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Kernel Low-Rank Entropic Component Analysis for
Hyperspectral Image Classification

Chengzu Bai ", Ren Zhang, Zeshui Xu

Abstract—Principal component analysis (PCA) and its varia-
tions are still the primary tool for feature extraction (FE) in the
remote sensing community. This is unfortunate, as there has been
a strong argument against using PCA for this purpose due to its in-
herent linear properties and uninformative principal components.
Therefore, several critical issues still should be considered in the hy-
perspectral image classification when using PCA, among which: the
large number of spectral channels and a small number of training
samples; the nonlinearities of hyperspectral data; the small-sample
issue. In order to alleviate these problems, this article employs a
new information-theoretic FE method, the so-called kernel entropic
component analysis (KECA), which can not only extract more
nonlinear information but also can adapt to the limited-sample
environment. A theorem of the pivoted Cholesky decomposition
is also introduced to improve the efficiency of the KECA. The
optimized version can more rapidly implement spectral-spatial fea-
tures extraction, particularly for large-scale HSIs, while effectively
maintaining the clustering performances of KECA. Experiments
implemented on several real HSIs verify the effectiveness of the new
method armed with a support vector machine classifier, in compar-
ison with other PCA-based and state-of-the-art HSI classification
algorithms. The code will also be made publicly available.

Index Terms—Feature extraction (FE), image classification,
maximum entropy methods.

I. INTRODUCTION

UE to the recently developed remote sensors, a number
D of spatial-spectral information contained in hyperspectral
images (HSIs) offer a unique opportunity to conduct a detailed
physical analysis of different land covers. In particular, HSI
classification, i.e., assigning a class label to each pixel of the
interest with a certain number of labeled training samples, can
play a key role in many applications, such as environment
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monitoring [1], target detection [2], and land cover mapping
[3], to name but a few. However, three critical problems still
should be addressed in the HSI classification, which are as
follows.
1) The curse of dimensionality caused by the comparison
between the high dimension of spectral information and
the low number of training samples [4].
2) The nonlinearities of hyperspectral data derived from the
backscattering or spatial arrangement of distinct pixels [5],
[6].
3) Poor performances under the small-sample environment.
In order to alleviate the first issue (i.e., the Hughes phe-
nomenon), spectral-spatial classifiers and feature extraction (FE)
are the two most adopted methods before the classification.
Several well-known classifiers, e.g., support vector machines
(SVMs) [7]-[10] and rotation forest classifiers [11]-[14], can
achieve impressive results on the HSI classification. However,
most of the spectral and/or spatial classifiers are unable to obtain
an acceptable classification performance under a small number
of labeled samples [15]. To further improve the classification
results of HSIs, the feature-selection step is usually employed.
It is a popular practice to apply PCA and its variants [16]-[24]
to perform such data transformation. For instance, the extended
morphological profiles (EMPs) are built on the first principal
component of HSI to eliminate the effects of spectral variability
[18]. Zabalza er al. [19] proposed the folded-PCA (FPCA) to
handle the high computational cost and large memory require-
ment for the usage of PCA in HSI data reduction. Considering
the superior properties of FPCA, several FPCA-based models
are newly designed for HSI classification [20], [21]. In special,
Uddin et al. [21] proposed a novel method so-called spectrally-
segmented-FPCA (SSFPCA), in which they apply FPCA on
the HSI datasets mixed with highly correlated and spectrally
separated segments instead of directly applying the FPCA on
the entire data, to obtain better classification performances.
PCA is also employed to reduce the spectral dimension of HSIs
preprocessed by the edge-preserving filters (EPFs) [22], [23] and
the invariant attribute profiles (IAPs) [24], to name but a few (see
[25] for more details of the PCA-based methods on extracting
HSI features). While PCA has been proven to play a key role
in the success of HSI classification, it is not necessarily an
optimal FE method, since that PCA cannot describe the complex
nonlinear structure in the HSIs very well due to its inherent
linear characteristic. Additionally, the principal components do
not always retain the discriminatory information stored in the
original feature space. Therefore, how to appropriately tackle
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these issues associated with PCA is one of our main motivations
in this article.

Our another center idea lies in taking the full advantage of
nonlinear information contained in HSIs to extract more discrim-
inative features from each pixel with limited training samples,
i.e., the other two aforementioned issues. As well-known, kernel
methods can provide a rigorous mathematical framework to
implement nonlinear FE [4]. The kernel principal component
analysis (KPCA) [26] is one of the most frequently adopted FE
approaches in the remote sensing community [27]. Although
KPCA has obtained impressive results in different fields, its
data transformation is often performed by using the eigenvec-
tors of the kernel matrix corresponding to the top eigenvalues,
which cannot provide enough information and completely reveal
the structure of raw data from the perspective of information
theory [28].

Regarding the aforementioned issues, Jessen [29] proposed
a new FE method named the kernel entropy component anal-
ysis (KECA), which is different from the conventional kernel
methods of extracting nonlinear information. KECA attempts
to search for optimal entropic components (i.e., eigenvectors) in
the reproducing kernel Hilbert space (RKHS) that can compress
the most Renyi entropy of the input data, instead of ranking
eigenvalues and selecting the associated eigenvectors by PCA
and KPCA. This is not only the distinct property of KECA but
exactly the reason why KECA can mine more information than
PCA and KPCA in FE under the small-sample environment
[29], [30].

However, a direct use of the KECA in the HSI classifica-
tion can be inefficient since adjacent noise-free hyperspectral
bands characterized by high correlation and high spectral di-
mensionality will greatly increase the computational burden of
the eigendecomposition. More specifically, let N1 = n; X ng
denote the spatial size of an HSI I (I € R™*"2*"3) For the
classical KECA, I needs to be converted to an N; X n3 ma-
trix to implement the singular value decomposition. There is
the difficulty in obtaining the corresponding kernel matrix K
(K € RN considering that the dimension N is extremely
large, usually over 100K, which can easily cause software tools
crashed due to the memory management.

To solve the aforementioned problems existing in the HSI
classification, we design a new three-stage classification scheme
named as the kernel low-rank entropic component analysis (KL-
RECA). First, several sophisticated preprocessing techniques,
such as EPFs or IAPs, are selected to remove noise and enhance
the spectral-spatial information in the original HSI data accord-
ing to different structures of the image. Second, the high spectral
dimension of the processed data is reduced by the KECA, where
the full kernel matrix is replaced by its Nystrom-type low-rank
approximation using the pivoted Cholesky decomposition [31],
[32]. This proposal not only can highlight the separability of
pixels but save much more computational time and memory
space. It should be noted that the optimized KECA is utilized
not only to explore spectral information but also to take the
advantage of additional discriminant information from spatial
dimension. Finally, the reduced data are classified by an SVM
classifier. The rationale to select SVM is that it can be integrated
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into the kernel method category [6] so that more nonlinear
information may be extracted from the entropic components.
The novelty of this work consists of the following.

1) A new HSI classification framework consisting of the
advanced preprocessing techniques and KECA via an
appropriate strategy.

2) Introducing a novel FE technique, i.e., KECA improved
by the pivoted Cholesky decomposition, to the remote
sensing field.

3) Comparing the new classification scheme with not only
the classical methods but also the state-of-the-art deep
learning algorithms, such as the nonlinear spectral-spatial
network (NSSNet) [33] as well as the rolling guidance
filter and vertex component analysis network (RVCANet)
[34].

The remainder of this article is organized as follows. Section II
reviews KECA. Section III shows the proposed KLRECA clas-
sification scheme. Section IV examines the performance of the
KLRECA on three real-world HSIs. We conclude this article in
Section V.

II. PRELIMINARIES
A. Kernel Entropy Component Analysis

The KECA algorithm is reviewed at first for readers’ easy
understanding.
The Renyi quadratic entropy is given by

H(p) = —log / P (x)dx (1)

where p(x) denotes the probability density function. (1) helps
to measure the information preserved in the given input dataset
X = [x1,...,%xn] (x; € RP)[29]. Due to the monotonic prop-
erty of logarithmic function, we can focus on the quantity of

()
Vi(p) = / P’ (x)dx. )

Then, the kernel k,(x,x;) of the Parzen window density
estimator, where o represents the kernel size [29], is employed
to estimate (2) (it should be noted here that a Gaussian kernel is
used throughout the article)

V(p) =V (p)
Z%ZP(X)

xeX

1 1
= N Z N Z Ro (XZ‘,XJ‘)

x;,eX x;€X
1 T

where the kernel matrix K is equal to k,(x,x;). It consists of
Kij = ko(x,x¢) = ¢(x;)T ¢(x;), where ¢ can map the samples
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Hyperspectral Image Processed data

Fig. 1. Three-stage scheme of the KLRECA.

into the RKHS. 1 is the (IV x 1) vector of ones. As is well-
known, the kernel matrix can be eigendecomposed as follows:

“

where the diagonal matrix D and the matrix E containing
the eigenvalues A1, ..., Ay and the corresponding eigenvectors
e, ..., ey, respectively. Thus, (3) can be rewritten as

K= AAT — (ED%) (D%ET)

N
Vv (p) = % Z (\/)TilTei)Q 5)
i=1

where only the eigenvector e; corresponding to A; # 0 and
17e; # 0 contributes to the entropy estimate. Therefore, KECA
is an r-dimensional FE method by projecting ¢ onto a subspace
spanned by r axis in RKHS contributing most to the Renyi
entropy of the original data. This is the most striking difference
between KECA and KPCA.

B. Several Basic Concepts Associated With a Positive
Semidefinite (PSD) Matrix

Let K be a kernel matrix (K € RV*V) with rank(K) = r,
which is a PSD and symmetric kernel function or Mercer kernel
[29] in RKHS. Then, it has a unique Cholesky decomposition
(311, [32]

K=LL" (6)

where L is a lower triangular matrix. To reduce the complexity
to both computation and storage, we can compute the low-rank
approximations K of K

K=Ky, K} KL

TXT

@)

where Ky p and K, . are the submatrix of K. If rank(K) <
7, then K v, K+, K% . is called a Nystrém approximation of
K [32]; the approximation error E = K — K is named the Shur
complement with respect to K [32].

As is well-known, a full eigendecomposition, which cannot
be ignored in KECA, requires the computational complexity
of O(N?). Additionally, considering the very high dimension
of each band of HSI, it is imperative to develop an efficient
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algorithm to find the low-rank approximation of K so that we
can explore more potential of KECA for the HSI classification.

III. PROPOSED METHODOLOGY FOR HSI CLASSIFICATION

Fig. 1 presents the whole schematic of our three-stage method.
Specifically, first, implement the preprocessing techniques on
the original hyperspectral imagery. Then, KECA is utilized to
obtain the optimized kernel entropic components (KECs, i.e., the
pivot elements in this article) to extract the joint spectral-spatial
features of the processed data and highlight the discriminative
information. Finally, we use SVM to perform the classification
of the KECs.

A. Spectral-Spatial FE

Before implementing KECA on the HSI of our interest, it is
useful to apply several image preprocessing methods to reduce
the noise of the original imagery I (I € ™ *"2*"3) and perform
the data transformation

I=Pre(L,0), T € Ruxnexms (8)

where Pre(-) refers to the preprocessing filtering operation with
the parameter setting 0. There are many commonly-used such
techniques in the remote sensing community. However, only the
adopted EPFs or IAPs neither deteriorate the performance nor
require a high computational complexity. Then, motivated by
Pan et al. [33], the spectral-spatial features of the HSI I can be
extracted and combined as follows:

7 res}_lg;pe XiSPeC c ki xke 9)
where x; € '3 represents the spectrum vector of a pixel,
X 5P is the imaging form of z;, and k1 X ko = mg. The spatial
features can be extracted from an image constructed by each
pixel z; and its neighbors

reshape

iy Tigs] o XOPA g pstxma (1)

[xi,s, ce

where s is the patch size for a pixel. In this article, s is deter-
mined from a set consisting of {1, 3, 5, 7} through tenfold cross
validation with due care. s = 3 is appropriate to describe the spa-
tial structure. After extracting the spectral and spatial features,
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we directly concatenate them as the final feature expression
X, = [X5Pe¢; X3P for each pixel. The rationale to combine
the spectral and spatial features together is to capture the multi-
scale structural information contained in the preprocessed data.
Hence, the joint spatial-spectral features can preserve as much
information derived from the original HSI as possible, which
plays a role in improving the classification accuracy.

B. Feature Fusion With KECA

To prevent from being trapped in the Hughes phenomenon, an
appropriate tool should be introduced to implement the feature
fusion on the X,. As discussed in Section II, KECA not only
can reduce the dimension of the data but also increase the
spectral separability of objects with extracting more nonlinear
information from HSIs. However, it is not efficient to directly
employ the classical KECA into the HSI classification because of
its very high computational complexities. Therefore, this section
seeks to propose a much more efficient version of KECA to fuse
the X, on the support of the pivoted Cholesky decomposition.

For readers’ easy understanding, we first give a mathematical
analysis of the key to the new algorithm.

Let K be a kernel matrix (K € RV1*N1) derived from X; €
RN1xNz 3 Nystrom approximation of K, the approximation
error E = K — K,WhereNl =n1 X ngand Ny = nz x M.If
trace(E) < ¢ (¢ is a minimum value), then | E[jy <e¢, ie., K
can be the simultaneous approximation of K [31], [32].

According to Proposal 1, we should propose an algorithm to
decrease the maximum diagonal of E for minimizing trace(E),
which will also minimize the upper bounds of the approximation
error or || E|2. Therefore, we plan to adopt the pivoting Cholesky
factorization [31], [32] to rapidly find the approximation of the
kernel matrix K. The reason why our new method can reduce
the computational complexity and memory space is that only the
diagonal elements are required in PCF. For simplicity, we refer to
the newly proposed algorithm as kernel low-rank decomposition
(KLRD), which is presented in Algorithm 1 in detail.

Theorem 1: The above-mentioned procedure can produce a
low rank-r approximation K of K.

Proof: According to (6) and (7), the rank-r approximation in
the ith iteration should satisfy

K' = KN”<Kz'xi)71(Kin)T (an

where K, ; is also a PSD matrix [31], [32]. Thus, we can obtain
the Cholesky factorization of K, ;
K, =RR,;. (12)
Based on (11) and (12), we can compute L; in Algorithm
lasl; =K MRi—T‘ Additionally, motivated by the pivoted
Cholesky decomposition [31], [32]

K; i Kf 1 T
Kyt = {(Kzgxl)T Kt: } =R, Rt (13)

where K, | denotes the elements K j;(j € [1, i]) of L;. More-
over, both R;;; and R; should be the lower triangular matrix.
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Algorithm 1: KLRD.

Input: K e RN with K, =k, (x,.,xj) , the width parameter
o, the error tolerance ¢ and the number r of the pivot
elements being evaluated. N, =1: N, . The iteration ; starts
with 1.

1: Initialization. Let diag, = [K“,...,KNINl ]T , € = ||diag1

0
2: While i=1<r and ¢; <¢ do

3: set /=argmax .y, diag/, N,,, =N, \¢, where diag/
represents the j the element of diag; ;

4 Ky =Ky Ko ) V=Kl 1K,

5 L =[L, T)with T= g (K, ~Lu) u=( | and

1=K, —u"u  where L; denotes the ¢ th row of L;;

6

7:  diag/,, = diag/ —F},jeNM, where I'; is the j th ele-
8
9

ment of T;
Toey =sum(diagi+1), i=i+l;
10: end while
Output: the rank- 7 approximation K=L'L.

Then we can assume L;; satisfies

(14)

R; 0
Ri1 :[ ]

u’ pu
Substituting (12) and (14) into (13), we can obtain Steps 5
and 6 in Algorithm 1

I'=p " (Ky,« —Liu),u= (L )T,u = vKy —uTu
(15)
Moreover, since u? = L;? is just the 7th row of L; and

Ri)™" —p ' (R) "

(Rip1) " = o | o (16)
byL;, =K, R;"andL;y; =K_ R, wecanderive
that Step 5 of Algorithm 1

L =[L; IJ. (17)
Thus, Step 7 of the Algorithm
diag! | = diag] — I'? (18)

can be also obtained. This step means that trace(E;) is mono-
tonically decreasing until the Schur complement E; vanishes or
1 meets 7. |

According to Algorithm 1, performing the steps of the piv-
oted Cholesky decomposition only requires the complexity of
O(r?N) compared with the conventional one O(N?3), which
shows the proposed method offers significant savings of com-
putation and storage especially when the size of samples is great.



5686

25

20 -

-20

25 . . . 1 . . . . . )
25 20 -15 -10 -5 0 5 10 15 20 25

Fig. 2. Toy dataset.
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Fig. 3. Feature space analysis of (a) KPCA, (b) KECA, and (c) KLRECA,
respectively.

C. Feature Space Analysis

In this section, we provide the feature space analysis to
compare the visual class separation capability by the extracted
features of the new method with the conventional KECA and
KPCA. Fig. 2 shows a toy dataset, derived from [29], with three
clusters, ordered from the innermost ring to outermost one with
70 140 and 140 samples, respectively. The dataset transformed
by KPCA, KECA, and KLRECA is presented in Fig. 3(a)—(c),
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respectively. It can be obviously seen that Fig. 2(b) exhibits a
clear angular structure. The innermost ring is mapped to a dense
representation. The two other rings are separated by 90° angles.
This distinct data structure makes KECA more effective for the
classification. Fig. 3(c) shows KLRECA retains such superior
property and yields the same angular structure. Moreover, the
running time of KLRECA is 0.03 s compared with the one of
KECA 0.40 s. On the other hand, the dataset produced by KPCA
cannot be observed with the angular structure. The mapping
of the outermost and middle rings is not very separated [see
Fig. 3(a)]. Therefore, we can safely make a conclusion that
KLRECA and the conventional KECA can produce strikingly
transformed dataset with an angle-based structure compared
with KPCA. Additionally, KLRECA is much more efficient than
KECA when performing FE.

D. HSI Classification

Let X be an HSI being tested and the corresponding rank-
r kernel matrix be K = EDE”. Then, the projected image
can be computed by X = KE. Let X! and X{ represent the
r-dimensional representations of each testing pixel and each
training one x;. Let x}, be an arbitrary one to be tested. If we
have

= zin 15

=1,...,

*i?Hz

19)

then x;, and the jth pixel belong to the same class. In the subse-
quent experiments, we employ the SVM classifier so as to extract
more nonlinear information from the testing hyperspectral data.

IV. EXPERIMENTS
A. Data Description and Preprocessing Filtering Operation

1) Indian Pines Airborne Visible/Infrared Imaging Spectrom-
eter (AVIRIS): The first HSI is recorded by the AVIRIS sensor
over the Indian Pines in Northwestern Indiana, USA. This image
comprises 200 spectral bands in the wavelength ranging from
0.4 to 2.5 pum. The spectral resolution and the size of this scene
is 20 m and 145 x 145 pixels, respectively. The number of
training samples is set to be 1% for each class. It should be
noted that the size of the training data is relatively very small. A
three-band color composite image and the ground truth of this
AVIRIS hyperspectral data are shown in Fig. 4, from which it
can be seen that the image is composed of 16 different classes.
We selected the same filters with PCA-EPF as the preprocessing
filtering operation Pre(-) of KLRECA here.

2) Salinas AVIRIS: The second image is also collected by
the AVIRIS sensor over the agricultural area of Salinas Valley,
CA, USA. After discarding 20 water absorption bands, this
image contains 204 bands of size 512 x 217. A small training
dataset (only ten samples per class) is randomly selected from the
reference data. Fig. 5 presents the three-band false color image
and the corresponding ground truth image. It can be observed
that the image includes the same number of classes with the
first HSI. We also selected the same filters with PCA-EPF as the
preprocessing filtering operation Pre(-) of KLRECA here.
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I Alfalfa Oats

I Corn-notill Soybean-notill

I Corn-mintill I Soybean-mintill
Corn I Soybean-clean

I Grass-pasture I Wheat
Grass-trees [ Woods

Grass-pasture-mowed

I Hay-windrowed

Buildings-Grass-Trees-Drives
[N Stone-Steel-Towers

Fig. 4. Indian Pines dataset. (a) False-composite image with R-G-B = bands
35-16-9. (b) Ground truth map. Each color corresponds to a certain class.

() (b)

[ Brocoli_green_weeds_1
I Brocoli_green_weeds_2
[ Fallow
Fallow_rough_plow
[ Fallow_smooth
Stubble
Celery
[N Grapes_untrained
Soil_vinyard_develop
Corn_senesced_green_weeds
[N ettuce_romaine_dwk
[ ettuce_romaine_5wk
[N Lettuce_romaine_6wk
[ Lettuce_romaine_7wk
Vinyard_untrained
[ Vinyard_vertical_trellis

Fig. 5.
22-78. (b) Ground truth map. Each color corresponds to a certain class.

Salinas dataset. (a) False-composite image with R-G-B = bands 35-

3) Houston2013 ITRES CASI-1500: The third HSI was ac-
quired by the ITRES CASI-1500 sensor during a flight campaign
over the campus of the University of Houston and its surrounding
areas. The number of spectral bands and the size of the HSI is
144 and 349 x 1046, respectively. The geometric resolution is
1.3 m. There are mostly different labeled pixels available in the
ground truth, including 15 different classes. We artificially chose
asmall set of challenging labeled samples from the Houston2013
dataset as the training set (about 10% samples per class) and the
remaining samples are then utilized for the test, as suggested in
[24] and [37]. A false color composite image and the associated
ground truth image are shown in Fig. 6(a) and (b), respectively.
We selected the same filters with IAPs as the preprocessing
filtering operation Pre(-) of KLRECA here.
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I Healthy Grass
Stressed Grass

I synthetic Grass

I Tree

I soit
Water
Residential
Commercial

I Road

I Fighway

I Railway
Parking lot1
Parking lot2

I Tennis court

I Running Track

Fig. 6. Houston2013 dataset. (a) False-composite image with R-G-B = bands
15-63-52. (b) Ground truth map. Each color corresponds to a certain class.

B. Experimental Setup

1) Comparison in Related Works: We compare the perfor-
mance of the KLRECA with the multiple HSI classification
methods, including SVM [35], KPCA [26], EMPs [18], NSSNet
[33], RVCANet [34], PCA-EPFs [22], SSFPCA [21], and IAPs
[24]. KPCA is a classical kernel-based method. Since SVM
plays a role as the classifier in our new scheme, thus the orig-
inal SVM should be employed to evaluate the combination of
KECA and SVM. EMPs, PCA-EPFs, SSFPCA, and IAPs are all
PCA-associated methods used in extracting the spatial-spectral
information from HSIs. NSSNet and RVCANet are recently
developed deep learning algorithms for HSI classification and
have shown promising performance since they aim at extracting
the nonlinear features of remote sensing imagery as well.

2) Algorithm Configuration: The SVM algorithm is per-
formed using the LIBSVM library [36] equipped with the radial
basis function kernel. The best value C and gamma parameters
~y are obtained through the tenfold cross validation suggested in
[21] as follows:

1) Indian Pines: C = 10, v = 0.3;

2) Salinas: C =10, v = 0.125;

3) Houston2013: C' = 10 000, v = 1.

The MATLAB source code for performing PCA-EPFs and
IAPs is available at Dr. Kang’s and Dr. Hong’s home page,'2,

![Online]. Available: http://xudongkang.weebly.com/
2[Online]. Available: https://sites.google.com/view/danfeng-hong/data-code
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respectively. The band number of the dimension-reduced data K
and the number of the principal components L in PCA-EPFs are
setas 15 and 30 suggested in [22]. For IAPs, the number of scaled
convolution kernels ng, the number of convolution kernels in
spatially isotropic filtering r, and the number of Fourier orders m
are selectedasng = 3,7 = [2,4,6],andm = [0, 1, 2, 3], respec-
tively. To do a fair comparison between the new method and the
other EPF- and TAP-based method, we analyze the performance
of KLRECA using the same parameter setting with PCA-EPFs
or IAPs in the phase of hyperspectral data preprocessing, re-
spectively. For SSFPCA, the segmentation of bands of the three
different HSIs is set according to the rules proposed in [21]
as follows [visible wavelength (VIS); near-infrared wavelength
(NIR); short-wavelength infrared (SWIR)]:
1) Indian Pines: VIS =1 — 36, NIR = 37 — 102, and
SWIR = 103 — 200;
2) Salinas: VIS =1 — 36, NIR = 37 — 102, and SWIR =
103 — 204;
3) Houston2013: VIS =1-34, NIR =35—-174,
SWIR = 75 — 144.

NSSNet and RVCANet are performed using the codes, which
are available on Dr. Shi’s homepage®. Both of them consist of
two stages, kernels number M = 8 and kernel size n = 7. The
mapping function in NSSNet and the rolling times in RVCANet
are set as Sigmoid function and 30 as suggested in [33] and [34],
respectively.

All of the experiments are conducted by MATLAB R2018a on
a PC with Intel Core i7 processors, 8 GB memory, and Windows
10 operating system. It should be noted that the reason why the
classical KECA is not considered here is that the PC is prone to
be out of memory when we perform the conventional KECA.

3) Evaluation Metrics: In order to address the small sample
issue, eight other compared methods are evaluated by the same
very limited sample size with KLRECA. The reported values
of average accuracy (AA), overall accuracy (OA), and Kappa
coefficient (Kappa) are computed by the averaged results derived
from ten repeated experiments with randomly selected training
samples to calibrate all of the aforementioned models. The closer
the values of these three performance evaluation criteria are to
one, the more reliable is the model performance.

and

C. Parameter Analysis

1) Kernel Size: Asiswell-known, the length-scale parameter
o plays arole in the kernel-based methods, including KECA and
KLRECA. Therefore, we first implement a sensitivity analysis
of different kernel sizes 0. Regarding how to properly estimate
o employed by the Gaussian kernel, a number of rules have been
proposed and achieved good results. The first good example is
maximizing likelihood function [38], denoted by o, which has
been well verified in [26]. Another representative example is
the mean distance among input datasets, denoted by o». Shi
and Malik [39] suggested utilizing a kernel size in an interval
from 10% to 20% of the median distance among the training
data. Therefore, 10%, 15%, and 20% from the interval are also

3[Online]. Available: http://levir.buaa.edu.cn/Code.htm
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Fig. 7. Influence of kernel sizes on the performance of the KLRECA method.

OAs, AAs, and Kappas recorded on (a) Indian Pines, (b) Salinas, and (c)
Houston2013 dataset.

selected as other potential choices, denoted by 019, 015, and
090, respectively. The final example is an empirical rule, i.e.,
Silverman’s rule [40], which is the common rule of thumb for
KDE, denoted by oy -

The classification performance of KLRECA on the three HSIs
using such different kernel sizes are presented in Fig. 7. Under
the limited training sample environment, it should be seen from
Fig. 5 that KLRECA in coordination with og;j}, can obtain the
best OA, AA, and Kappa statistics for the first two HSIs while
obtaining the best performances with o9 for the Houston2013
dataset. Therefore, og;j)y is selected as the kernel size parameter
in the subsequent experiments for the Indian Pines dataset and
Salinas dataset, while o, being adopted for the Houston2013
dataset.

2) Number of Pivot Elements: Next, an experiment is im-
plemented to analyze the effects of the other important com-
ponent, i.e., the number r of pivot elements or KECs, on the
classification accuracies of the new method. It can be seen from
Fig. 8 that the three performance evaluation criteria generally
become more acceptable as r increases except for Houston2013
dataset. Specifically, for the HSIs of Indian Pines and Salinas, the
proposed method obtains the best performance when 7 reaches
the maximum. However, for the Houston2013 dataset, the best
classification accuracy is achieved when r = 15, which means
that more pivot elements in consideration cannot lead to more
accurate classification results. From this experiment, we can
see the number of pivoted elements r can also affect the final
classification results.

For extended comparison, KPCA is also employed to im-
plement the same experiment. Fig. 9 shows the classification
performances provided by both KLRECA and KPCA. Accord-
ing to Fig. 9, KLRECA can always offer higher classification
accuracy with respect to three different evaluation criteria. In
addition, KPCA is not prone to obtain better performances with
the growing number of input features as well as KLRECA. There
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Fig. 9. Influence of the number of extracted features to the performance of

KLRECA (red) and KPCA (blue). (a), (d), and (g) OAs, (b), (e), and (h) AAs,
and (c), (f), and (i) Kappas recorded on the Indian Pines (the first row), Salinas
(the second row), and Houston2013 (the third row) dataset.

seems to be no connection between the number of transformed
features and good classification results since the FE step may
bring redundant information and noise with much more input
features or pivot elements.
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D. Comparisons With Other HSI Classification Methods

In this section, we present comparisons of KLRECA against
the aforementioned different HSI classification methods. The
OA, AA, Kappa, and the classification accuracies for each class,
derived from three different HSIs, are given in Tables I-III in
the Appendix. Figs. 10-12 (in the Appendix) show the best
visual classification result of each algorithm selected from the
experiment. According to these results, the following can be
seen.

1) Although there are limited pixels per class for training,
KLRECA can still achieve more than or close to 90% OA,
AA, and Kappa. This may be attributed to FE implemented
by KECA optimally reveals the structure related to the
most Renyi entropy of the original HSI data and encodes
the discriminant information.

The results obtained by the proposed KLRECA method
is better than the other methods in terms of OA, AA, and
Kappa coefficient in most cases.

The boundaries and edges in the map of the KLRECA are
in better accordance with the ground truth, while SVM,
NSSNet, and RVCANet lead to oversmoothed classifica-
tion maps.

Although IAPs obtained the nearly same best statistics for
the Houston2013 dataset, KLRECA performs much better
than TAPs on the other two real HSIs.

NSSNet and RVCANet tend to perform poorly when the
size of the training samples is limited.

From the above-mentioned experimental results, we can
safely draw a conclusion that KLRECA shows great potential
for the HSI classification.

2)

3)

4)

5)

V. CONCLUSION

This article presents a new scheme for the spectral-spatial
classification of hyperspectral imagery. The proposed algorithm
utilizes a combination of several advanced preprocessing tech-
niques and KECA. Specifically, our new algorithm consists of
three stages, i.e., spectral-spatial FE, the KECA-based feature
fusion, and the classification using the standard SVM. In particu-
lar, the rationale to use KECA is that it can extract more nonlinear
and valuable information in HSIs. Moreover, we employ the the-
orem of the pivoted Cholesky decomposition to achieve a great
improvement of computational efficiency and memory reduction
for the conventional KECA. All of the experimental results
show that, compared with the classical and state-of-the-art HSI
classification methods, the newly proposed KLRECA scheme
is of the ability to much efficiently obtain higher classification
accuracies on the three real HSIs under a relatively small-sample
environment.

In our future studies, we will further evaluate KLRECA using
other real remote sensing data (e.g., multitemporal datasets). Ad-
ditionally, another main focus is how to automatically determine
the optimal number of the pivoted elements. Furthermore, it is
interesting to explore the potential of the optimized KECA in
deep learning algorithms for the HSI classification.
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APPENDIX

TABLE I
CLASSIFICATION PERFORMANCE OF THE DIFFERENT METHODS FOR THE INDIAN PINES DATASET WITH 1% LABELED SAMPLES PER CLASS AS THE TRAINING SET

Classification Results of Different methods

Class
SVM KPCA EMP NSSNet RVCAnet PCA-EPFs SSFPCA IAPs KLRECA

Alfalfa 31.94(15.03) 86.51(13.04)  49.14(32.74) 0.00(0.00) 0.00(0.00) 100.00(0.00)  100.00(0.00)  90.49(4.67)  100.00(0.00)
Corn-notill 48.66(7.70)  65.44(14.21)  65.64(10.07)  65.52(11.09)  69.62(6.10) 74.84(10.10)  67.23(10.36)  64.80(8.04) 79.85(9.16)
Corn-mintill 44.76(14.04)  67.48(10.41)  54.99(9.02)  62.44(11.09)  70.35(3.68) 74.84(11.19)  94.21(3.21)  35.05(10.85)  84.47(9.92)
Corn 28.01(6.39)  49.92(14.16)  58.86(20.42)  36.60(14.68)  35.66(8.30) 69.62(12.55)  63.53(13.43) 67.62(12.43)  89.71(10.15)
Grass-pasture 65.59(16.68)  82.64(15.97)  80.80(14.08)  80.02(8.67)  73.60(14.43)  91.65(9.01) 94.98(7.93) 75.33(7.75) 94.88(8.09)
Grass-trees 79.09(4.16) 90.01(5.89) 86.91(8.23) 97.36(4.77) 9599 (3.22)  95.22(3.76))  93.31(5.74) 97.94(1.07) 92.86(5.67)
Grass-pasture-mowed 30.63(14.85)  39.84(22.25)  49.08(30.24) 0.00(0.00) 0.00(0.00) 67.47(31.54)  100.00(0.00)  99.54(1.44)  73.81(25.56)
Hay-windrowed 93.98(5.09) 99.77(0.72)  100.00(0.00)  99.92(0.15)  100.00(0.00)  100.00(0.00)  100.00(0.00)  96.76(2.59)  100.00(0.00)
Oats 12.64(7.83)  74.63(32.90)  32.56(20.88) 0.00(0.00) 0.00(0.00) 65.44(29.97)  82.35(13.45)  90.71(10.13)  95.16(7.86)
Soybean-notill 49.77(9.00)  64.41(12.52)  59.73(16.89)  71.49(6.03)  70.79(5.24) 64.90(16.51)  96.11(2.37) 71.71(9.44) 88.70(7.22)
Soybean-mintill 67.12(5.38) 86.44(4.93)  81.02(10.07)  86.33(4.01)  82.28(4.78( 90.37(4.51) 90.98(9.98)  57.65(11.54)  86.01(6.71)
Soybean-clean 29.93(6.25) 65.75(9.92)  69.23(12.19)  59.35(12.89)  62.49(12.28)  70.73(11.74)  54.18(14.32) 61.22(16.18)  80.91(10.27)
Wheat 79.63(3.71) 94.55(5.37)  71.23(19.61)  94.83(4.61)  82.76(14.62)  99.90(0.21)  100.00(0.00)  98.44(1.78)  100.00(0.00)
Woods 88.51(3.46) 98.92(0.71) 96.81(2.65) 97.67(2.35)  97.59(3.19) 98.79(1.99) 98.66(0.82) 88.70(4.54) 97.65(2.44)
Buildings-Grass-Trees-Drives ~ 31.51(9.09) 85.97(9.65) 79.67(7.68)  62.07(20.04)  59.55(9.50) 93.53(8.62) 99.65(0.07) 87.11(5.34) 98.94(2.40)
Stone-Steel-Towers 83.76(17.78)  95.80(5.84)  93.39(13.48)  87.93(22.97) 89.13(10.28)  95.43(6.68) 92.47(5.78) 99.19(0.95) 99.74(0.55)
OA (%) 55.97(2.58) 76.36(1.68) 71.82(4.28) 78.43(3.66) 79.03(0.86) 82.25(3.97) 85.13(4.13) 70.48(2.84) 87.96(1.83)

AA (%) 54.09(2.61) 78.01(3.26) 70.57(5.95) 62.59(3.83) 61.86(2.20) 84.55(3.37) 83.98(1.81) 80.14(1.43) 91.42(2.72)
Kappax100 50.67(2.73) 73.41(1.90) 68.37(4.87) 75.21(3.11) 75.78(0.94) 79.94(4.40) 83.13(4.60) 66.79(3.02) 86.22(2.09)

Numbers in the parenthesis denote the standard variance of the accuracies obtained in repeated experiments.

Fig. 10.  Classification maps for Indian Pines dataset by (a) SVM, (b) KPCA, (c) EMPs, (d) NSSNet, () RVCANet, (f) PCA-EPFs, (g) SSFPCA, (h) IAPs, and
(i) KLRECA.
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TABLE II
CLASSIFICATION PERFORMANCE OF THE KPCA, SVM, IFRF, NSSNET, RVCANET, AND KLRECA FOR THE SALINAS DATASET WITH TEN LABELED SAMPLES
PER CLASS AS THE TRAINING SET

Classification Results of Different methods

Class SVM KPCA EMPs NSSNet RVCANet PCA-EPFs SSFPCA IAPs KLRECA
Brocoli_green weeds | 97.70(4.67)  80.13(7.34)  96.43(4.55)  100.00(0.00)  99.76(0.24) 99.89(0.36)  100.00(0.00)  99.13(0.79)  99.87(0.38)
Brocoli_green weeds 2 98.02(1.31)  95.002.43)  99.73(0.86)  99.31(0.22)  99.49(0.17) 99.65(0.52) 99.45(0.42)  9835(1.54)  98.84(1.92)
Fallow 82.24(4.56)  97.46(1.57)  99.66(0.34)  93.68 (6.33)  94.93(4.47) 99.43(0.94) 99.85(0.09)  96.82(3.88)  97.48(1.36)
Fallow rough plow 96.75(0.96)  93.18(3.72)  86.18(7.12)  99.50 (0.20)  99.68(0.15) 95.06(2.16) T484(7.13)  98.48(0.94)  96.11(2.28)
Fallow_smooth 95.83(3.64)  94.57(6.82)  99.39(1.79)  97.90 (1.64)  98.98(0.33) 99.97(0.07) 98.98(0.31)  94.73(326)  99.99(0.02)
Stubble 99.98(0.04)  99.71(0.40)  100.00(0.00) 99.80 (0,34)  99.80(0.30) 99.28(0.89)  100.00(0.00)  99.30(1.00)  97.27(3.13)
Celery 97.10(1.55)  98.49(1.17)  99.39(0.71)  99.69 (0.19)  99.57(0.21) 99.42(1.43) 97.04(2.13)  99.80(0.15)  99.95(0.02)
Grapes_untrained 68.72(3.67)  94.78(3.67)  9631(6.91)  60.10(10.22)  69.24(6.17) 95.60(3.65)  100.00(0.00)  80.28(7.14)  96.58(3.46)
Soil_vinyard_develop 98.80(0.66)  99.96(0.05)  99.95(0.14)  98.30 (0.33)  98.04(0.39)  99.58 (0.49)  100.00(0.00)  99.16(0.67)  100.00(0.02)
Corn_senesced_green weeds  80.72(5.09)  99.35(0.59)  99.28(0.72)  85.34 (6.42)  84.38(7.62)  99.66 (0.35)  99.91(0.03)  90.50(3.06)  99.94(0.09)
Lettuce romaine_ 4wk 79.80(5.75)  98.96(1.09)  98.77(1.62)  98.19 (1.47)  98.28(1.12)  99.73 (0.50)  100.00(0.00)  98.54(0.72)  99.88(0.21)
Lettuce_romaine 5wk 92.17(6.76)  98.23(1.44)  97.79(2.57)  100.00(0.00)  100.00(0.00)  99.53 (0.83)  98.92(0.98)  98.25(1.07)  98.89(2.04)
Lettuce_romaine_6wk 81.14(9.61)  94.67(9.92) 91.86(13.20)  99.42(0.76)  99.71(031)  98.80 (2.96)  100.00(0.00)  97.21(1.03)  98.03(3.55)
Lettuce romaine 7wk 78.06(17.64)  92.76(9.30)  95.10(5.47)  94.94(1.03)  95.17(2.06)  94.04 (3.51)  90.77(4.45)  96.57(2.12)  95.36(3.90)
Vinyard_untrained 49.14(4.53)  77.12(6.64)  87.44(747)  T2.67(8.62)  68.48(7.76)  86.07 (9.02)  83.07(5.54)  7831(8.58)  87.46(6.23)
Vinyard vertical_trellis 95.98(2.69)  99.30(2.22)  99.99(0.04)  94.52(437)  94.32(3.87)  99.99 (0.04)  100.00(0.00)  98.36(0.92)  97.62(3.43)

OA (%) 81.78(1.37)  92.79(1.19)  96.07(1.79)  86.17(3.13)  87.52(0.97)  96.31 (0.98)  95.89(2.69)  91.49(0.66)  96.61(1.01)
AA (%) 87.01(1.32)  94.60(1.23)  96.70(1.18)  93.34(1.61)  93.74(0.64)  97.70 (0.38)  96.43(1.93)  95.26(0.44)  97.86(0.48)
Kappax100 79.80(1.52)  92.01(1.31)  95.62(2.00)  84.66(3.46)  86.13(1.07)  95.89 (1.08)  95.44(3.01)  90.54(0.72)  96.23(1.11)

Numbers in the parenthesis denote the standard variance of the accuracies obtained in repeated experiments.

(i)

Fig. 11. Classification maps for Salinas dataset by (a) SVM, (b) KPCA, (c) EMPs, (d) NSSNet, (e) RVCANet, (f) PCA-EPFs, (g) SSFPCA, (h) IAPs, and (i)
KLRECA.

TABLE III
CLASSIFICATION PERFORMANCE OF THE KPCA, SVM, IFRF, NSSNET, RVCANET, AND KLRECA FOR THE HOUSTON2013 DATASET

Classification Results of Different methods

Class
SVM KPCA EMPs NSSNet RVCANet PCA-EPFs SSFPCA IAPs KLRECA

Healthy Grass 97.86 79.58 93.53 81.29 81.39 88.21 81.67 82.81 83.10
Stressed Grass 98.52 76.50 65.44 85.24 84.96 64.52 75.09 85.06 85.06
Synthetic Grass 88.58 97.82 100.00 93.47 96.83 100.00 97.62 99.60 100.00
Tree 97.22 81.44 64.23 89.39 89.30 69.17 85.04 91.38 91.67
Soil 95.72 97.92 98.68 98.11 98.20 100.00 99.43 100.00 100.00
Water 10.77 88.81 57.32 98.60 98.60 45.36 100.00 98.60 99.30
Residential 83.32 82.37 66.18 87.69 87.87 65.29 90.11 85.35 85.35
Commercial 69.38 45.30 90.79 79.58 79.68 93.47 45.58 74.45 70.18
Road 68.38 67.71 74.21 87.82 89.61 63.71 75.73 83.76 82.25
Highway 82.16 44.21 93.60 60.33 59.94 82.20 43.05 94.02 95.17
Railway 89.97 47.82 45.16 68.88 69.45 54.04 68.31 90.32 93.07
Parking Lotl 81.78 80.79 88.32 76.56 78.00 84.29 88.76 90.39 93.18
Parking Lot2 36.47 66.67 71.02 81.75 81.75 7591 56.84 76.14 81.05
Tennis Court 90.48 91.50 100.00 100.00 100.00 100.00 99.19 99.60 99.60
Running Track 99.57 83.30 100.00 100.00 100.00 100.00 97.04 99.79 100.00
OA (%) 77.48 72.62 77.19 83.34 83.78 79.74 78.31 88.79 89.06
AA (%) 79.34 75.45 80.57 85.91 86.37 79.08 80.23 90.09 90.60
Kappax100 75.76 70.49 76.08 81.91 82.40 78.68 76.09 87.83 88.12

The standard variance of the accuracies obtained is 0.00 for all methods because of the fixed training and test set (see [24] and [37] for more details).
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and (i) KLRECA.
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