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Background Learning Based on Target Suppression
Constraint for Hyperspectral Target Detection

Weiying Xie

Abstract—Hyperspectral target detection is critical in both mili-
tary and civilian applications. However, it is a challenging task due
to the complexity of background and the limited samples of target
in hyperspectral images (HSIs). In this article, we propose a novel
background learning model, called background learning based
on target suppression constraint to characterize high-dimensional
spectral vectors. Considering insufficient target samples, the model
is trained only on the background spectral samples to accurately
learn the background distribution. Then the discrepancy between
the reconstructed and original HSIs are examined to spot the
targets. To obtain a background training dataset, coarse detec-
tion is carried out. However, it is quite difficult to retrieve pure
background data. Thus, a target suppression constraint is imposed
to reduce the impact of suspected target samples on background
reconstruction. Experiments on six real HSIs demonstrate that the
proposed framework significantly outperforms the current state-
of-the-art detection methods and yields higher detection accuracy
and lower false alarm rate.

Index Terms—Background learning, hyperspectral image (HSI),
target detection, target suppression constraint.

I. INTRODUCTION

YPERSPECTRAL image (HSI), a 3-D data cube, contains
both spectral and spatial information. Benefited from
abundant spectral information, HSI has become instrumental in
many application scenarios, such as medical diagnosis and treat-
ment [1]-[3], agricultural production [4]-[6] and identification
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of the terrain landform [7]-[9]. Among these applications, target
detection is considered as a fundamental task and has received
a surge of interest [10], [11]. Essentially, target detection can be
regarded as a problem of classification and localization [12],
[13], which has been widely used spanning from civilian to
military.

A significant body of prior work exists within hyperspectral
target detection. Traditionally, spectral difference between target
and background is exploited to detect targets. Constrained en-
ergy minimization (CEM) [14], a classic hyperspectral target de-
tection approach, imposes a constraint on target and background
and builds a finite impulse response filter, which minimizes the
filters output energy. Many extensions based on CEM have been
investigated for hyperspectral target detection [15]-[17]. Among
them, hierarchical CEM (hCEM) proposed by Zou and Shi [18]
is an improved method based on CEM, which is a hierarchical
structure containing different layers of CEM detectors. The
hCEM increases detection performance layer by layer through
a hierarchical suppression process. Another typical target de-
tection method is orthogonal subspaces projection (OSP) [19],
which projects spectral vectors into an orthogonal subspace
of background with the aim of maximizing the signal-to-noise
ratio (SNR). A combined sparse and collaborative representation
(CSCR)-based approach [20] generates a detection output sim-
ply by using the difference between the representation residuals
of target and background. Other methods, such as adaptive co-
herence/cosine estimator (ACE) [21], [22], matched filter [23],
and matched subspace detectors [24] describe target detection
as a hypothesis test problem.

Virtually, an HST usually covers a large scale of ground scene,
which contains various materials with different spectral prop-
erties. On this account, traditional target detection algorithms
encounter many bottlenecks. For example, CEM estimates back-
ground with all pixels of an image, which ignores the influence
of target pixels. Moreover, it is found to be difficult for OSP to
construct background subspace accurately due to the complexity
and diversity of HSIs.

Recent developments in deep learning, shown to be highly
capable of characterizing high-dimensional data. The deep neu-
ral networks (DNN5s) can model complex datasets by extracting
multiple layers of representation and abstraction. Thus, DNNs
are expected to yield higher detection accuracy for HSIs than
those traditional ones using shallow feature extractors [25]—[28].
Generative adversarial networks [29] are promising deep learn-
ing models, which provide substantial advantages in learning
input distributions with a min—max game. Many variants of
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generative adversarial networks (GANs) have been proposed
to adapt to different tasks [30]-[32]. For example, by adding
the learning of the inverse mapping which maps the data to
a latent representation, the original GAN can be extended to
bidirectional GAN (BiGAN) [33], which has been successfully
used in anomaly detection. Another variant of GAN is known as
adversarial autoencoder (AAE) [34], which imposes an arbitrary
prior on the latent code to learn the input distribution adversar-
ially. Several contemporary studies demonstrate that AAE is
effective in generating an approximated data to the input, and
can adapt well to various complex scenes [35]—[37].

A training set containing sufficient samples plays a significant
role in the establishment of DNNs. Compared with the small-
area and low-probability target samples in HSIs, background
occupying a larger area contains abundant samples. In virtue
of its superior numbers, background samples are served as
training data to establish a background estimation model in
a semisupervised way [38]. Among the deep learning models
mentioned above, AAE shows its potential in modeling back-
ground distribution. In [39], Xie et al. detected anomalies by
learning the background distribution with an autoencoder and
adversarial-learning-based background estimation model that
is trained only on the background samples. Jiang et al. [40]
proposed an adversarial framework to learn a discriminative
background reconstruction with anomaly targets being sup-
pressed, such that an initial detection result can be generated
by the residual between the original and reconstructed images.
In this article, a novel background estimation model based on
AAE with a target suppression constraint is proposed, which is
conducted to provide an accurate background description, then
compare the reconstructed and original HSIs to spot the targets.
To obtain a sufficient number of background samples, coarse
detection is carried out. However, it is impossible to execute
the coarse detection with no deviation which is not conducive
to the subsequent target detection. Thus, a target suppression
constraint is imposed on the model to reduce the impact of false
detection on background reconstruction.

The major contributions of this article can be summarized as
follows.

1) The perception of semisupervised learning is introduced
to hyperspectral target detection and the constructed back-
ground estimation model can adapt well to various com-
plex scenes and overcome the problem of scarce training
samples.

2) We especially design a constrained AAE for jointly opti-
mizing adversarial loss, target suppression constraint loss,
and autoencoder loss. Compared with the traditional one,
the target suppression constrained AAE minimizes the
bias introduced by the ambiguous training set while taking
full advantage of prior information.

3) Considering it is a tough task to obtain richly accurate
background annotation, a simple but powerful detector is
executed to display the nonsalient area and get a relatively
pure background training set.

The remainder of this article is organized as follows. In

Section II, we give a brief introduction of the AAE network. In
Section I1I, we detail our proposed BLTSC method. Experiments
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and parameter settings are performed in Section IV. Section V
draws the conclusion.

II. RELATED WORK

GAN [29], an emerging technology, have shown to be highly
capable of learning accurate data distribution and generating new
data with the same distribution. Conceptually similar to GAN,
AAE, initially proposed by Makhzani et al. [34] introduces
adversarial training into a traditional autoencoder. AAE consists
of a bow-tie shaped generator GG and a discriminator D, and its
principle can be presented as follows.

The latent feature extracted from an input x is represented by
z. Let the encoding distribution and the decoding distribution
be defined by ¢(z|x) and ¢(x|z), respectively. The aggregated
posterior distribution of ¢(z) on a latent space is formulated by

4(z) = / a(@lx)pa(x)dx ()

where the py(x) represents the data distribution. The AAE aims
to minimize the Jensen Shannon divergence between ¢(z) and
p(z). Here, p(z) is the prior distribution we want to impose
on the latent space. During the training phase, in addition to
minimize the traditional reconstruction error, we also take ad-
versarial training error into account. The adversarial training is
realized by two operations, i.e., the generator G with z ~ ¢(z)
to fool the discriminator D with z ~ p(z), and the discriminator
D to distinguish z ~ ¢(z) from z ~ p(z). In essence, AAE
establishes a competition between G and D though a min—max
adversarial game, which can be represented as

m&n max B, q(z1%)[log D(z)]
+ Ezpri(\r'\’p(zprior) [log(1 — D(G(2)))]-

Due to the inherent potential for capturing data distributions,
there is a growing body of literature that recognizes the im-
portance of AAE. In [41], Principi et al. proposed an acoustic
novelty detector based on AAE, and the results showed that the
proposed approach provides a relative performance improve-
ment equal to 0.26% compared to the standard autoencoder. A
conditional difference AAE (CDAAE) [42] was proposed for fa-
cial expression synthesis to handle the problem of disambiguat-
ing changes. Moreover, AAE also shows impressive success
in learning bilingual dictionary [43], and is more robust and
achieves better performance than nonadversarial approaches.
However, in the realm of HSI, especially in target detection,
research works based on AAE are still inadequate. In this article,
a network based on AAE for hyperspectral target detection is
developed, and it has been proved that our model significantly
outperforms other hyperspectral target detection approaches.

@)

III. PROPOSED METHOD

A semisupervised AAE, subject to a target suppression con-
straint, is proposed in this work for target detection. Due to scarce
target samples, our method resorts to background learning,
providing a new perspective to target detection. As depicted
in Fig. 1, the proposed background learning based on target
suppression constraint (BLTSC) method consists of two main
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Fig. 1.  Schematic of the proposed BLTSC-based target detection method.

operations. First, the network is trained based on BLTSC to
obtain unique background representation. Then, pinpoint targets
with the trained model. The BLTSC is adversarially trained on
background samples only to reconstruct background as accu-
rately as possible. Let the background training set be denoted
as Hp, which can be represented as Hg = [hihs ... h,,]. After
training the network with abundant background samples, our ap-
proach can approximate background distribution. Then we test
the trained model with an HSI, denoted by H € RM*N*L 'and
yield a discriminative reconstruction. The HSI can be divided
into background spectra set B and target spectra set T

B =[b},...,b,bj,...,by,b, ... bl

T =[ty,.... 60, t3,...,t5, 6., ...,y
where p + g = M x N. Similarly, the reconstructed HSI H' €
RM*N*L can also be divided into two components, recon-
structed background B’ and reconstructed target T’

I /1 1L /1 1L /1 1L
B = [bl,...,b1 ,by, ..., by ,bp,...,bp]

/o /1 1L 411 1L 4 IL 1L
T = [t} ..t e, ety

The trained model concentrates on reconstructing back-
ground, therefore, discriminative reconstruction is performed

on the background and target samples. In our approach, Leaky
Relu acts as the activation function

z, ifz>0
J@) = {m, itz <0 )

where & ~ U(l,u),l < wandwu € [0,1). The background spec-
trum b; and target spectrum t; are considered as input, whereas
b/, and t, are the output. 17 denotes the hidden representation of
the background spectrum b;. Hence, the encoding and decoding
process for background samples can be expressed as

l? =f (thi + ah)
b, = f (Wl +a,)

respectively. Similarly, for targets, the hidden representation of
t; is denoted by 1¢. Thus, the encoding and decoding process
become

“

I = f(Wht; +ap)
t) = f (Woll +a,)

respectively, where W, and a;, denote the weight matrix and
bias term of encoding layers, respectively, while W, and a,
represent the weight matrix and bias term of decoding layers,
respectively. With the optimization goal mentioned in (13),
thousands of epochs are conducted until AAE converges. Then
the parameters are fixed and used to reconstruct H'.

The network, only trained on background samples, is excepted
to fail to reconstruct target samples as it is never trained on
such examples. As illustrated in Fig. 2, targets in HSIs are not
well recovered, while background pixels are reconstructed with
less reconstruction error, which indicates the model enhances
discrimination between target and background with background
learning. Additionally, a target suppression constraint is imposed

&)
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Fig. 2. Reconstructions of background and target for HYDICE dataset.
(a) Background. (b) Target.

on the training procedure to approximate background distri-
bution as closely as possible, as mentioned in Section III-B2.
In contrast to the original HSI, the reconstructed one has an
extremely similar background and more distinguishing target,
which indicates that our model obtains a discriminative feature
by learning the distribution of the training set. Then H and H’
are compared pixel by pixel. The output D g can be described as
Dg = [ds1,ds2, - - - dsarxn], where d; is the spectral distance
between the iz, pixel in H and H', calculated by

h7h, )

d; = cos™ ( () (1w

h’h

V()" /TRy

Then, a distance map, containing distinguishable targets, is
obtained.

Since it is the key point to acquire the BLTSC-based network,
we address the problem of obtaining background training set in
Section III-A, and describe our training objective detailedly in
Section III-B.

= cos !

(6)

A. Background Spectral Selection

A DNN architecture has shown to be highly capable of target
detection based on massive volumes of training data. Targets
are rare entities, hence it is challenging to obtain their labels.
Instead, background samples are far more easy to acquire. With
sufficient training samples, the model is capable to reconstruct
background as realistically as possible and is conversely ex-
pected to have poor performance on target samples. During the
training procedure, target suppression constraint is also imposed
to aid AAE to learn more powerful background representation.

As noted, the motivation is to maximize the background
reconstruction capability. The training set is only composed of
background samples. In this work, the CEM is leveraged as a
coarse detection approach to obtain the initial training set. Let
the original HSI with L bands be denoted as H € RM*N*L and
the response of CEM filter is given by

y=(w")"H
dTR71 (7)
=" _H
dR-1dT

5875

where R = (1/N)HHT represents the correlation matrix and d
is a prior known target spectrum. By analyzing D; € RM>*~Nx1
reshaped from y, we can locate background pixels roughly.

In the normalized initial detection result D¢, the values of
background and target incline to 0 and 1, respectively. To reject
targets, a smaller threshold € is configured to binary D, while
selecting background training samples by

.. [ H(i,75), Di(i,j) =0
Hp(i,j) = { 0, otherwise ®)
where H(3, j) represents the spectral vector at position (4, 7).
H p is the collection of background samples selected from H ac-
cording to D ;. The background training set Hp = [hihsy ... h;,]
randomly samples 75% from Hp.

B. Background Learning Based on Target
Suppression Constraint

As mentioned above, the BLTSC aims to learn accurate back-
ground distribution. To achieve this, we propose to combine
three losses (adversarial, target suppression constraint, autoen-
coder), each of which contributes to better reconstruction. First,
an adversarial loss for matching the distribution of the latent
space with the prior distribution. Second, a target suppression
constraint loss is adopted to ensure the network is only trained
on background samples. Third, we evaluate performance with an
autoencoder loss, which calculates the deviation between input
samples and reconstructed output.

1) Adversarial Loss: AAE is known as a variant of GANs,
which trains model in the adversarial regularization. As shown
in (2), AAE samples from the prior distribution to induce ¢(z) to
match p(z). Different distributions of ¢(z) will result in different
kinds of models for various tasks. Each feature of z is excepted
to be independent of each other and obey the known prior dis-
tribution p(z). Inspired by existing anomaly detection models,
we choose Gaussian distribution as the prior distribution. Two
components of AAE, discriminator D and generator GG, are
jointly trained. D aims to distinguish the true samples from the
fake ones generated by the generator. Concurrently, G is trained
to confuse D with its generated samples. G tries to minimize
the loss in (2), and conversely, D is in an effort to maximize it.
Ultimately, ming maxp L,4y is achieved, formulated as

Laay = Eflog DV(0,1))] + Eflog(1 = D(2)] ~ (9)
where z is the latent representation of the input. With the
minimization of £,4,, an accurate generative reproduction of
background distribution is guaranteed.

2) Target Suppression Constraint Loss: It is inevitable that
the background samples obtained from coarse detection are
ambiguous. To reconstruct the background sufficiently and re-
liably, the target suppression constraint loss is leveraged. This
loss act as a criterion to eliminate the threat of potential target

spectrum during the training phase. The spectral angle mapper
s; for the every reconstructed background spectrum h), and d, is
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Algorithm 1: Target Detection by the Proposed BLTSC.
Input: HSI H, normalized initial detection result D¢, prior
known target spectrum d, parameter A;
Step:
1: obtain background training set Hz from H with (8)
2: establish the background learning model
for each epoch do
minimize adversarial 10oss L4, in (9)
minimize target suppression constraint loss Ly in (11)
minimize autoencoder 10Ss Lepror in (12)
end
3: reconstruct H' from H with the trained model
4: calculate the distance map D g with (6)
5: detect target from D g and D with (14)
Output: final detection result D .

calculated, resulting in S = [s1s2 .. .s,], where s; is defined as
o (i)
i = COS ATERATEATBETTES
(b ) (lldf)
h'7d
V(@7 dy/HTH)
A smaller s; indicates that the h, is most likely reconstructed by
a target sample, i.e., in all probability, the h, is a target sample.

The mean of s; which smaller than preset threshold § should
work as the target suppression constraint loss, i.e.,

£tsc = E[Si}v

(10)

= cos !

where s; < 0. (11)

3) Autoencoder Loss: Additionally, we define autoencoder
loss to minimize the reconstruction error between input data Hp
and reconstructed data H'B, encouraging encoder and decoder
to approximate the real distribution, as

»Cerror = § ‘
7

where h; is the reconstructed spectrum corresponding to the
input spectrum h;.
Taken together, the total loss is formulated as

L= £adv - £tsc + l:error-

h; — h;

12)
2

13)

These three losses perform their respective functions and work
together to optimize the model.

C. Target Detection

To finally detect targets, each pixel value dg; is transformed
by multiplying a nonnegative number ¢(y;) based on output of
the coarse detection y as

dfi =4q (yz) dgi.

The nonlinear function ¢(z) is used to suppress the undesired
background spectra while keeping the target spectra unchanged.
Considering that the target pixels in the distance map are much
greater than the background, ¢(«) should be able to maintain

(14)
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large values and remove small ones. Here, the nonlinear sup-
pression function is defined as

l—e™ >0
i ={o 20 (15)
where A is a positive parameter to adjust the sup-

pression performance. Finally, the detection result Dp =
[dfl, dfg, cee dfoN] is obtained.

In summary, the BLTSC method is implemented by following
steps. First, coarse detection is utilized to obtain initial training
data. Second, a background learning-based AAE network is
trained to optimize the three losses mentioned in Section III-B.
Then the trained model is tested by the entire HSI, and the
final target detection is achieved after applying a nonlinear
scaling factor. The entire algorithm of BLTSC is summarized
in Algorithm 1.

IV. EXPERIMENTS

In this section, experiments are conducted to validate the
effectiveness of the proposed method. First, we analysis the
effect of parameters to obtain an optimal model. Besides, the
component analysis is carried out to verify that both the target
suppression constraint and adversarial learning have positive in-
fluence on the performance of target detection. Finally, the final
performance of the proposed method is evaluated and compared
with four typical target detectors: CEM, hCEM, CSCR, and
ACE, which are either frequently cited in the literature or have
leading performances on several real hyperspectral datasets.

The performance of the proposed BLTSC model is evaluated
by the most widely used metrics, i.e., the receiver operating
characteristic (ROC), and the area under the curve (AUC) metric
[44]. Here, two types of ROC curves are plotted with three
parameters: true positive rate (Pp), false positive rate (Pr),
and threshold (7). The ROC curve of (Pp, Pr) describes the
tradeoff between Pp and Pr, and the closer the curve is to the
upper left corner, the higher the AUC value. The ROC curve of
(Pp,7) illustrates the false alarm rate of the target detection. In
general, a larger AUC of (Pp, Pr) and a smaller AUC of (Pp,
7) indicates good detection performance, i.e., more targets are
pinpointed with less error.

A. Datasets Description

Our experiments are performed on five datasets, including
six HSIs captured over different scenes, and the datasets are
described detailedly as follows.

1) HYDICE Dataset: The first dataset was collected by the
hyperspectral digital imagery collection experiment (HYDICE)
airborne sensor over an urban area, CA, USA. This urban scene
consists of 80 x 100 pixels, with 175 spectral channels in wave-
lengths ranging from 400 to 2500 nm. The image has a spatial
resolution of 1 m. The scene mainly consists of a vegetation area,
a construction area, and several roads including some cars. The
man-made objects, i.e., cars and roofs which occupy 19 pixels
are regarded as targets.

2) San Diego Dataset: The second hyperspectral dataset was
acquired by the AVIRIS sensor, covering the San Diego airport
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Fig. 3. Parameter sensitivity analysis of influence on different datasets. (a) Number of hidden nodes. (b) Depth. (c) A.

area, CA, USA. The spatial size is of text100 x 100 pixels and
it includes 224 spectral channels in wavelengths ranging from
370 to 2510 nm. The spatial resolution is approximately 3.5 m.
In the experiments, a total of 189 bands are used after removing
water-absorption and low SNR bands. This dataset includes two
images, the one with three airplanes which occupies 57 pixels
in the upper right corner is represented by San Diegol and the
other one with three airplanes occupying 134 pixels in the center
is represented by San Diego2. The airplanes are considered as
targets of interest.

3) Cuprite Dataset: The third hyperspectral dataset was ob-
tained by the AVIRIS sensor, in the Cuprite mining district
of Nevada in 1997, while the corresponding ground truth was
produced by Tricorder software in 1995. There are about 14
kinds of mineral in this image, including buddingtonite, Na-
Montmorillonite, Nontronite (Fe clay), Kaolinite, etc. We use a
250 x 191 pixel subset of this image to conduct our experiment,
which is marked by the red box in this figure. The buddingtonite
is selected as the target, which occupies 41 pixels. After remov-
ing the low SNR and water absorption bands, 188 bands are left
to conduct our experiment.

4) ElSegundo Dataset: The forth dataset was captured by the
AVIRIS sensor, which has 224 spectral channels in wavelengths
ranging from 366 to 2496 nm. This urban scene covers an area of
El Segundo, CA, USA, with the spatial size of 250 x 300. Each
pixel has 7.1 m of ground resolution. The image data set is mainly
composed of an area of oil refinery, several residential areas,
parks, and one school zone. The constructions of oil refinery
such as storage tanks and the towers occupy 2048 pixels and are
considered as targets.

5) Grand Isle Dataset: The fifth dataset is also an AVIRIS
image, which is captured at the location of Grand Isle on the
Gulf Coast, part of Jefferson Parish, LA, USA. The dataset
consists of 300 x 480 pixels with 224 spectral channels in wave-
lengths ranging from 366 to 2496 nm. The spatial resolution is
approximately 4.4 m. The main background materials are island
and water in the scene. Those man-made objects occupying
279 pixels in the water are selected as the targets to be detected.

TABLE I
PARAMETER SETTINGS OF THE PROPOSED METHOD

Parameters Number of hidden nodes Depth A\ € &
50 2 10 0.15 20ths;

Value

B. Parameter Sensitivity Analysis

Latent code, an effective feature learned by the network, de-
termines the quality of reconstruction. The depth of the network
and the number of hidden nodes in the deepest layer are crucial
hyperparameters for feature extraction. The more layers and
nodes there are, the more accurate information the latent code
embodies. However, increasing layers and nodes leads to long
training time and overfitting. Besides, the parameter A in target
detection should be determined correctly which enables that the
nonlinear transformation will not hurt any target spectra while
suppressing background. In this section, different parameters are
set to estimate an optimal network structure. When the impact
of the number of hidden nodes is analyzed, the depth is set to 2,
and the number of nodes for the first hidden layer is set to 200 to
obtain sufficient feature information. As depicted in Fig. 3, when
the number of hidden nodes is 50, our proposed network can
achieve first-rank detection performance. Then, we optimized
the depth under the precondition of the aforementioned. It can
be observed that 2 is the best depth.

With the fixed hyperparameters, the effect of X is analyzed.
When 1 is set to 10, our method has the best detection capacity.
The threshold € mentioned in Section III-A is set as 0.15 for
all the experimental datasets. Additionally, we sort s; and chose
the 20th as the preset threshold § in Section IT1I-B2. The last two
parameters are default in our experiments and they can be tuned
by user for the optimal results. Our parameter settings are shown
in Table I.

C. Component Analysis

1) Effectiveness Evaluation of Target Suppression Con-
straint: To further validate the influence of the target suppres-
sion constraint, a model without it is tested on all the datasets.
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Fig. 4.

() (b) (©) (d) (e) ® (8 (h)

Detection maps of different methods. (a) Color composites of HYDICE, two HSIs from San Diego, Cuprite, El Segundo, and Grand Isle datasets. (b)

Reference map. (¢c) BLTSC-AAE. (d) BLTSC-SAE. (e) CEM. (f) hCEM. (g) CSCR. (h) ACE.

TABLE II
EVALUATION AUC SCORES OF (Pp, Pr) AND (Pp, T) FOR THE MAIN
COMPONENT (TSC) OF OUR METHOD

HSTs (Pp, Pr) (Pp, 7)

TSC(Y) TSC(N) TSC(Y) TSC(N)

HYDICE 0.99433 0.98435 0.00001 0.00003
San Diegol  0.99340 0.98763 0.00036  0.00076
San Diego2  0.99566  0.99467 0.00061  0.00149
Cuprite 0.99995 0.99986 0.00014 0.00023
El Segundo  0.99193  0.98936 0.00800 0.01594
Grand Isle 0.99921 098365 0.00066  0.00008
Average 0.99575 0.98992 0.00163  0.00309

The bold entities represent the best performance in each row.

The result with the constraint are shown in Table II. The TSC is
used to denote this constraint. Y and N in parentheses indicate
whether the constraint is employed, respectively. Apparently,
the model with TSC is better than the model without TSC in
reducing the false alarm rate as well as increasing the detection
rate.

2) Effectiveness Evaluation of Adversarial Learning: To fig-
ure out how adversarial learning contributes to the reconstruc-
tion, a network based on SAE was analyzed. The third and
fourth columns in Fig. 4 show BLTSC-AAE and BLTSC-SAE
have similar visual inspection effect. However, as reported in
Table III, BLTSC-AAE is capable to achieve better detection ac-
curacy on all the datasets except for HYDICE dataset. Although

TABLE III
EVALUATION AUC SCORES OF (Pp, Pr) AND (Pp, T) FOR THE MAIN
COMPONENT (ADVERSARIAL LEARNING) OF OUR METHOD

HSIs (Pp, Pr) (Pp, 7)
AAE SAE AAE SAE
HYDICE 0.99433 0.99837 0.00001  0.00008
San Diegol  0.99340 0.98831 0.00036  0.00040
San Diego2  0.99566 0.99518 0.00061  0.00088
Cuprite 0.99995 0.99992 0.00014  0.00027
El Segundo  0.99193 0.99124 0.00800  0.01400
Grand Isle 0.99921 0.99919 0.00066  0.00081
Average 0.99575 0.99543 0.00163  0.00274

The bold entities represent the best performance in each row.

the AUC value of BLTSC-AAE on HYDICE is 0.99433, down
0.004 from BLTSC-SAE, BLTSC-AAE shows better perfor-
mance in terms of false alarm rate. Taken together, it can be seen
from the average value that BLTSC-AAE behaves better than
BLTSC-SAE in representing characteristics and reconstructing
spectra, which is due to adversarial learning.

D. Detection Result

In this section, the performance of the proposed BLTSC-based
hyperspectral target detection is evaluated and compared with
four widely used target detection algorithms, i.e., CEM, hCEM,
CSCR, and ACE.
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For the datasets mentioned above, the reference maps, i.e.,

TABLE IV
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ROC curves of (Pp, Pr) for the compared methods on the (a) HYDICE, (b) San Diegol, (c) San Diego2, (d) Cuprite, (e) El Segundo, and (f) Grand Isle.

EVALUATION AUC VALUES OF THE COMPARED METHODS FOR

ground truths and detection results are shown in Fig. 4. Ob-
viously, the proposed BLTSC-AAE outperforms according to
visual inspection. Besides, our proposed method can adapt to
any targets with different sizes. For the typical detection method
such as CEM, it is challenging to detect targets precisely while
suppressing background. The hCEM is superior to CEM in
suppressing background, however, the targets are far smaller and
less than the background, which means some targets are easily
rejected as uninterested information. CSCR and ACE cannot
perform well for the targets containing structural information,
and the background noise is unacceptable. On the contrary, the
proposed BLTSC provides a more robust detection performance
by expanding the difference between background and targets.
For detailed qualitative analysis of detection performance, the
log-scale ROC curves of (Pp, Pr) and (P, 7) are plotted. As
illustrated in Fig. 5, except for the HYDICE, Grand Isle datasets,
and San Diego2, our method remains over CEM, hCEM, CSCR,
ACE, and BLTSC-SAE. Besides, Fig. 6 shows that the curves
of (Pr, 7) of BLTSC-AAE are under other methods for all
datasets but San Diego?2. These confirm that our method exhibits
better detection performance while reducing false alarm rates.
The AUC scores of (Pp, Pr) and (Pr, T) are exploited to offer
quantitative analysis. Notably, although the proposed BLTSC-
AAE fails to achieve the best intuitive ROC performance on
San Diego2, the nonlinearity of abscissa leads to numerical
superiority, as seen in the local enlarged drawings of Figs. 5(c)
and 6(c). Moreover, we take El Segundo and Grand Isle for
example and draw the target-background separability map. The

EXPERIMENTAL DATASETS

AUC values of (Pp, Pr)

HSIs BLTSC-AAE BLTSC-SAE CEM hCEM  CSCR ACE
HYDICE 0.99433 0.99837  0.98243 0.99976 0.92561 0.98656
San Diegol 0.99340 0.98831  0.96837 0.97915 0.92424 0.98177
San Diego2 0.99566 0.99518  0.95871 0.99241 0.86947 0.97327
Cuprite 0.99995 0.99992  0.99360 0.99986 0.70987 0.99982
El Segundo 0.99193 0.99124  0.99155 0.87147 0.71768 0.98726
Grand Isle  0.99921 0.99919  0.99881 0.99909 0.98363 0.99755
Average 0.99575 0.99543 098233 0.97362 0.85512 0.98770

HSIs AUC values of (Pg, T)

BLTSC-AAE BLTSC-SAE CEM hCEM  CSCR ACE
HYDICE 0.00001 0.00008  0.03010 0.00045 0.07600 0.24164
San Diegol 0.00036 0.00040  0.03570 0.27753 0.09832 0.34175
San Diego2 0.00061 0.00088  0.05881 0.00103 0.11221 0.19438
Cuprite 0.00014 0.00027  0.00124 0.29330 0.27443 0.33809
El Segundo 0.00800 0.01400  0.06732 0.17532 0.01607 0.26885
Grand Isle  0.00066 0.00081  0.01883 0.17575 0.01369 0.22916
Average 0.00163 0.00274  0.03718 0.15390 0.09845 0.26898

The bold entities represent the best performance in each row.

larger distance between the lower bound of the red box and the
upper bound of the green box indicates better target-background
separability. As shown in Fig. 7, the proposed method behaves
better than other methods except for ACE. It is worth noting that
BLTSC has the flattest and lowest green box, which indicates
the powerful background suppression ability.

As reported in Tables IV, the AUC scores of (Pp, Pr) and
(Pp, 1) of the proposed BLTSC-AAE method are approximate to
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ideal values 1 and O for all the scenes. The average AUC scores
of (Pp, Pr) and (Pr, 7) are 0.99575 and 0.00163, and they
are superior to other methods numerically. Besides, to evaluate
the compared methods more scientifically and rigorously, the
nonlinear suppression mentioned in Section III-C is imposed on
all the compared methods. As shown in Table V, our method re-
mains superior and there is no significant performance improve-
ment after nonlinear process, which validates the effectiveness
of the proposed model.

Additionally, the computing time of different methods is
presented in Table VI. All the experiments are carried out on an
Inter (R) Core (TM) i5-8400 CPU machine with 32 GB of RAM.
Our proposed method is performed on a system running Python
3.7.6 and TensorFlow 1.14.0, while all compared methods are
executed with MATLAB R2018b. Due to the introduction of

TABLE V
DETECTION PERFORMANCE FOR THE COMPARED METHODS WITH
NONLINEAR SUPPRESSION

AUC values of (Pp, Pr)

HSIs BLTSC-AAE BLTSC-SAE CEM hCEM  CSCR ACE
HYDICE 0.99433 0.99837  0.97230 0.99920 0.97130 0.98684
San Diegol 0.99340 0.98831  0.97212 0.98081 0.97514 0.98177
San Diego2 0.99566 0.99518  0.96780 0.98863 0.97778 0.97730
Cuprite 0.99995 0.99992  0.99937 0.99935 0.98783 0.99982
El Segundo 0.99193 0.99124  0.99039 0.87190 0.99019 0.98659
Grand Isle  0.99921 0.99919  0.98848 0.99920 0.99592 0.99288
Average 0.99575 0.99543  0.98174 0.97318 0.98303 0.98753

The bold entities represent the best performance in each row.

TABLE VI
AVERAGE COMPUTING TIME (IN SECONDS) OF THE COMPARED METHODS

Computing Time (in seconds)

HSIs BLTSC-AAE BLTSC-SAE  CEM hCEM CSCR  ACE
HYDICE 0.07123 0.09811  0.04357 1.32478 3.87727 0.11514
San Diegol ~ 0.08009 0.08789  0.06001 1.66199 6.07100 0.19633
San Diego2  0.08238 0.08584  0.04543 1.48438 5.06353 0.09634
Cuprite 0.37436 027172 0.18829 3.49000 22.85086 0.41291
El Segundo  0.64658 0.85098  0.35202 6.80602 39.20438 0.81599
Grand Isle 1.22301 1.19254  0.63296 9.19997 93.44258 1.51130
Average 0.41294 0.43118  0.22038 3.99453 28.41827 0.52467

The bold entities represent the best performance in each row.

network, it takes a few minutes to model the background.
Therefore, we measure the running time of detection after the
training stage, and the results are recorded in seconds. As shown
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TABLE VII
TIME COMPLEXITY FOR THE COMPARED METHODS

Compared methods Time complexity

BLTSC-AAE O(M x N x L xb)
BLTSC-SAE O(M x N x L xb)
CEM O (M x N x L?)
hCEM O (iter x M x N x L?)
CSCR O(M x N x (w2, —w?)? x L)
ACE O (M x N x L?)

in Table VI, the computational complexity of the two BLTSC
models is almost the same, which is less than hCEM, CSCR, and
ACE. CEM takes less time, but the detection performance is not
as good as BLTSC. BLTSC achieves an outstanding detection
performance at the cost of tolerable time. More formally, the
time complexity for all methods in comparison are calculated
and listed in Table VII. The image fed into all methods in
comparison is of size M x N x L. bdenotes max hidden nodes
number in BLTSC. iter, the number of layers in hCEM, is equal
to 10 on average. (wout,win) frames a sliding dual-windows in
CSCR, and is set as (11,3). The time complexity of BLTSC,
CEM, and ACE is in the same level while hCEM achieves better
performance than CEM at the cost of time. The time complexity
of CSCR is more than 60 times that of BLTSC. All the above
results tallies with the computing time of the compared methods
listed in Table VI.

V. CONCLUSION

In this article, we propose a novel semisupervised AAE
model based on background learning named BLTSC for HSIs.
It is composed of three complementary workflows: background
spectral selection, BLTSC, and testing with the original HSI.
In background spectral selection, we exploit the CEM to obtain
initial background training data. To retrieve pure background
data, target suppression constraint loss is imposed on the model
to reduce the impact of suspected target samples on back-
ground reconstruction. Then, adversarial loss, target suppression
constraint loss, and autoencoder loss are jointly optimized to
approximate background distribution as accurately as possible.
Finally, all the spectral samples are fed into the background es-
timation model. Experimental results on five real hyperspectral
datasets show that the proposed BLTSC is superior to the other
target detection methods. Its superior performance validates the
importance of semisupervised learning in hyperspectral target
detection.
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