and random slope of precipitation,
which included fixed coefficients, such as a random inter-
cept and a random slope of precipitation.
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TABLE I
LINEAR MIXED EFFECTS MODELING OF FOREST DYNAMICS

Four types of models are generally in two major forms: first, the random intercept and
random slope model (e.g., Models 1, 2, and 3), which estimates separate slopes for each
variable for each random effect unit and estimates separate intercepts for each random
effect unit at which the slope and the intercept are allowed to vary; and second, the random
intercept model (e.g., Model 4), which estimates separate intercepts for each random effect
unit at which the intercept is permitted to vary.

3) The random intercept and random slope of temperature,
which included fixed coefficients, such as a random inter-
cept and a random slope of temperature.

4) The random intercept, which included a fixed intercept,
such as a random intercept, and fixed slopes of both
precipitation and temperature. For each forest type, linear
regressions were performed and examined respectively.

D. Measures of Goodness of Fit

The overall model fitting was evaluated by three statistics,
including R2, AIC, and BIC, which are usually presented as
model comparison tools for LMMs [28], [45].

The information criteria (e.g., AIC and BIC) were used to
select the best models by comparing the models relative to one
another. A smaller value of AIC and BIC suggests that the model
explains the observed data better. AIC and BIC both consist of a
calculation of the maximum log likelihood and a penalty term,
and are represented by the following equations:

AIC = −2ln
(
L̂
)
+ 2k (5)

BIC = −2ln
(
L̂
)
+ kln (n) (6)

where ln() is a log function; L is the maximum likelihood
estimate of parameters; k is the number of parameters in the
model; n is the number of observations in the dataset.

The R2 value obtained from regressions accounts for the
percent of the variations in NDVIs explained by models. As the
mixed effects model yields two variances: a variance associated
with random effects and residual variance, it is not entirely
clear which to use when calculating R2 values. Two easily
interpretable values of R2 have been derived by Nakagawa and
Schielzeth [45]: the marginal R2 (R2m) describes the proportion
of variance explained by the fixed factor(s) alone, which is useful
in identifying the most parsimonious model; the conditional R2

(R2c) describes the proportion of variance explained by both
fixed and random factors [46]. R2m and R2c are calculated by

TABLE II
AIC, BIC, AND R2 FOR THE FITTED MODEL OF SOFTWOOD FORESTS

the following equations:

R2m =
varf

varf + varr + vare
(7)

R2c =
varf + varr

varf + varr + vare
(8)

where varf is the fixed effects variance; varr is the random effects
variance; and vare is the model residual variance.

III. RESULTS

By applying the NDVI and meteorological data from March
2009 to February 2010, the result showed that generally NDVI
had a positive relationship with the precipitation and was neg-
atively correlated with the temperature (see Fig. 2). For all
three forest types, the explanatory variables were linearly and
significantly (p < 0.05) correlated with NDVI.

By observing the variation of R2 values, we found that the
marginal R2 values at the given season/year across four types
of LMMs are the same and this is because of the fact that
the marginal R2 only describes the proportion of variance ex-
plained by fixed effects variables alone. The seasonal trend of
the conditional and marginal R2 values also indicated that the
model performance varies slightly different from the seasonal
patterns in NDVI, temperature, and precipitation. As outlined in
Fig. 3, NDVI and temperature peaked in summer and dropped
to the lowest value in winter, while the precipitation values in
spring and winter are relatively higher than in summer and fall.
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Fig. 2. Scatter plots of the precipitation and temperature against NDVI of softwood forests, hardwood forests, and mixed forests, from March 2009 to February
2010. For softwood forests, Pearson’s r between NDVI and precipitation is 0.44 (p < 0.0001), and between NDVI and temperature is −0.62 (p < 0.0001). For
hardwood forests, Pearson’s r between NDVI and precipitation is 0.48 (p < 0.0001), and between NDVI and temperature is −0.45 (p < 0.0001). For mixed forests,
Pearson’s r between NDVI and precipitation is 0.39 (p < 0.0001), and between NDVI and temperature is −0.46 (p < 0.0001).

Regression results (see Tables II–V) showed that R2 values are
relatively higher in spring and summer than in fall and winter.

Table II indicates that by fitting the byseason data, both
conditional R2 and marginal R2 showed a decrease of value from
spring to winter in all models, which implies that the model
using fixed effects variables, and the model using both fixed
effects variables and random effects variables exhibited a similar
pattern of changes in the byseason data fitting for softwood
forests. The conditional R2 value also indicates a slightly better
fit of the whole-year data than the byseason data. The random
intercept and random meteorology model provided the lower
values of AIC and BIC, and the higher values of conditional R2

compared with the random intercept model, which suggested
that by considering random effects for both intercept and slopes,
the models fitted data better, and the random effects from pre-
cipitation are not significant. Generally, the results indicate that
for the spring softwood forest, the largest conditional R2 value
(0.63) was obtained from the whole-year data and the largest
marginal R2 value (0.49) was obtained from the spring data.

Table III indicates that by modeling the hardwood byseason
data, the marginal R2 value was found peaked in summer and
then undergoing a decrease from summer to winter, which is
consistent with the trends of changing NDVI and temperature.
However, the conditional R2 appears to be the highest in spring
for hardwood forests. By incorporating random effects variables,
the mixed effects model resulted in a decrease of conditional
R2 value from spring to fall and an increase from fall to winter.
Comparatively, the largest conditional R2 value was derived from
the random intercept and random meteorology model, which
integrating the random effects for both intercept and slopes,
and the precipitation coefficient did not exhibit random effects.
Also, the lowest AIC and BIC values obtained from the random
intercept and random meteorology model suggested that the

TABLE III
AIC, BIC, AND R2 FOR THE FITTED MODEL OF HARDWOOD FORESTS

data were best fitted by integrating the random effect for both
intercepts and slopes. In general, the LMM provided the largest
conditional R2 value (0.67) that was obtained from the spring
data and the largest marginal R2 value (0.58) that was obtained
from the summer data.
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Fig. 3. (a) Byseason precipitation, (b) temperature, and (c) NDVI for three
forest types: softwood forests, hardwood forests, and mixed forests.

In Table IV, both marginal R2 and conditional R2 indicate
that the model was best fitted in summer. The marginal R2

values imply that fixed effects could explain the most variance
of summer mixed forest data. By integrating both fixed effects
and random effects, the model resulted in the conditional R2

values that were found the highest in the summer and lowest
in the fall. Comparatively, the random intercept and random
meteorology model exhibited the best fit of mixed forests’ data
but the precipitation coefficient did not show significant random
effects. The highest conditional R2 value was obtained from

TABLE IV
AIC, BIC, AND R2 FOR THE FITTED MODEL OF MIXED FORESTS

the random intercept and random meteorology model, which
implies that the variation in NDVI could be best explained by
integrating intercept and slope random effects. Moreover, the
smallest AIC and the smallest BIC were derived from the random
intercept and random meteorology model, which implies that
considering random effects for both intercept and slope could
improve the model fitting. Generally, the largest conditional R2

value (0.56) and the largest marginal R2 value (0.51) were both
obtained from regressing the summer data.

An overall result is presented in Table V after combining soft-
wood, hardwood, and mixed forests’ data. The results indicate
that with both random effects and fixed effects variables, the
random intercept and random meteorology model best fitted
the data and could explain (conditional R2) 54% of the vari-
ation in the whole-year NDVI. Table II also lists a difference
between marginal R2 and conditional R2 values, indicating that
by incorporating both random effects and fixed effects variables
the LMM provides a better explanatory power in explaining
the NDVI variations than by using only fixed effects variables.
The difference also exists in AIC, BIC, and R2 values between
the random intercept and random temperature model and the
random intercept model, suggesting that the two models are not
equivalent in their explanatory power. Moreover, the model per-
formance is different in explaining the seasonal forest dynamics,
with the most explained variations in summer NDVI and least
explained variations in fall NDVI.

Comparatively, the conditional R2 values generally appear
to be higher than the marginal R2 values, which indicate a
significant improvement in explaining the variations in NDVI
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TABLE V
AIC, BIC, AND R2 FOR THE FITTED MODEL OF FORESTS OF ALL THREE

TYPES: SOFTWOOD FORESTS, HARDWOOD FORESTS, AND MIXED FORESTS

by introducing both random effects and fixed effects variables.
This finding is consistent with previous studies showing that
mixed effects models fitted the data better than the fixed effects
models in terms of R2 values [30], [33]. The results obtained
for three forest types were then compared with the amount of
NDVI variance explained by each random intercept and random
meteorology-slope model. The conditional R2 value showed that
the hardwood forests data were fitted better than the softwood
forests data and the mixed forests data in spring, summer, and
winter, while the softwood forests data were fitted better than the
hardwood forests data and the mixed forests data during fall. In
all three forest types, the models exhibited different explanatory
power to explained NDVI variance with an apparent temporal
heterogeneity. The best-fitted byseason model was obtained in
spring for softwood forests, in spring for hardwood forests, and
in summer for mixed forests, separately.

To determine the best-fitted LMM, we performed a compar-
ative analysis based on AIC and BIC for determining whether
to incorporate random effects for a slope (or slopes) of the me-
teorological factor(s) (e.g., precipitation, temperature, or both)
in a given model. The results also imply an absence of random
effects in the random intercept and random precipitation model,
which suggested that the precipitation is not associated with
random effects in fitted models. We then compared the AIC
and BIC of two distinct types of resulting models: the random
intercept model, and the random intercept and random slope
model. This comparison indicated that the random intercept and
random slope model is a more plausible one in terms of the

lower AIC and BIC values. Second, to quantify the variance
explained by fixed effects we employed both the marginal and
conditional R2 values to examine the goodness of fit of the
random intercept model, and the random intercept and slope
model. The value of R2 derived from the random intercept and
slope model was generally higher than the random intercept
model indicating that the LMM with random effects on both
intercept and slope best fits the data. This result also is similar
to those found by Meng et al. [28] and Blundo et al. [47]. In
summary, our results suggested that the random effects on the
temperature could explain forest dynamics by using the random
intercept and random slope model.

Table VI presented the differences between the model using
fixed effects variables and the model incorporating both fixed ef-
fects and random effects variables. A comparative analysis illus-
trated that by considering the random effect on the temperature,
the slope of regressing NDVI against the temperature by using
both fixed effects and random effects variables was reduced by
approximately 14%, 49%, and 7% of the slope values obtained
by only using the fixed effects variables for softwood forests,
hardwood forests, and mixed forests, respectively. Additionally,
the residual standard deviation (RSD) represents the magnitude
of the variation of the error term and the one of smaller value is
preferred. The RSD value obtained by the model using both
fixed effects and random effects variables reduced the value
of RSD obtained by the model using fixed effects variables
from 0.001664 (softwood forests), 0.004790 (hardwood forests),
and 0.003238 (mixed forests) to 0.001008 (softwood forests),
0.002393 (hardwood forests), and 0.002877 (mixed forests),
respectively, which indicated that by introducing the random
effect of temperature, the linear mixed effect model could ex-
plain more variations of errors. Moreover, R2 values of modeling
fixed effects variables were found lower than the R2 values of
modeling both fixed effects and random effects variables, which
is consistent with the finding by Orelien and Edwards [46] that
the mixed effects model was fit more adequately than the fixed
effects model.

IV. DISCUSSIONS

LMMs with forestry applications have been discussed by
some scholars, most of which were conducted at the stand level
[26], [34], [43], [48], [49]. An in-depth description of the LMM
application at the regional level was given, for example, by Lu
and Zhang [50], and Meng et al. [28], in which it was believed
that the region-specific effect could be treated as a random effect
in the mixed effects modeling. An important assumption behind
the mixed effects modeling is that the effect of the variable
occurring in groups varies randomly [34]. As a result, the models
using both fixed effects and random effects variables could
explain more variation of errors than only using fixed effects
variables (see Table VI). This agrees with [19], which indicated
that lacking the ability to adequately account for variability
between region-specific groups, the fixed effects model results
in a higher RSD than the mixed effects model. In this study, the
regression results implied that the random effects associated with
the temperature exist. However, the random effects associated
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TABLE VI
MODEL COMPARISONS BETWEEN THE MODEL WITH FIXED EFFECTS AND RANDOM EFFECTS VARIABLES AND THE MODEL WITH FIXED EFFECTS VARIABLES

WITHIN THREE DIFFERENT FOREST TYPES

∗p < 0.0001. Results of the model with fixed effects and random effects variables displayed in Table VI were derived from the random intercept and random temperature model
by regressing the whole-year NDVI against the whole-year temperature with random effects and fixed effects, and the whole-year precipitation with fixed effects. The results of
the model with fixed effects variables displayed in Table VI were derived from the random intercept model by regressing the whole-year NDVI against the whole-year temperature
with fixed effects and the whole-year precipitation with fixed effects.

with the precipitation were not found by using the LMM, which
suggested that the random effect on the precipitation is constant
and should be excluded from the LMM. Precipitation is the main
source of water supply for vegetation dynamics over the North
American continent [10]. It has been demonstrated that NDVI
could be affected by antecedent precipitation events [21], [51].
In this study, the precipitation did not appear to be associated
with NDVI in random effects modeling. It is likely due to the
nature of the precipitation variables that the previous season’s
precipitation had time-lag effects on NDVI and the random ef-
fects of the current season’s precipitation could not be observed
immediately.

In this study, both marginal R2 and conditional R2 show sea-
sonal variations, which is consistent with the finding of seasonal
heterogeneity of correlations between NDVI and meteorologi-
cal factors [7], [23]. Vegetative growth relies on carbohydrate
metabolism and redistribution [52]. Seasonal climatic variations
affect the distribution of carbohydrates in trees [53]. As a result,
the vegetation has recurrent behaviors of suspending and resum-
ing growth in response to seasonal changes in environmental
conditions [54]. Normally, spring, summer, and early fall are
suitable for tree growth, while unfavorable climate conditions
during late fall and winter could lead to delays or even absence
of tree growth [55]. The factors that give rise to the vegetation
winter dormancy are complex and by altering the temperature
and precipitation, climate change could influence the patterns of
dormancy [56]. The marginal R2 of winter exhibits a relatively
smaller value than R2 of other seasons, which implies that spring,
summer, and fall data were fitted better than the winter data.
The reason that the LMM exhibits a weak explanatory power
for the winter data is likely due to GOM forests responding to
unfavorable climatic conditions by halting the growth during
winter. As a result, little forest dynamics can be explained by
variations in the winter temperature and precipitation.

The study area is influenced by a massive amount of spa-
tiotemporal contextual factors. Specifically, Li and Meng [8],
and Barrow et al. [39] have noted that the variations in the plant
community composition and structure of GOM coastal forests
can be affected by not only the meteorological factors, such as
precipitation but also soil conditions, such as soil texture, soil
type, and soil moisture and disturbance events, such as devel-
opment and logging. Our results showed that by incorporating

both fixed effects and random effects variables the best-fitted
model could explain 63% (softwood forests), 67% (hardwood
forests), 56% (mixed forests), and 60% (all types of forests)
of variations in NDVI separately. The unexplained variance
of model residuals would be due to the effects of soil condi-
tions and anthropogenic disturbances. For instance, Mather and
Yoshioka [4] believed that the climate affects the vegetation not
only directly through the impacts that climatic factors, such as
temperature, exert on the growth and development of the vege-
tation but also indirectly through the influence that the climatic
factors have on soil conditions. Moreover, vegetation responds
to climate change in both explicit and unnoticed ways [14].
Therefore, due to the lack of byseason soil data and unknown of
remained anthropogenic noise, the mixed effects model needs to
incorporate more explanatory variables to explain the remaining
variance of residuals.

By using fixed effects models, previous studies have found
that the cause of the variance of relationships between NDVI
and its meteorological factors could be spatial variations in
vegetation types [10], [14], [15], [23]. This study takes ran-
dom effects into account to explain the variations in NDVI
through the utilization of the LMM for three forest types. The
results showed that mixed effects models exhibited different
explanatory power to explain softwood, hardwood, and mixed
forest dynamics, which indicated that the model performance
can be influenced by site conditions, such as forest types. This
observation is consistent with a finding that climatic factors
were observed to vary over space and time, and forest dy-
namics vary accordingly [12], [20], [22]. Zhang et al. [30]
have pointed out that the model performance depended on the
characteristics and nature of the spatial autocorrelation and
heterogeneity of model residuals. For instance, Babst et al. [57]
have demonstrated the responses of forest growth to seasonal
climate controls are ecosystem dependent and can be highly
site-specific and species-specific. The byseason and whole-year
conditional R2 obtained in this study showed a lower value in
the mixed forests than that obtained in hardwood and softwood
forests. We speculated that some forest-dominated areas might
experience human-induced changes in forest dynamics. For
instance, the replacement of mixed forests by evergreen forests
in the coastal region of the GOM was attributed to the logging
activities [58].



5534 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 13, 2020

V. CONCLUSION

This study generally provides useful guidelines for choosing
an appropriate model by using the LMM. We investigated the
random effects from four distinct types of mixed effects models
and the performance of the model was subsequently found
depending on the presence of random effects. A comparative
analysis of model performance indicates that random effects
influence both the intercept and slope in regression models. The
random intercept and random slope model best fitted the data
regarding the larger conditional R2, smaller AIC, and smaller
BIC values, suggesting a significant improvement in the model
fitting by accounting for the combined effects of random effects
and fixed effects. The marginal R2 value was found less than the
conditional R2 value in all three forest types, which demonstrated
that applying mixed effects models could reduce the unexplained
variance remained in fixed effects models.

The use of LMM provides an important tool to link forest
dynamics to meteorological factors. Our study utilized LMM to
explore the GOM coastal forest dynamics that occurred under
climate change conditions. The best-fitted byseason LMM was
obtained in spring for softwood and hardwood forests and in
summer for mixed forests. The conditional R2 value showed that
the hardwood forests data were fitted better than the softwood
forests data and the mixed forests data in spring, summer, and
winter, while the softwood forests data were fitted better than the
hardwood forests data and the mixed forests data during fall. Our
results indicated that the mixed effects of temperature and the
fixed effects of precipitation were identified as the main factors
to explain forest dynamics. The explained variance of models
was found varying between seasons and forest types. A presence
of unexplained variance remained in LMMs indicated a need
for further identification and exploration of potential random
effects.
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