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Can Terrestrial Restoration Methodologies be
Transferred to Planetary Hyperspectral Imagery? A
Quantitative Intercomparison and Discussion
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Abstract—Hyperspectral imaging is a significant remote sensing
technology for deep space exploration to understand the planetary
geological evolution. However, hyperspectral images (HSIs) usually
suffer from various noises because of the complicated environment
and equipment limitations, which leads to inconvenience to subse-
quent applications. In this work, a comprehensive and systematic
investigation on planetary noise categories is summarized initially,
and an intercomparison among state-of-the-art terrestrial joint
spatial-spectral restoration models is performed to test their capa-
bility on planetary datasets. The Compact Reconnaissance Imaging
Spectrometer for Mars and Observatoire pour la Minéralogie,
I’Eau, les Glaces et ’Activité are adopted as examples. An im-
proved nonreference quantitative evaluation method based on the
high-resolution imaging science experiment imagery is proposed.
The processed high-resolution classification result of Russell Dune
can be used as the reference of unmixing after denoising. Then,
spectral and spatial fidelity can be assessed indirectly. Experimen-
tal results emphasize that denoising approaches with modeling for
non-independently and identically (non i.i.d.) noise characteristics
are more suitable for planetary HSIs because of the diversity and
complexity of their noises. This kind of method is flexible under
practical circumstances and maintains the intrinsic information of
HSIs better.

Index Terms—Compact reconnaissance imaging spectrometer
for mars (CRISM), denoising, high resolution imaging science
experiment (HiRISE) imagery, hyperspectral imagery (HSI),
I’Eau, les glaces et I’activité (OMEGA), observatoire pour la
minéralogie, remote sensing of planetary surface, spatial-spectral,
spectral analysis.
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1. INTRODUCTION

EMOTE sensing represents the core means of Earth and

planet observation. It acts as the stethoscope and the rock
hammer of planetary researchers to explore the mysteries of
the entire universe [1]. The visible and near-infrared imaging
spectra acquired by remote sensing provides excellent results
for the chemical composition and physical state of solid sur-
faces, thereby offering clues to present and past activities and
environmental conditions.

As a powerful tool for obtaining spectra and analyzing land
cover on a large scale, the number of hyperspectral images (HSI),
such as the Moon Mineral Mapper (M?) [2], the Observatoire
pour la Minéralogie, I’Eau, les Glaces et 1’ Activité (OMEGA)
[3], and the Compact Reconnaissance Imaging Spectrometer for
Mars (CRISM), is increasing [4]. However, HSIs always suffer
from different kinds of noises because of equipment limitations
and environmental impact. Specifically, the low energy captured
by each sensor produces shooting and thermal noises inevitably
due to the narrow bandwidth and the radiation reduction factors,
such as poor illuminating conditions and weak atmospheric and
surface absorption. The limited sensor sensitivity, the photon
effect, and the calibration error [5], [6] can also decrease the
quality of the HSI. Moreover, the unpredicted extraterrestrial
environment can complicate the noises. These noises not only
degrade the HSI quality but also reduce the accuracy of subse-
quent planetary applications, such as classification, unmixing,
and target detection.

In terrestrial remote sensing, the traditional strategy is used
to restore every 2-D image band by band. However, the spec-
tral correlation of the HSIs is ignored, thereby causing severe
spectral distortions. To solve this problem, many researchers
have developed various joint spatial-spectral denoising models
to maintain spectral information while enhancing the spatial
detail. These methods can be divided roughly into filter-based
and regularization-based models. Filter-based methods usually
use spatial or frequency domain operators to separate the noisy
component from an image. For example, Othman and Qian
[7] utilized a hybrid spatial-spectral derivative domain wavelet
shrinkage noise reduction (HSSNR) approach to determine
the best characteristics in the two domains. Maggioni et al.
employed the nonlocal self-similarity (NSS) of multichannel
images with Wiener filter to eliminate noises [8]. Although the
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selection of appropriate threshold between noise and signal is
challenging, these filters are simple and fast and have good
generalization without the need of additional prior knowledge.

Recently, regularization-based methods have become the
mainstream because of their efficiency and high flexibility [9].
Regularization-based approaches process the entire HSIs as a
2-D matrix or 3-D tensor, which can consider the spatial structure
and spectral information simultaneously. Different kinds of prior
models, such as total variation (TV) [10], sparsity [11], and
low-rank [12], [13] , are introduced as regularization terms by
exploiting the internal features of HSIs fully,, thereby constrain-
ing the denoising problem. He ef al. combined the TV model
and low-rank property to obtain remarkable spatial results [14].
Aiming at characterizing of noises in real HSIs, Chen et al.
used the nonindependent and identically distributed (non i.i.d.)
Gaussian mixture model embedded in the low-rank decomposi-
tion model under the Bayesian framework (NMoG) [15]. HSIs,
as natural tensors, its inside redundant information can be fully
explored in algorithms in 3-D space. Xie et al. considered the
global correlation along the spectrum and the NSS across space
of multichannel images and then designed the Intrinsic Tensor
Sparsity Regularization (ITSReg) for restoration [5]. Chang
et al. offered an effective unidirectional low-rank tensor model
[16], and the hyper-Laplacian prior is used to model the global
spectral structure to alleviate ringing artifacts [17].

Nevertheless, the noises on planetary datasets have not re-
ceived enough attention yet. Although incomplete data with
removed noisy bands can still be utilized for analysis, it is pos-
sible to lose the key information, such as the diagnostic spectral
characteristics, thereby affecting the reliability and accuracy of
spectral analysis. One widely used method is CRISM Iterative
Recognition and Removal of Unwanted Spiking (CIRRUS),
which has been designed by Parente e al. [18] and has been
integrated into ENVI by IDL [19]. CIRRUS first corrects resid-
ual atmospheric effects based on the discrete ordinate radiative
transfer (DISORT) model [20] and then uses interpolation to
eliminate the “bad” pixel in the spatial dimension and smoothen
the dithering in the spectral domain. Meanwhile, the improved
moment matching combined with the spline curve is used to
remove the stripe. Albeit CIRRUS can smoothen jitters in the
spectral dimension. However, the visual results in the spatial
domain are not very ideal, thereby causing inconvenience to
applications, such as multisource information fusion, extrater-
restrial surface material distribution analysis, and the search for
suitable future landing sites.

Parente et al. [18] divided the noises on planetary HSIs into
two categories, namely, stripes and spiky noises. The stripe
in [18] is described as a kind of detector column-dependent
artifact. Spiky noise refers to uncorrected pixels with elevated
bias or bad pixels that are distributed in the across-track and
spectral dimensions. However, the noise types of planetary HSIs
tend to be abundant due to the unpredictable and complex
alien environment. Strong atmospheric absorptions at certain
wavelengths for planets, such as Mars or Titan, and uncertain-
ties on reflected radiance levels can result in saturation and
data losses. For a specific example, CO, accounts for 95%
of the Martian atmosphere, which contributes to strong signal
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absorption. Moreover, the nano-iron in the air causes multiple
serious scattering and electromagnetic interferences that may
lead to signal distortion [21]. Dust storms can also trigger
unexcepted electromagnetic damage to the detectors, thereby
causing dead pixels and exacerbating impulse noises and stripes.
Most subsequent analysis techniques will suffer from degraded
performance in the presence of noises. For instance, endmem-
bers will be estimated incorrectly when unmixing, thereby lead-
ing to nonsensical abundances [22]. Albeit planetary HSIs are
contaminated seriously, but their noise types are still similar to
those of terrestrial images.

On this basis, we investigate the transferability of terrestrial
restoration approaches on planetary datasets and evaluate the
performance and information fidelity quantitatively. First, the
noise types of the common planetary HSIs are summarized.
Second, the CRISM and OMEGA datasets are taken as examples
to test the capability and applicability of three types of advanced
spatial-spectral hybrid methods, respectively. Because of the
lack of extraterrestrial ground truth, the accompanying infrared
image obtained by the High-resolution Imaging Science Exper-
iment (HiRISE) is resorted to validate the results in the real
experiment of CRISM, whereas the reference spectra [23] are
used to analyze the variation of endmember extraction accuracy
quantitatively before and after denoising in the real scene of
OMEGA. Finally, based on the restoration results, we discuss the
spatial characteristics of melting frost on the Russell Dune via
the intercomparison in the CRISM case study and by exploring
the component distribution on the south permanent cap through
the experiments designed in the OMEGA case study.

The remainder of this article is organized as follows. Section IT
categorizes the noises on planetary HSIs and analyzes their
specialness. Section III provides a brief introduction to the
three types of algorithms. Section IV presents the quantitative
evaluation indicators and the reason for selecting the unmixing
as the evaluation method. Sections V and VI show the exper-
imental results and analysis of CRISM and OMEGA datasets,
respectively. Finally, the Section VII of this article puts forward
the conclusion.

II. CATEGORIES OF NOISES ON PLANETARY HSIs

Detailed investigation of noises on planetary HSIs leads to the
selection or construction of other suitable models. According to
the statistical patterns of noises, we can divide them into the
following categories.

A. Gaussian Noise

The probability density function of Gaussian noise obeys
a Gaussian distribution. Poor lighting of the view field, high
temperature due to long work, and interaction between circuit
elements are its three primary causes. Compared with the Gaus-
sian noise on terrestrial HSI, the planetary one may tend to be
more severe (see Fig. 1). Additionally, the image of CRISM in
Fig. 1(a) shows that other types of noise in the yellow dotted
frame are tightly integrated with the Gaussian noise, thereby
increasing the difficulty of denoising.
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Fig. 1. Gaussian noise on prevalent planetary HSIs. (a) CRISM
frt000042aa_07_if164j_ter3 Band 5 (the stripe noise is tightly bound to Gaussian
noises in the yellow dotted frame). (b) OMEGA ORB0041 Band 118.

(d (® ®

Fig.2. Sparse noises on different planetary HSIs. (a) Stripe noise on M® Band
1: high-density stripes. (b) Stripe noise on CRISM frt000042aa_07_if164;j_ter3
Band 361: uneven distributional and heterogeneous stripes. (c) Stripe noise on
OMEGA ORBO0041 Band 89: heterogeneous and multi-types of stripes. (d)
Impulse noise on OMEGA ORB0041 Band 79. (e) Dead pixels on the CRISM
frt000042aa_07_if164s_trr3 Band 5. (f) Spectral reflectance of dead pixel.

B. Sparse Noise

Sparse noise refers to the noise that is sparsely distributed on
the image. It is mainly divided into three categories, namely,
stripe, impulse noise, and dead pixels.

1) Stripe Noise: Most of the hyperspectral sensors are
pushroom-type with a linear array charge coupled device. Ac-
cordingly, the stripe is the most common type of degradation
in planetary remote sensing images. It occurs when the sensor
responds inconsistently. Different from terrestrial images, the
stripes on planetary images are heterogeneous and multidirec-
tional, and multiple types of stripes may even exist on the
same band of one dataset. Fig. 2 represents the stripe noises
on different planetary images.

2) Impulse Noise: Impulse noise is also called salt and pep-
pernoise. It can trigger large jitter in the spectral domain. Almost
no serious impulse noises are found in terrestrial satellite images,
but severe impulse noises exist in the widely used OMEGA
images [see Fig. 2(d)]. These noises are caused by sudden
electromagnetic interference.

3) Dead Pixel: Dead pixels appear when some CCD de-
tectors breakdown or are over-saturated. Dead pixels on the
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terrestrial remote sensing images are usually distributed in a
linear pattern but are often displayed as dotted on planetary
images. Spatial and spectral effects are shown in Figs. 2 (e)
and (f), respectively. The dotted dead pixels are often easily
covered by other noises and are too small to be discerned by the
naked eye, thereby causing a lot of inconvenience in deep space
exploration.

It can be concluded from the above investigation that planetary
HSIs have more types of noise, such as impulse noise; and the
degradation is more serious than terrestrial HSIs. There are two
primary sources of noise: sensors and environmental factors.
Assuming that the sensor manufacturing levels are the same, the
main difference is caused by the environment. Therefore, we
compared the main environmental factors of the Earth and Mars
in Table I. For HSIs obtained mainly by the orbiters, the different
atmospheric composition and land cover are the main reasons
for the different sources of noise. Moreover, the dust storms that
occur every year on Mars will greatly affect the data quality
[40]. Meanwhile, the special land cover of Mars makes multiple
reflections more serious, thereby decreasing data utilization. As
for the landers and rovers, there is no magnetic field and enough
atmosphere on Mars can protect them from the solar radiation;
and the large diurnal amplitude will also destroy the data and
the sensors themselves.

III. JOINT SPATIAL-SPECTRAL RESTORATION METHODS

Mathematically, the observation model of HSIs can be ex-
pressed as

Y=X+N (1

where Y is the observed HSI with mixed noise, X is the high-
quality HSI without noise, and N is the noise.

To take advantage of the redundant multidimensional in-
formation, joint spatial-spectral denoising methodologies have
been raised widely and have become prevalent. These methods
can be divided into three categories according to the different
processing principles and data expressions. Two representative
methods in each category are selected for their brief introduction.

A. Filter-Based Denoising Methods

Filter-based algorithms work via analyzing and truncating
specific noisy components in the spatial domain or other trans-
formed domains. Joint spatial-spectral denoising filters mainly
include two types (see Fig. 3). One performs the filtering on
spatial and spectral domains at the same time and finally inte-
grate them to obtain the final restoration results. The other one
considers the image cube a 3-D block to obtain the clean results
directly.

1) Hybrid Spatial-Spectral Derivative-Domain Wavelet
Shrinkage Noise Reduction: HSSNR is a hybrid method of
spatial-spectral wavelet shrinkage. It resorts to the dissimilarity
of the signal regularity between spatial and spectral dimensions.
2-D spatial wavelet shrinkage and 1-D spectral wavelet shrink-
age are used simultaneously to remove the noise in the spatial
and spectral domains. Particularly, the hyperspectral data cube
is transformed into the spectral derivative domain before the
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TABLE I
ENVIRONMENTAL FACTORS OF THE EARTH AND MARS

Atmosphere Temperature Main Land cover Magnetic field
m Buildings
. m Vegetation
m Composition: 78% N, 21% O,, and 1% noble gas. ~ m Annual mean temperature: 288K. .
Earth m Average atmospheric pressure: 101325 Pa. m Diurnal amplitude: lower than 50K. : \S)Zi;er ® Global magnetic field.
m Glaciers
m Composition: 95% CO,, 3% N», 1.6% Ar, a little . m Sand dunes
m Annual mean temperature: 240K. .
Mars  O,, water vapor and suspended dust...... . . ) m Gravel = No magnetic field.
. m Mean diurnal amplitude: 100K. .
m Average atmospheric pressure: 600 Pa. m Iron oxide
Filtering in spectral and spatial domain respectively
q 3 Filters
— Spectral dimension
\\ Integration
- 5 Filters
— Spatial dimension J
m %
Filtering at the entire image cube
Fig. 3. Differences in workflows between two main types of filter-based denoising methods.

2D Spatial Wavelet
Shrinkage
., First-order
Spectral Derivative
1D Spectral

Wavelet Shrinkage

Integrate along the
Spectral Axis

|

Moving
Average Filter

Moving

Fig. 4.  Workflow of HSSNR.

wavelet shrinkage noise reduction to avoid the risk of signal
deformation.

The block diagram of HSSNR is shown in Fig. 4. The
HSSNR cannot only address the denoising problem of HSIs
that carry low-level band-varying noise with fast operation
speed but also maintains the spectral information well. However,
when the noise level is high, this algorithm is not applicable
anymore.

2) Block-Matching 4-D (BM4D) Filtering: BM4D is a non-
local transform-domain filter based on the grouping and col-
laborative filtering that targets at 3-D images, such as HSIs.
BM4D is mainly divided into two phases: the hard-thresholding

Hybrid Spatial-Spectral Denoising in
the Spectral Derivative Domain

Average Filter

Correction of the
Accumulated Error

stage and the Wiener-filtering stage. In both stages, the grouping,
collaborative filtering, and aggregation steps are performed for
their respective data cubes (see Fig. 5). Grouping and 4-D
transform aims to find similar blocks in the whole image based
on NSS and stacks them into 4-D tensors. Aggregation is utilized
to obtain the final estimate by performing a weighted average
of all overlapping blocks. In the hard-thresholding stages, the
4-D wavelet transform and hard-thresholding are used to reduce
the noise of the 4-D tensors. In the second stage, the estimate of
the first stage is regarded as the true value. It is discrete cosine
transformed together with the noisy data, and then the empirical
Wiener filtering is adopted to restore it.
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Hard-thresholding Estimate
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Wiener filtering Estimate

| / Cube-wise
Estimates
Noisy Aggregation
Data™ | s
y 4 Inverse 4D Transform E Aawptive
Grouping by Cube-matching T T eights

Hard-thresholding «+++

Cube-wise
Estimates

i

—> Aggregation
4
( f Inverse 4D Transform piv
Grouping by Cube-matching T el

Wiener filtering .. .

7 I /4'21 L 7:%
ey i e 4D Transform il '/6 ‘ ‘ _r 4D Transform
- )
Fig. 5. Workflow of BM4D (the blue cube is the input noisy data and the orange cube is the output of the first stage).
Spectral Dimension
-
S
2
Casorati g
Matrix E
"
Cr
= l
bg -
b,
a,
Tensor
Fig. 6. Different ways of expanding and processing the HSI cube.

B. Regularization Models With Casorati Matrix

According to the data expression, regularization models can
be divided into two subtle categories. For the representation of
HSI, the 2-D Casorati matrix and 3-D tensor are widely used
because they consider both the spatial and spectral information.
First, the Casorati matrix is introduced. Casorati matrix refers
to a matrix that has columns that comprise vectorized bands of
the HSI (see Fig. 6). Under the circumstance of mixed noises,
the commonly used regularization priors are TV and low rank,
thus two representative models will be introduced.

1) TV Regularized Low-Rank Matrix Factorization (LRTV):
In low-rank matrix recovery theory, if the observed data can be
expressed as the sum of a low-rank matrix and a sparse matrix,
then both matrices can be obtained through optimization [24]

Y =X+NS+NR 2)
where Y is the observed HSI with mixed noises; and X is
the clean HSI, which is low-rank. Y and X are represented
as the Casorati matrix. Moreover, Ng is the sparse matrix that
represents sparse noises, such as stripe noise and impulse noise;
and Ny stands for Gaussian noise. LRTV provides a more
detailed description of the distribution characteristics of noises.

i=1,..,N

/@ Columns of Low-rank Matrix V
@)=

1
i
|
Precise of ’ [
Gaussian |
Distribution | Mo
i
\j=1.|,B

4o

$o

co
Bo mo

Noise Encoding Part

. : hyper-parameters

Y,-l-: the ith HSI element in its jth band

Fig. 7. Graphical model of NMoG-LRMF. Yellow solid frame: estimating
the low-rank matrix U. Purple dotted frame: estimating the low-rank matrix
V. Red solid frame: the encoding part of noise characteristics. The blue dots:
hyper-parameters. The green circle: Y;; is the ith HSI element in its jth band,
u; and v; are columns of low-rank matrix U and V, respectively. p;, 7, and
d stand for the mean and variance of the mixture of Gaussians components
of the jth band. z;; is the hidden variable of Multinomial distribution with
parameter 7;.

Ng stands for sparse noises, such as stripes, impulse noise,
and dead pixels. Ng is the randomly distributed noise, such
as Gaussian noise.
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To obtain a convex optimization model, LRTV integrates the
nuclear norm, TV regularization, and L1-norm in a unified-
framework. The nuclear norm is used to exploit the low-rank
property of the spectral domain, and the TV regularization is
adopted to explore the spatial piecewise smooth structure of HSI.
Meanwhile, the sparse noises, including stripes, impulse noise,
and dead pixels, can be detected by the L1-norm regularization.
Then, the optimization model is expressed as

min X, + 7| Xy +A[Sl;

)

st |[Y =X — 8|3 < erank (X) <r 3)

where the anisotropic TV norm is defined as

M-1N-1
Xy = D> > Alwi; = wirrs] + |2ij — @i}
i=1 j=1
M-1 N-1
+ Z |$1N - $i+1,N| + Z |96M,j - IM,J‘+1\7
i=1 j=1
(€]
and the nuclear norm is
X[, = tr(VXTX). ©)

2) NMoG-LRMF/NMoG: The embedded noises in HSIs are
assumed as i.i.d. in most denoising algorithms, but in practice,
the noises tend to be much more complex and non-i.i.d. The
underestimation of statistical structures and noise complexity
will reduce robustness.

NMoG models the non i.i.d. noises by utilizing the non-i.i.d.
mixture of Gaussian noise assumption, which can accord well
with the characteristics of noises in HSI under real scenes and
adapt to various types of noises. Then, the noise modeling strat-
egy is integrated into the low-rank matrix factorization (LRMF)
model in the following equation:

X =UVT. (6)

Moreover, the variational Bayesian algorithm is designed to
derive the posterior of the model as shown in Fig. 7. The use
of LRMF brings good constraints to the optimization model,
and the Bayesian variational inference makes the model more
adaptive and computationally efficient. Terrestrial experiments
have shown that NMoG can remove various kinds of noises
effectively, and the complete modeling of noise characteristics
makes NMoG more robust.

C. Regularization Models With Tensor

In this section, instead of expanding the HSI into a 2-D matrix,
it is treated as a 3-D tensor (see Fig. 6). Although the Casorati
matrix can take advantage of the spatial-spectral correlation, the
spatial structure may be destroyed because of the 2-D expansion
form. As an intrinsic tensor, HSI can be processed as a 3-D data
cube to maximize the correlation of information in each domain
and maintain the natural properties. Similarly, two state-of-the-
art models are selected for testing.
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1) Intrinsic Tensor Sparsity Regularization: In this method,
two intrinsic features that contain the global correlation along
spectrum and the NSS across space are fully considered to
constrain the solution. Moreover, intrinsic tensor sparsity (ITS)
measure is used to measure the sparseness of the tensor.

In ITSReg’s workflow, self-similar blocks are expanded and
stacked to anew tensor. Then, the new tensor is applied to the ITS
prior its optimization for denoising. The optimization problem
of ITSReg is

X, = arg m)'én S(X) + % 1Y — XH?«“ O

S(X) is the sparsity measure of a tensor X

N
S(X) = tlIS[ly + (1 — ) ] ] rank(X) ®)

i=1

where S is the core tensor of X obtained from the Tucker
decomposition.

This algorithm works well at removing noise on multichannel
images but relies heavily on memory. Consequently, large-sized
data can make the model relatively memory intensive and time
consuming.

2) Hyper-Laplacian Regularized Unidirectional Low-Rank
Tensor Recovery (LLRT): Unfortunately, ITSReg ignores the
difference of the natural structure correlation under the NSS,
spatial sparsity, and spectral correlation modes. Therefore, the
NSS is selected to be the key ingredient in LLRT after analyzing
the rank properties in 2-D and 3-D cases.

The NSS is adopted to explore self-similar subcubes. After
unfolding them into a new tensor, a unidirectional low-rank reg-
ularization term is applied to it. Moreover, the hyper-Laplacian
prior is utilized to model the global spectral structure, which
alleviates the ringing artifacts in the spatial dimension indirectly.
Incorporating all the priors, the model becomes

.. 1 )
{X,L} = argin 5 X =Y|%+ullVzX],

+twd (;2 | RiX — L[| + ranksy (Li)) )
i 1

where X is the noisy nonlocal block, while L is the clean
nonlocal block. R;X represents the constructed tensor for each
exemplar cubic,andp (0 < p < 1)isthe parameter to control
the sparsity of hyper-Laplacian. While ranks(L;) is used to
constraint the unidirectional low-rank property of the solution.
The design of multiple regularization parameters can balance
the correlation of different constraints in various domains.

IV. RESTORATION PERFORMANCE QUANTITATIVE
EVALUATION INDICATORS

To evaluate the effectiveness of these methods, quantitative
indicators are used indispensably to assess the quality of the
denoising image. Owing to the 2-D spatial and 1-D spectral
information that exists in the HSI, the spatial restoration results
and the degree of spectral distortion must be assessed simulta-
neously. Two spatial indicators and four spectral measures will
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be introduced in the next subsections. Spatial evaluation indices
of HSI denoising.

The denoising results in the spatial domain can be assessed
subjectively through the perception of the observers, which
varies from person to person or can be conducted objectively
by using quantitative indicators; the latter is more convincing.
The two widely used indicators are introduced as follows:

Mean Peak Signal to Noise Ratio (MPSNR):

MPSNR = Z PSNRy,

A2

N 2
;( x(i,5,k) —y (i, 4, k))
(10)

B
53101
k: 1
MN

Ms

N
Il
—

where M, N, and B are the width, height, and bands of the HSI,
respectively; A is the maximum value of all the image gray
values; z(i, 7, k) is the denoised image; and y(i, j, k) stands for
the original input image. The higher the MPSNR is, the better
denoising result is.

Mean Structural Similarity Index (MSSIM):

(2papiy + C1) (202y + Cs)
(12 + 12+ C’1) (J% +o2+ C’g)

SSIM = (11)

where p,, and pi,, stand for the mean values of the denoised
and original images, respectively; o2 and 05 are the variances;
0y 1s the covariance; C; and C» are constants that prevent the
denominator from being 0. The mean value of SSIM of each
band is employed to assess the whole structural similarity, the
closer MSSIM is to 1, the better the result is

B
1
MSSIM =5 Z SSIM;.

(12)
i=1
A. Spectral Evaluation Indices of HSI Denoising
Mean spectral angle mapper (MSAM):
1 MN ..
MSAM = —_cos ! Lzt U (13)

MN

() (s )

where ¢; represents the denoised spectrum of the ith pixel, and
r; stands for the original one. It can assess the spectral fidelity
after denoising. The lower MSAM is, the more similar the two
spectra will be.

Aside from the classification, the unmixing can also be chosen
to evaluate the denoising algorithms further. On the one hand,
the intercomparison of the extracted endmember is a direct way
to check spectral fidelity. On the other hand, the abundance map
canillustrate the restoration results of spatial and spectral dimen-
sions simultaneously. Therefore, three indexes that correspond
to the HSI unmixing are introduced as the spectral indicators in
this article.
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Spectral Information Divergence (SID):
SID = D (ala) + D (ala) (14)

where a is the true endmember signature, @ is the estimated one,
and D is the asymmetrical relative entropy:

D (ala) = Zpg lg (p])

where p is the probability distribution vector with each endmem-
ber spectrum

15)

a
p= :
> 5 aj
The spectral information divergence is a kind of information-
theoretic measure. It is used to describe the variability of the
spectra.

Abundance Angle Distance (AAD) and Abundance Informa-
tion Divergence (AID):

(16)

Tg

sl I3l
AID =D (s|3) + D (3]s)

where s represents the abundance vector of a ground truth pixel,
and s is the estimated one. As for the estimation of the abundance
map, the AAD and AID are employed to measure the results by
substituting the extracted spectra with the abundance vector of
every pixel. As shown in the aforementioned formulas, the lower
the four indicators are, the closer they are to the ground truth.
Combining multiple indicators can fully explore recovery
accuracy and validate the subsequent unmixing results.

AAD = cos™!

a7)

(18)

V. CRISM CASE STUDY

Simulated and real experiments are carried out on the basis
of real images, and the corresponding high-resolution image
is used to assess the results of real experiments in this case
study quantitatively. The spatial distribution of melting frost on
the Russell Dune and the causes are analyzed according to the
denoising results.

VI. CRISM CASE STUDY

Simulated and real experiments are carried out on the basis
of real images, and the corresponding high-resolution image
is used to assess the results of real experiments in this case
study quantitatively. The spatial distribution of melting frost on
the Russell Dune and the causes are analyzed according to the
denoising results.

A. CRISM Dataset

CRISM is the visible infrared spectrometer on the Mars
Reconnaissance Orbiter (MRO) and is used to search for min-
eralogical indicators of past and present water on Mars [4].
CRISM’s spectrometer has two detectors: S detector has 107
visible and infrared bands (370-1100 nm) and L detector has
437 infrared bands (1000-3920 nm). Under the target mode,
CRISM is imaged in 544 bands with the spectral resolution of
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TABLE II
QUANTITATIVE EVALUATION OF THE DIFFERENT DENOISING ALGORITHMS WITH THE SIMULATED DATA

Index Noisy CIRRUS HSSNR BM4D LRTV NMoG ITSReg LLRT
MPSNR 223214 223214 28.1270 33.8134 35.8660 36.8782 34.0683 33.9561
MSSIM 0.5018 0.5018 0.7471 0.9250 0.9462 0.9515 0.9415 0.9353
MSAM 11.2268 11.2268 6.3408 3.1372 3.8366 2.7294 2.9743 2.6777

SID 34.7480 26.5759 0.0006 0.0094 0.0005 0.0010 0.0015 0.0094

AAD 66.5104 68.0155 57.2536 60.8791 57.7231 46.9828 59.7098 59.5054
AID 18.6414 17.6683 9.3082 6.2745 4.5468 5.4396 12.4650 14.8373

Time/s / 38.6574s 24.6278 458.5296 279.1247 245.8408 1008.7463 530.1746

6.55 nm, and the spatial resolution is 15-19 m. The excellent
resolutions make CRISM play an important role in studying the
distribution of water-bearing minerals, carbon dioxide, and solid
water cycles and cannot eliminate the stripes on Mars.

B. Study Area

Russell crater is situated in Noachis quadrangle, 54.9 © south
latitude and 347.6 ° west longitude, its diameter is approximately
135 km. The main research area is the Dune on the crater. Some
gullies are found on the Dune which are a little different from
gullies in other places, like the walls of craters. A striking feature
is that the gullies on Russell Dune seem to maintain the same
width for a long distance and usually end with a pit instead of
an apron [25].

At the end of winter on Mars, white frost and gullies have
distinct differences in terms of brightness and imaging spectra,
thereby making their separation in high-resolution images and
HSIs easy. Therefore, the high-resolution data of this special area
can be used as the reference to evaluate the degree of spectral
distortion before and after denoising quantitatively.

C. Simulated Experiment

Particularly, clean bands extracted from CRISM frt000042
aa_07_if164s_ter3 are used to produce a 200x200x 132 cube,
in which controlled sources of noise are added. In the simulated
experiment, non-i.i.d. Gaussian noise is added to all the bands.
The SNR varies from 10 to 25 dB randomly. Stripes are added
to four bands from band 11 to band 14. The width of stripes is 2
to 3 lines. Dead pixels are simulated for bands 21 and 31 in the
size of 2x2. Impulse noise is added to 11 selected bands from
band 41 to band 51.

Minimum volume constrained non-negative matrix factor-
ization (MVC-NMF) [26] is used to perform unmixing to the
HSIs before and after denoising. MV C-MNF decomposes highly
mixed pixels of HSI based on non-negative matrix factorization
and minimum volume constraints without pure pixel assump-
tion, and it has already proved to be effective on simulated
and real datasets, especially experiments in [26] indicate that
MVC-NMF has the potential to identify these less prevalent
endmembers, which are more favorable for extracting alien end-
members. The parameters are setin accordance with Ceamanos’s
research [27].

All experiments are conducted using MATLAB R2019b on a
PC equipped with eight Intel Xeon E5-2620 CPU (at 2.10 GHz)
and 16-GB RAM.

Fig. 9 shows the denoising results of the different algorithms,
and Table II gives the quantitative evaluation index of the restora-
tion results. The bolder indexes are the best, and the underlined
indexes follow. The visual effects suggest that CIRRUS can
neither remove the non-i.i.d. Gaussian noise and dead pixels
nor eliminate the stripes very well. Therefore, this method does
not work when the mixed noise is complicated and serious.
Combining the visual results and six indicators, it concludes
that the regularization models with Casorati matrix performs
best, but NMoG works better and faster than LRTV according
to the quantitative indicators in Table II. Fully exploiting the
correlation between spatial and spectral domains and consid-
ering the features of noises allows it to remove mixed noises
effectively. In contrast, tensor-based models work moderately,
because they are limited in the design of noise characteristics.
As for the filer-based methods, HSSNR shows its great spectral
fidelity while BM4D shows better spatial recovery ability, but
HSSNR cannot remove sparse noises.

D. Real Experiment

In real experiment, the CRISM {rt000042aa_07_if164s_ter3
is still used. Considering the illumination variability due to the
topography of the research area, we finally opt for the 3 km x3
km area with the size of 180 pixel x 180 pixel, which focuses on
gullies and frost as the region of interest. Given that light in the
visible channels is susceptible to strong scattering by iron oxide
aerosols present in the atmosphere, only bands in the range of
1.0-2.6 pm are selected. The size of the real image is 180 x 180
X 242.

1) Improved Validation Method for Real Experiments: The
quantitative assessment of denoising results cannot be done di-
rectly because of the lack of ground truth. To solve this problem,
an improved HiRISE-based validation approach is proposed.

Generating the Reference Map: HiRISE is a camera onboard
the MRO that consists of a 0.5 m aperture reflecting telescope.
It can take pictures of Mars with resolutions up to 0.25 m and
can be used to view more details on the surface of Mars [28].
HiRISE can obtain three-channel pictures at blue-green, red, and
near-infrared wavelengths, whereas the red-channel image has
five times the width of the others, thereby covering our whole
study area. Therefore, the red-channel image is utilized in our



ZHAO et al.: CAN TERRESTRIAL RESTORATION METHODOLOGIES BE TRANSFERRED TO PLANETARY HYPERSPECTRAL IMAGERY ?

d
“RISM

1o

Fig. 8.

5767

Russell Dune in CRISM and HiRISE, and the range surrounded by the yellow line is our region of interest (ROI). (a) HiRISE ESP_020217_1255_RED.

(b) CRISM frt000042aa_07_if164s_ter3 Band 123 (map projected). (c) Location of the test images over the mega Dune on the THEMIS Day IR Global Mosaic
(Pink: HiRISE; Cyan: CRISM). (d) Details of the gullies on the Russell Dune, the dark strip line features are regarded as gullies.

experiment. HiRISE and CRISM are onboard the same orbiter,
which means they can capture images from the same area simul-
taneously. The footprints of the CRISM image FRT000042aa
and HiRISE image PSP_002482_1255 are shown in Fig. 8.

Significantly, the resolution of CRISM will decrease after pro-
jection, and thus denoising is conducted before it. Meanwhile,
unmixing the denoising results before projection and registration
is unreliable because the geometric errors will cause the loss of
details on the abundance map. Therefore, restoration is carried
out before projection while unmixing is executed after projection
and registration.

ISODATA Classification: According to the geomorphology
analysis and the grayscale histogram, the HiRISE image is
divided into two categories, namely, bright frost and dark fea-
tures (gullies). Iterative self-organizing data analysis techniques
algorithm (ISODATA) [29] is adopted because it has the flexi-
bility to determine the number of clusters automatically, which
is suitable for the extraterrestrial environment without prior
knowledge. The HiRISE image is divided into seven categories
via ISODATA. The category with the lowest average gray level
is selected after excluding the pixels of shadow by local thresh-
olding. Only dark and elongated features are classified as dark
features, the rest is classified as bright frost.

Downsampling: After classification (dark features: 1, bright
frost: 0), the results (average of 72 x 72-pixel classification
results which consist of 1 and 0) were downsampled by 72
times (the results are between 0 and 1), and then the reference
abundance map of the dark features can be obtained.

Registration: Initially, the edge detection is used to extract the
edges of two images. Afterward, the Fourier-Mellin transform
[30] is applied to coarse registrate. Then, the Harris corner

extraction [31] is performed on the reference image, and random
sample consensus (RANSAC) [32] operator is used to exclude
error points for fine registration. The whole root mean square
error (RMSE) is 0.5833 pixel, the mean local correlation co-
efficient and the global correlation coefficient with 0.9892 and
0.9570 are accurate enough for the following operations. The
workflow of the registration part is illustrated in Fig. 10.

2) Unmixing Performance on the Denoised Martian Data:
The spatial results are basically consistent with the simulated
experiments (see Fig. 11). CIRRUS is not effective for serious
Gaussian and sparse noises. As for the filter-based methods,
HSSNR cannot remove most of the noises because its model
cannot handle non-i.i.d. noises. On the contrary, BM4D can
reduce most of the noises, but oversmoothing exists, and dead
pixels cannot be removed completely. Regularization models
have achieved good overall visual results, but matrix-based
variational models cannot remove inapparent stripes that are too
close to the texture of the image itself, whereas tensor-based can
remove them at the expense of over smoothing.

The endmembers extracted by MVC-NMF are shown in
Fig. 12. Based on the reference abundance map, the endmem-
bers, which are supposed to be dark features but separated
due to nonhomogeneous illumination conditions, are selected
by Pearson correlation coefficient r and visual check, and then
merged into the entire abundance map in Fig. 13. In Table III, the
first row means the selected endmembers as dark features, and »
and RMSE show the proximity to the reference map. Combining
the quantitative indicators and the abundance maps, we find
that CIRRUS’s unmixing result is unreliable because it loses
key spatial structure. Regularization models based on matrix
still perform best, especially for NMoG and LLRT, which have
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Fig. 9. Restoration results in the simulated experiment. (a) Noisy. (b) CIRRUS. (c¢) HSSNR. (d) BM4D. (e) LRTV. (f) NMoG. (g) ITSReg. (h) LLRT
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Fig. 10.  Workflow of generating the dark feature reference abundance map.

the most accurate abundances owing to the smallest spectral
distortion. Given the more obvious oversmoothing presented on
the results of tensor-based models, the estimated abundances are
closer to the reference map in a large range.

E. Characteristic Activity on Denoising Russell Dune Case

1) Fidelity in Both Spatial and Spectral Dimensions: Fig. 14
shows the endmember signatures of NMoG that obtains the best
denoising result. According to Gardin et al. [33], the spectral

signatures are consistent with the CO, ice spectral signature
mixed with a small amount of water ice. All the spectral curves
have nearly the same diagnostic spectral features and shapes.
The spectra show absorption bands diagnostic of CO» ice at
1435 nm and a weak but obvious absorption band diagnostic of
water ice at 1500 nm.

Previous research [34], [35] proved that reflectance and emis-
sivity changes in the seasonal ice cap mainly depended on the
compositions (e.g., the content ratio of CO; ice to water ice),
grain sizes, the dust content, and the porosity. However, these
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Fig. 11.
(g) ITSReg. (h) LLRT.

original CIRRUS

Restoration results in real experiment. (a) Original: left: 1042.90 nm right: 2027.03 nm. (b) CIRRUS. (c) HSSNR. (d) BM4D. (e) LRTV. (f) NMoG.
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studies only focused on the changes in different solar longitudes
but did not consider the changes in the same location. On the
foundation of the above study and the endmember extraction
results after denoising, we can find that joint spectral-spatial
denoising methods can extract the correct endmembers and pre-
serve the differences among them. Especially, only one endmem-
ber with the lowest reflectance of NMoG is selected as a dark
feature, showing that better unmixing results can be obtained
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Spectral signatures of extracted endmembers. (a) Original. (b) CIRRUS. (c) HSSNR. (d) BM4D. (e) LRTV. (f) NMoG. (g) ITSReg. (h) LLRT.

after denoising. Importantly, by analyzing the results of Russell
Dunes and the phenomenon that the same spectral signatures
have different reflectance, the spatial distribution characteristics
of frost melting at the end of winter can be obtained. First,
the degree of ice cover melt varies from location to location.
Furthermore, different locations have frost with different CO»
ice to water ice content ratios concerning the depth of the ab-
sorption features. Finally, frost in different locations has varying
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Fig. 13.  Abundance maps of the dark features. (a) Reference. (b) Original. (c) CIRRUS. (d) HSSNR. (e) BM4D. (f) LRTV. (g) NMoG. (h) ITSReg (i) LLRT
TABLE III
QUANTITATIVE INDICATORS OF THE UNMIXING RESULTS
Index Original CIRRUS HSSNR BM4D LRTV NMoG ITSReg LLRT
Endmember 1,4,6 1,6 1,3,6 1,2,5 1,2,5 1 1,2,5 2,4
r 0.6111 0.7313 0.8169 0.8867 0.8748 0.8956 0.8694 0.8928
AAD 63.1802 71.3758 61.8536 60.8791 66.7082 59.3572 64.8048 63.4233
AID 6.9457 17.6683 5.4238 8.1232 10.4252 6.7429 8.4325 7.4284
NMoG. Endmember Comparition
o .45 Absorption Feature 1 : o z\ol)s&rption Feature 2
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(a)
Fig. 14.  Same spectral shape with different reflectance and the distributions

of melting frost after denoising. (a) Endmembers of NMoG. (b) Distribution of
melting degree.

properties, such as grain size, the dust content, and porosity.
From the perspective of the degree of melting, the endmember
with the lowest reflectance has the greatest melting degree. The
melting degree of the Russell Dune can be mapped by dividing
the melting degree into six levels. This distribution of melting
degree is consistent with the spatial distribution of the gullies
and frost on the optical image.

2) Facilitation to Atmospheric Correction: To further ex-
plore the change in spectral fidelity, the endmember with the
highest reflectance in each method is regarded as the same
endmember and is chosen to be compared in Fig. 15. Most of
the denoising signatures have nearly the same reflectance with
each other but lower than the original noisy curves.

Because the atmosphere has an obscuring effect on bright ices,
the reflectance of bright ices usually rises after the atmospheric

041 L L L H L
1000 1400 1800 2200 2600 2800

Wavelength/pym

Comparison of the highest reflectance endmember.

Fig. 16. Reference spectral signatures of three typical Mars components
simulated by numerical models. (a) Water ice. (b) COz ice. (¢) Dust.

correction. However, the covering on the Russell Dune is a
mixture of CO5 ice and water ice with the reflectance less than
0.4, which does not match the feature of bright ices, hence the
speculation that the drop of reflectance after denoising results
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Fig. 17.

Denoising results of OMEGA case study. (a) Original: Band 1: Gaussian noise; Band 79: Impulse noise; Band 89: Stripes; Band 118: Gaussian Noise

(more serious). (b) HSSNR. (c) BM4D. (d) LRTV. (e) NMoG. (f) ITSReg. (g) LLRT.

from the further atmospheric correction is reasonable. Mean-
while, as mentioned in Section I, a further and more accurate
atmospheric correction mode DISORT is involved in CIRRUS.
Except for BM4D, the reflectance of all the joint spatial-spectral
denoising methods are consistent with CIRRUS. Therefore, we
infer that these restoration algorithms can affect the atmospheric
correction of planetary HSIs positively.

VII. OMEGA CASE STUDY

OMEGA is a widely used Martian hyperspectral dataset.
Compared with CRISM, OMEGA has a wider range of wave-
length, but its noises are more complex and serious. In this
case study, instead of using auxiliary high-resolution images
as the reference, the reference spectra simulated by a surface
reflectance model [36] is applied for denoising validation. There-
fore, the quantitative intercomparison among algorithms on the
OMEGA case can be achieved by contrasting the accuracy of
endmember extraction before and after denoising.

A. OMEGA Dataset and Study Area

OMEGA is a high-resolution visible and infrared imaging
spectrometer on the Mars express launched by the European
Space Agency in 2003. Its main mission is to detect the compo-
sition of rocks, minerals, and ice on the surface of Mars, as well
as the composition of the Martian atmosphere. The instrument
is composed of visible channels and near-infrared and infrared
channels, and its spectrum covers the range of 360-5100 nm
with a total of 352 bands. Given that the Mars Express has an
elliptical orbit, OMEGA’s spatial resolution varies, ranging from
0.3 to 4.8 km. In recent years, the OMEGA dataset has explained
the diversity and complexity of mineral composition on the
Martian surface successfully and has been verified by the field
test and analysis of the spirit and the opportunity landers and the
thermal emission spectrometer inversion results [37]. However,
due to internal and external factors, the OMEGA images also

undergo various kinds of noises. In the experiments, OMEGA
HSI ORB0041 [38] with the size of 128 x 200 and contains the
south polar permanent cap and layered deposits of Mars is used
to analyze restoration performance.

B. Experiments and Analysis

For the same reason clarified in Section V, only bands 1-125,
which covers from 926 to 2605 nm, are selected. The image has
already been preatmospherically corrected preliminarily.

Three major surface chemicals, namely, water ice, CO> ice,
and mineral dust, have been surely detected in this area [38].
Fig. 16 shows the reference spectra of three typical Martian
components calculated by using numerical modeling [36].

According to [23], the number of endmembers is set as 5. The
restoration results are shown in Fig. 17. Fig. 18 represents the
endmembers extracted from the original and denoising images.
Fig. 19 shows the abundance maps of three components. r and
MSAM before and after denoising are presented in Table IV.
MVC-NMF may extract spectra that do not exist in the HSI,
and the abundance values of these nonexistent endmembers are
usually so low that they can be ignored. Hence, we choose and
exhibit endmembers that have higher values of r than the three
components.

1) Endmember Analysis on the Denoising OMEGA Data:
The accuracy of endmember extraction is improved after de-
noising via visual results. NMoG still achieves the best result,
but LRTV shows larger spectral distortion in agreement with the
results in the CRISM case study. Although filter-based methods
and tensor-based models can remove Gaussian noise, they are
inapplicable to other noises.

The accuracy of the endmember extraction has increased after
filters and Casorati matrix-based regularization models have
been applied. However, the tensor-based methods cannot extract
the correct endmembers with limited models. Meanwhile, their
abundance maps are far away from others. The NMoG still
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Fig. 18.  Extracted endmembers before and after denoising. (a) Original. (b) HSSNR. (c) BM4D. (d) LRTV. (e) NMoG. (f) ITSReg. (g) LLRT.
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Fig. 19.  Abundance maps. (a) Original. (b) HSSNR. (¢) BM4D. (d) LRTV. (e¢) NMoG. (f) ITSReg. (g) LLRT.

perform best. r values are higher than those of the reference
spectra, and the spectral angle is also significantly reduced, but
the dust distribution in LRTV has the greater error.

Black spots are observed at the same positions in each band
of ORBO0041. These spots correspond to the missing data as
far as we are concerned. None of these algorithms can remove
them. The same position in each band means the absence of
redundant information for restoration. Their existence results
in the poor performance of LRTV and tensor-based algorithms,
because these modes do not consider non-i.i.d. degradation.

2) Discussion of Surface Materials’ Spatial Distribution on
the South Polar Permanent Cap: Bibring et al. [38] stated that
perennial water ice was widely found on the south polar cap
that acted as a small admixture to carbon dioxide in bright
areas, and was being associated with dusts at the edges of bright
COz-ice-rich cap. Abundance maps in Fig. 19 show that most of
the denoising algorithms can maintain the spectral information

well, and the unmixing results are consistent with the known
distribution.

The concentrations of COs ice and dust distribute uniformly
in the original results. However, the concentrations of the two
components have changed after denoising. Furthermore, com-
pared with the abundance maps before restoration, CO5 ice
concentration shows the highest value in the center of the bright
region and decreases toward the periphery. The dust concentra-
tion gradually increased from the edge junction of the bright
cap. The reasons for the concentration distribution change is
speculated as the improved atmospheric correction and restored
spectral information after denoising. As mentioned in Section V,
joint spatial-spectral denoising can remove atmospheric effects
and maintain the fidelity of spatial and spectral domains further,
thereby reflecting a realistic surface distribution. Overall, we
suppose that this gradual concentration distribution is close to
the ground truth.
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TABLE IV
COMPARISON OF QUANTITATIVE INDICATORS OF ENDMEMBERS’ SPECTRAL SIGNATURE

Correlation Coefficient Spectral Angle
Endmember H:0 CO: Dust H:0 CO: Dust
Original
1 0.8717 0.7552 0.4272 14.9533 17.5113 19.0436
2 0.7649 0.9177 0.5888 14.3392 12.1445 16.0845
3 0.2481 0.3342 0.3443 13.1096 25.7988 12.3086
4 0.0308 -0.0102 0.3013 11.2019 28.6351 9.3459
5 0.0298 -0.0769 0.2897 15.7188 31.4555 13.7961
HSSNR
1 0.8448 0.6973 0.5202 8.2906 20.1558 11.5681
2 0.7588 0.9110 0.5957 13.2183 13.0629 14.8543
3 0.7869 0.9064 0.5962 13.5009 12.9136 15.4110
4 0.5192 0.5931 0.3506 10.3156 22.2321 11.5876
5 0.1516 0.1364 0.5110 9.9546 27.2939 7.3988
BM4D
1 0.8312 0.7270 0.5165 8.4139 19.6327 11.5604
2 0.7762 0.9159 0.7270 13.3392 12.7080 15.1435
3 0.0721 0.1240 0.4862 10.2156 27.3522 7.4222
4 -0.0915 0.0399 0.0131 18.4822 30.9173 17.6387
5 -0.3489 -0.5195 -0.0223 27.3079 44.2675 24.9768
LRTV
1 0.8566 0.7990 0.5317 9.3070 17.6719 12.5922
2 0.2904 0.0005 0.2167 10.8780 29.0914 11.2286
3 0.7399 0.9152 0.5974 14.4475 12.3191 15.8768
4 0.7663 0.9149 0.5962 13.5576 12.6793 15.2608
5 0.1084 0.2773 0.5477 10.3454 26.1666 7.2328
NMoG
1 0.8746 0.7146 0.4399 11.1122 18.9934 15.2678
2 0.8188 0.9185 0.5752 14.0764 11.9676 16.4728
3 0.7528 0.9088 0.6030 13.0412 13.2814 14.5573
4 0.1721 0.2019 0.4858 9.7928 26.7715 7.5498
5 -0.0031 -0.0589 0.3343 11.0092 28.8667 8.7836
ITSReg
1 0.7307 0.5981 0.0408 90.0000 86.9134 90.0000
2 0.7615 0.9073 0.6030 12.6893 13.4910 14.2942
3 0.3238 0.3256 0.5310 8.9440 24.7651 7.3002
4 0.1654 -0.2787 -0.0998 22.2461 39.3315 24.0010
5 -0.8759 -0.7384 -0.2213 90.0000 90.0000 90.0000
LLRT
1 0.5395 0.1038 0.0160 28.7478 39.9586 32.7222
2 0.6213 0.9137 0.3130 9.5834 16.8130 12.0586
3 0.7614 0.9098 0.6013 13.1883 13.1068 14.8029
4 -0.5102 -0.5640 -0.0206 19.3402 37.2949 16.2088
5 -0.0986 -0.2787 -0.2290 22.3624 38.0036 23.0469

VIII. CONCLUSION

In this work, we classified the noises on the planetary HSI
in detail and tested the transferability of the current state-of-
the-art terrestrial joint spatial-spectral denoising algorithms for
planetary HSI datasets. In real experiments, the denoising results
are evaluated quantitatively by applying the proposed method
using HiRISE image. Furthermore, the unmixing results after
noise removal are used to analyze the spectral fidelity and the
spatial distribution representation ability of these HSI denoising
methods further.

Experiments have proven that when spatial and spectral priors
are considered, the regularization models can be transferred
greatly to planetary HSI datasets and achieve the best denoising
results, especially for the NMoG model, which considers the
nonrandomly distributed noises. In practice, noises on real HSIs
are usually non-i.i.d. Thus, such models can remove multiple
types of noises effectively and be adopted to various plane-
tary sensors. For tensor-based algorithms, HSIs are treated as

three-order tensors to maintain the original structure, especially
in the spatial domain, thereby restoring additional spatial de-
tails. However, they are often time-consuming due to the heavy
computation burden when lacking effective enough optimization
ways. Meanwhile, their modeling for mixed noises needs to be
strengthened before transferring to planetary HSIs. Filter-based
methods exhibit remarkable spectral fidelity albeit the visual
results are not sufficient. Hence, filter-based models can be
applied to planetary datasets with relatively slight degradation.
Overall, approaches that model the non-i.i.d. noises can achieve
remarkable performance on planetary HSIs. The experimental
analysis in Russell Dunes and the south polar permanent cap
infers that the joint spatial-spectral-based restoration method-
ologies may facilitate the atmospheric correction and maintain
the information in two domains, thereby resulting in a realistic
planetary surface distribution.

However, the experiment on OMEGA images reveals that
these methods have not removed dead pixels that exists at
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the same position of each band. The reason is that the redun-
dant information to complete these black spots is lacking. The
existence of missing data will affect the analysis of the spatial
distribution [39] and the spatial-temporal variation characteris-
tics of minerals greatly and would cause finding future landing
sites. Therefore, future research efforts are directed toward de-
signing novel algorithms that can repair missing information
while denoising.
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