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Abstract—The article proposes a methodology to perform
azimuth focusing of spaceborne transmitter-stationary receiver
bistatic synthetic aperture radar data across multiple along-track
apertures to increase azimuth resolution. The procedure uses as
input several azimuth apertures (continuous groups of range com-
pressed pulses) from one or more satellite bursts and comprises
the following stages: antenna pattern compensation, slow time
resampling, reconstruction of missing azimuth samples between
neighboring sets of pulses using an autoregressive (AR) model
and back-projection focusing of the resulting multiaperture range
image. A novel, highly efficient method is proposed to estimate the
optimal order for the AR model. It differs from the traditional
approach that uses the Akaike Information Criterion to directly
estimate the order because the proposed method estimates the
order indirectly by detecting the number of targets using principle
component analysis. Spatial smoothing is used to obtain a full rank
covariance matrix, whose eigenvalues are then analyzed using min-
imum description length. The optimal order is an integer multiple
of the number of targets, which depends on signal-to-noise ratio.
The approach is evaluated with real bistatic data acquired over an
area of Bucharest city, Romania.

Index Terms—Autoregressive (AR) model, bistatic synthetic
aperture radar (SAR), focusing, order estimation, signal
reconstruction.

I. INTRODUCTION

B ISTATIC and multistatic synthetic aperture radar (SAR)
systems have seen a continuous growth in popularity over

the years due to their unique and powerful remote sensing
capabilities. In this article, we will focus on how cross-range
resolution may be improved using a bistatic SAR system com-
posed from an opportunistic spaceborne radar sensor and a
ground-based receiver.
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A certain ground location can be usually imaged with a mono-
static spaceborne SAR sensor, by exploiting the information
available from one ascending/descending orbit. Moreover, if the
operating mode of the satellite uses multiple subswaths, this
information is obtained only from one subswath per orbit.

Bistatic SAR imaging systems with a stationary receiver and
a spaceborne transmitter of opportunity (e.g., TerraSAR-X [1],
ERS-2/ENVISAT [2], or GNSS [3]) open the possibility to
image the same area using data bursts belonging to multiple
subswaths [4], [5].

When Sentinel-1A/B operating in the terrain observation
through progressive scans (TOPSAR) imaging mode is used as
transmitter of opportunity, a stationary receiver captures pulses
from the burst corresponding to the subswath in which the
receiver is placed, and also from bursts belonging to the other
subswaths. In both cases, the received pulses can be pulses that
were transmitted through the main beam or through the side
lobes of the satellite’s antenna. The available multiburst data can
be used in various ways for target characterization by exploiting
the enhanced azimuth diversity. A procedure to enhance the
azimuth resolution using pulses received by the antenna’s side
lobes was presented in [4] for a bistatic receiver that records data
continuously.

The principle benefit of using multiple apertures in space-
borne transmitter/stationary receiver bistatic SAR is obtaining
fine azimuth resolution, having access just to publicly available
information regarding the data (e.g., the Sentinel 1A/B TOPSAR
ancillary information required to synchronize the bistatic system
and to perform azimuth focusing). Moreover, Sentinel 1A/B
does not generally operate in spotlight mode and cannot provide
very good azimuth resolution. Thus, such a bistatic system can
be used for fine resolution SAR imaging even when the satellite
operates in TOPSAR mode and by only using publicly available
information.

This article presents a methodology developed to increase
azimuth resolution by exploiting multiaperture bistatic data ac-
quired in a spaceborne transmitter–stationary receiver configu-
ration. The procedure uses as input several continuous groups of
range compressed pulses (from one or more bursts) and consists
in the following main steps: compensation of the antenna pattern
(AP), resampling in the slow time domain, and reconstruction
of the missing azimuth samples between neighboring groups
of pulses using an autoregressive (AR) model. The obtained
multiaperture range image is focused on a 2-D grid with a
back-projection algorithm adapted to bistatic geometry.
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Compared to the method presented in [4], the procedure
proposed in this article aims to exploit data from multiple bursts
and is designed for a trigger-based acquisition, which reduces
the memory requirements and enhances the maximum number
of pulses that can be recorded. This implies an increased total
aperture length (and better azimuth resolution), but the pulses
that do not reach the triggering threshold will not be recorded and
their information has to be extrapolated from available data. It is
important to note that if a pulse is detected on the synchroniza-
tion channel (line of sight), it is not necessary that reflections
from all targets are also received, as some shapes might have
pulse-to-pulse variations in radar cross-section, and can even
migrate through range bins. However, for the analysis presented
in this article, we assume that these effects are negligible.

Another important factor which is addressed in this article is
the effect the order of the AR model has on the data reconstruc-
tion step. As it will be shown later in this article, setting the
order too low will cause the AR model to underfit the data while
setting the order too high will cause overfitting. Either case will
have a negative impact on signal reconstruction. The Akaike
Information Criterion (AIC), developed by Akaike, is widely
used for obtaining a good balance between performance and
risk of overfitting. However, the method can be extremely costly,
especially for large data samples. We propose a new approach for
estimating the order, based on phased array Direction of Arrival
techniques, which is significantly more efficient, without com-
promise in performance. The traditional approach using AIC to
directly estimate the optimal order will be used throughout this
article as a reference for our proposed method.

The rest of this article is structured as follows. Section II
presents the developed procedure to focus multiaperture bistatic
data. Section III presents an in-depth analysis of the order-
estimating method, while in Section IV, the methodology is
evaluated with real data acquired with the receiver presented
in [5]. The conclusion is then stated in Section V.

II. MULTIAPERTURE FOCUSING OF BISTATIC DATA

A. Bistatic Azimuth Signal Model

The envisaged bistatic geometry is shown schematically in
Fig. 1. The ground receiver has two channels—one that receives
directly the transmitted pulses through an antenna oriented to-
ward the satellite (reference channel) and another that receives
the reflected signals from the illuminated scene (typically called
imaging channel). The duration of each aperture k that illumi-
nates the scene is denoted with Tk and its central azimuth time
with tap,k, defined as the moment when the satellite reaches the
center of aperture k.

The closest approach distance to the receiver and to an arbi-
trary point P from the scene are denoted R0, and respectively,
R0,P .

The origin of the slow time axis corresponds to the closest
point of approach to the receiver and tP is the zero-Doppler
time of point P.

At the ground receiver level, the range compression of each
pulse is performed by intercorrelating the baseband signal of the
imaging channel with the one of the reference channel [5], and

Fig. 1. Spaceborne transmitter–stationary receiver bistatic geometry.

Fig. 2. Spectrogram of the azimuth chirps. (a) 3 Hz/s for the present bistatic
geometry. (b) 2400 Hz/s for monostatic.

the azimuth bistatic signal of point P seen from aperture k can
be expressed as
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whereA is the complex amplitude, λ is the wavelength at central
frequency, v is the satellite’s velocity, and pk(t) is a window
centered around tap,k, which includes the effect of the AP. Note
that sk(t) is a chirp signal in the slow time domain with a small
chirp rate (for a target placed at Rg,P = 10 km from the ground
receiver and Sentinel-1 used as transmitter of opportunity, the
bistatic chirp rate is around 3 Hz/s, which is a few hundred times
smaller than the monostatic one), so the bistatic azimuth signal
actually consists of complex exponentials with slowly varying
frequency (the intercorrelation with the reference channel signal
acts almost like a dechirping in azimuth). This is illustrated in
Fig. 2.

From the implementation point of view, the sampled version
of the signal sk(t) is a group of Np,k pulses acquired with a
certain pulse repetition interval (PRI).
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Fig. 3. Multiaperture bistatic focusing—block diagram and qualitative repre-
sentation of intermediate signals.

B. Bistatic Azimuth Focusing

A block diagram of the procedure used to focus bistatic data
from multiple apertures is presented in Fig. 3. We consider K
groups of consecutive pulses separated by gaps having different
durations. The duration of the gap between group k and k + 1
is denoted with Tgap,k. The PRI of each group depends on the
burst to which it belongs (usually we have a few consecutive
groups with the same PRI placed between groups with different
PRIs).

Due to the beam sweep in a TOPSAR mode, each aperture
(group of pulses) will be affected in a different way by the
AP. Since the receive angle of the reference channel antenna is
practically constant in the entire aperture, the actual AP for each
group of pulses is proportional to the amplitude of the pulses
received on the reference channel. Therefore, the normalized
AP can be estimated on the reference channel data, and the
compensation can be performed by dividing the imaging data
with the AP. In [4], the AP compensation is done with a weighing
window depending on the signal-to-noise ratio (SNR) in order
to reduce noise amplification (however, for large SNRs, the
weighing window is practically the inverse of the AP).

Since the apertures can be sampled with different PRIs, all
range compressed data are resampled in slow time domain to a
common PRI. If the BP focusing algorithm is applied directly on
the azimuth phase history with interaperture gaps (considering
as zeros the azimuth samples in between the apertures), spurious
lobes will appear in the final bistatic SAR image. In a simplified
manner, this effect can be thought of as a parasitic modulation,
more specifically: ON-OFF keying. The ON-OFF (subaperture or
gap) is the modulating signal and the azimuth chirp is the carrier.
Considering the small slope of the chirp, we may approximate
the signal as a complex sine-wave, so the azimuth matched filter-
ing step simplifies to taking the Fourier Transform. Instead of a
point spread function (PSF) that depends solely only on the chirp
signal, we obtain the convolution between the desired PSF and
the spectrum of the ON–OFF modulating signal, which produces
a significant amount of sidelobes, as seen in the experimental
section, Fig. 10 (b).

To avoid this effect, the next step is to fill the gaps between
the apertures using an AR model [6]. An analysis was done in
[7] describing the negative effects of these gaps.

Restoration of lost samples using AR models is typically used
for speech and music signals, and the technique is capable to
reconstruct the signal in gaps of up to 100 ms [6], [8]. This
method can be used to fill the interaperture gaps of bistatic
azimuth signals since they actually consist in a couple of linear
chirp signals with small frequency variations (quite similar with
some audio signals) that can easily be regarded as short-term
stationary signals around the gaps.

In our implementation, the samples of a gap are determined
as an average of the signals predicted by two AR models:
one estimated using the samples from the left-side of the gap
(forward prediction) and another based on the samples from
the right side of the gap (backward prediction). This approach
lessens the short-term stationarity requirements imposed to the
signal [6]. A detailed description on how the order of the AR
model is estimated will be presented next.

III. PROPOSED ORDER-ESTIMATING METHOD

The proposed method, shown in Algorithm 1, can be thought
of as a sequence of processing blocks, and for simplicity it
will be presented as such. Subsection A presents the working
principle of the order estimating method. Subsection B describes
the spatial smoothing (SS) technique used to bring the sample
covariance matrix, of a single acquisition, to full rank, such that
the eigendecomposition required by future steps may be used
for principle component analysis (PCA). Subsection C presents
the minimum description length (MDL) principle used for es-
timating the number of detections, while in Subsection D the
numerical complexity is compared to the traditional approach.
Finally, Subsection E presents simulated results for the proposed
subaperture stitching technique.

A. Working Principle

The proposed method uses MDL to estimate the number of
spectral components, Nc, and assumes that the signal fits an AR
process that has an order proportional toNc. Similarly to Prony’s
method [9]–[11], the proposed method makes the assumption
that the signal of interest is a series of exponentials. In theory,
such a signal is described by an autoregressive moving average
(ARMA) model having, in general, Nc zeros and Nc poles.
However, because ARMA model estimation is computationally
exhaustive, most applications approximate the model to be AR.

It is shown by Kay and Marple in [12] that, if noise is present,
the Nc order AR model is very unlikely to fit the data correctly.
Moreover, if the signal is a harmonic time series, the spectral
estimation is highly dependent on the initial phase and in some
cases, this might even lead to spectral line splitting.

In [12], the authors also present how to overcome these issues:
If the number of available samples is large compared to the num-
ber of spectral components, the initial phase will have reduced
impact on spectral estimation, which is further minimized by
using forward–backward (FB) estimation. It is also proposed
that the desired ARMA model be replaced with an AR model
having a large number of poles, because an ARMA(Nc, Nc)
process is equivalent to an AR(�) process, as guaranteed by the
Wold decomposition.
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Algorithm 1: Processing Chain of the Proposed Method.
Input: x, SNR
Output: y
Choose K, αSNR based on system requirements
R̂s = FB Spatial Smoothing(x,K)
λ = EigenDecomposition (R̂s)
N̂c = MDL(λ, S)
dim(θ̂) = αSNRN̂c

y = AR(x, dim(θ̂))

Because of this, we will introduce a new SNR-dependent in-
teger scaling variable, αSNR, used to model the optimal number
of parameters, dim(θ̂):

dim
(
θ̂
)
= αSNRN̂c. (2)

where AR(x, dim(θ̂)) represents the FB Burg’s method [13],
[14] which is used to fill the gaps of the sparse isorange data
samples, x, using an AR model having order dim(θ̂).

B. Forward–Backward Spatial Smoothing

Let the received signal, e.g., an arbitrary isorange, be x =
[x(1), x(2), . . . x(N)]T , with covariance matrixR = xxH . If
only a single observation is available,R will have unitary rank,
which would result in an eigendecomposition with a single
nonzero eigenvalue. A possible solution to the rank deficiency
problem is to use an overdetermined least squares estimate
based on P ≥ N observations. The LS estimate is defined as
RLS =XXH , where X = [x1,x2, . . .xP ]. However, in ap-
plications such as radar, all of the acquisitions are coherent, and
thus it is impossible to increase the rank ofR this way, no matter
the number of observations. A popular technique used in SAR
imaging for solving this problem is called range multilooking
[15]. It divides the total bandwidth of the radar signal into P
sub-bands and considers each a separate, noncoherent observa-
tion. The cost of using multilooking is loss in range resolution,
which is greatly undesired.

In this article, we take a different approach that is frequently
used in angle estimation problems, called SS. SS is used to
produce full rank covariance matrices even from a single ob-
servation [16]. SS takes x and generates N −K + 1 smaller
noncoherent signals, each having K samples, where K ≤ N/2.
The signals are of the form
xn:n+K−1 = [x(n), . . . x(n+K − 1)]T , with
n = 1 : N −K + 1. For each xn:n+K−1 subsignal, a K by K

covariance matrix is generated as shown in Fig. 4. If x is parsed
starting from 1 toS = N −K + 1, the method is called forward
SS.

Once all RF,i matrices are known, the full rank forward
spatially smoothed matrix is given by (3)

RF =
N−K+1∑

i=1

RF,i. (3)

Fig. 4. Spatial smoothing for an arbitrary isorange.

Algorithm 2: Forward–Backward Spatial Smoothing.
Input: x,K
Output:RS

N = dim(x)
for n = 1, . . . N −K + 1 do

RF,n = [

x∗
nxn · · · x∗

nxK+n−1

...
. . .

...
x∗
K+n−1xn · · · x∗

K+n−1xK+n−1

]

RB,n =

[

x∗
N−n+1xN−n+1 · · · x∗

N−n+1xN−n+2−K

...
. . .

...
x∗
N−n+2−KxN−n+1 · · · x∗

N−n+2−KxN−n+2−K

]

end for

RF =
N−K+1∑

i=1

RF,i

RB =
N−K+1∑

i=1

RB,i

RS = 1
2 (RF +RB)

Backward smoothing implies parsing x from N −K + 1 to
1, and gives a new full-rank covariance matrix [9],RB

RB = JRF
TJ (4)

where J is the exchange matrix, which has 1 elements on the
counter diagonal and has all other elements equal to 0. Naturally,
FB–SS implies using the two previous results together

RS =
1

2
(RF +RB) . (5)

Doing so further enhances the performance of the principal
component estimators that will be used later on. The implemen-
tation of FB–SS is shown in Algorithm 2, where x is the input
signal, with dim(x) samples, and K is the desired size ofRS .
The constraint to obtain full rank is that K ≤ N/2. If N/2 is
much larger than number of relevant eigenvalues, lowering K
will greatly decrease numerical complexity when computing the
eigenvalues ofRS .
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C. Minimum Description Length

Information criteria are widely used in parameter estimation
problems [17]. The first of its kind was introduced by Akaike
[18], as the “A Information Criterion”. AIC makes use of the
Kullback–Leibler information, D(θ, σ2), as a measure of dis-
crepancy between the operating and approximating models

D
(
θ, σ2

)
= E

{
−2 log

(
L
(
X
∣∣∣m(θ̂)))} (6)

where L(X|m(θ̂)) denotes the likelihood function for the
data,X , under the approximating model m(θ̂). Assuming a
Gaussian distribution, we have

D
(
θ, σ2

)
= −2E⎧⎪⎨

⎪⎩log
⎛
⎜⎝ 1

(2πσ2)
N
2

exp

⎛
⎜⎝−
(
x−m

(
θ̂
))H (

x−m
(
θ̂
))

2σ2

⎞
⎟⎠
⎞
⎟⎠
⎫⎪⎬
⎪⎭ .

(7)

In practice, D(θ, σ2) is unknown, but can be estimated if
certain assumptions are made. The AIC was designed as an
estimate of D(θ, σ2), and is given by

AIC
(
θ̂
)
= −2 log

(
σ2
dim(θ̂)

)
+ 2dim

(
θ̂
)

(8)

where dim(θ̂) is the selected order for the approximating model
m(θ̂), and σ2

dim(θ̂)
is a biased estimate of the true variance for

the given model [19]

σ2
dim(θ̂) =

∣∣∣∣∣∣∣xN −
dim(θ̂)∑
k=1

xN−kθ̂k

∣∣∣∣∣∣∣
2

. (9)

In short, AIC can be described as a penalized likelihood
that offers an optimal compromise between goodness of fit and
complexity.

The traditional approach for estimating the order for an AR
model is to compute all possible values of σ2

dim(θ̂)
and choose

the order that minimizes (8). Because the AR model and the
prediction error must be recomputed for every possible value of
dim(θ̂), this approach will lead to a numerical complexity of
O(N3). Since N can be quite large in the case of azimuth signal
reconstruction, the method may become too computationally
exhaustive to be practical.

The method proposed in this article does not only solve
the complexity issue at no performance loss, but may also
offer better estimates if properly calibrated. Instead of directly
estimating the optimal value for dim(θ), a different approach
is taken that uses a principle similar to AIC, called MDL, to
indirectly estimate dim(θ).

MDL was derived by Rissanen [20] as a principle for statistical
modeling of the description length. Description length can be
thought of as the number of digits in a binary string used to code
the data, and can be mathematically modeled as the sum of two
terms. The first term is a measure of how well the model fits
the data, while the second term represents the complexity of the

model and encodes the parameters of the model itself [20]. MDL
chooses the description length that minimizes relation (10)

MDL
(
θ̂
)
= − log

(
L
(
X
∣∣∣m(θ̂)))+ η log (S) (10)

where η is the number of independent parameters in m(θ̂),
and S represents the number of spatially smoothed matrices,
computed in the previous section as N −K + 1. By comparing
the information criterion in (8) and the description length in
(10), it is seen that second term plays the role of penalty factor
for MDL. As previously described, the slow-time signature of a
reflective point in the proposed bistatic SAR geometry will result
in a slow-varying chirp. For the sole purpose of estimating the
number of detections, the slow-time response will be approxi-
mated as a sine-wave. Assuming that the targets are separable in
space, the number of detections will coincide with the number
of discrete frequency components, Nc. We have now simplified
the problem, from estimating the number of target signatures to
estimating the number of discrete frequency components using
MDL which is described in detail in the following paragraphs.

An appropriate model for the family of covariance matrices
to be considered is given by

R = ψ + σ2I (11)

where ψ denotes a positive semi definite matrix, and σ2 is the
noise variance. (11) can be rewritten as

R =

K∑
i=1

(
Λi − σ2

)
V iV

H
i + σ2I (12)

whereΛ1...K andV 1...K are the eigenvalues and eigenvectors of
R, respectively, and K represents the dimension of the spatially
smoothed covariance matrix. Since in our application the signal
model, m(θ̂), can be completely described byR, it follows that
[21]

m
(
θ̂
)
=
(
σ2,V H

1 . . .V H
K ,Λ1 . . .ΛK

)
. (13)

Considering that each observation, or spatially smoothed data
vector, is statistically independent and regarded as a zero-mean
complex Gaussian vector, their joint probability density is given
by

f
(
X
∣∣∣m(θ̂)) =

S∏
i=1

1

πK det (R)
exp
(−xH

s,iR
−1xs,i

)
(14)

where xs,i represents the ith of S spatially smoothed vectors, of
size K, illustrated in Fig. 4. Further on, it is shown in [21] that
by taking the logarithm and omitting terms that do not depend
on the model, we find that the log-likelihood function becomes

log
(
L
(
X
∣∣∣m(θ̂))) = −Slog (det (R))− tr

(
R−1R̂S

)
(15)

where notations det(.) and tr(.) represent the determinant and
trace of the matrix, respectively, R̂S is the spatially smoothed
sample covariance matrix, and R represents the unique covari-
ance matrix formed from the chosen model parameters. The
maximum likelihood estimate is the m(θ̂) that maximizes (15).
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Algorithm 3: Minimum Description Length.
Input: λ, S
Output: N̂c

K = dim(λ)
for n = 1, . . .K − 1 do

MDL(n) = −S(K − n) log(
K−n

√∏K
i=n λi∑K

i=n
λi

K−n

) +

1
2 (n(2K − n)) log(S)

end for
N̂c = arg min

n
{MDL(n)}

These estimates are given by [21], [22]

Λ = λ (16a)

V = v (16b)

σ̂2 =

∑K
i=N̂c+1 λi

K − N̂c

(16c)

where v,λ represent the eigenvectors and eigenvalues of the
sample covariance matrix. A keynote is that the eigenvalues are
sorted in descending order, such that the first N̂c eigenvalues
correspond to detections, while the last K − N̂c correspond to
noise. Finally, the maximum likelihood estimate of the noise
variance, σ̂2, becomes the average of the noise eigenvalues.
ReplacingRwith the maximum likelihood estimate, (16), gives

− log
(
L
(
X|σ2,v,λ

))
= −log

⎛
⎜⎝ K−N̂c

√∏K
i=N̂c

λi

∑K
i=N̂c

λi

K−N̂c

⎞
⎟⎠
(K−N̂c)S

(17)
which is equivalent to the first term in (10). The term in brackets
represents the ratio of the geometric mean to the arithmetic mean
of the smallest K − N̂c eigenvalues.

Unlike AIC, MDL also takes into account the number of
independent observations, which is equivalent to the number of
spatially smoothed matrices, S. This makes MDL tend toward
lower-dimensional models which is a key property when used
in the present application, as it avoids overfitting.

Further on, a simple example is presented, in which MDL is
performed on a K = 32 sized vector, x(n), composed of three
spectral components, Nc = 3.

x (n) =

Nc=3∑
i=1

Aie
jωin + w (n) (18)

where Ai and ωi represent the amplitude and angular frequency,
respectively, of each spectral component, and w(n) is complex
additive white noise. The SNR used is 10 dB, and the amplitude
dynamic used in this example is max{A}

min{A} = 104. Fig. 5 presents

the evolution of the MDL cost function as dim(θ̂) increases.
The value of dim(θ̂) at which the cost function is minimized
represents the most probable value of Nc.

Fig. 5. MDL(θ̂) as a function of dim(θ̂), using the notations in relation (10).

D. Numerical Complexity

Throughout the experiments in this article, the size of the
spatialy smoothed matrix, K, was empirically chosen to be
K = N

log2N
, as it offers a good balance between efficiency and

performance. In practice, K should be as small as possible, but
at least twice as large as the largest possible number of targets.

The algorithms used for AR model generation have a nu-
merical complexity ofO(N dim(θ) + dim (θ)2). By estimating
the order with the classic approach, the AR algorithm must be
recomputed for every possible dim(θ) in order to evaluate the
AIC described by (8). The largest theoretical value of dim(θ) is
N − 1, thus requiring

∑N−1
k=1 Nk + k2 computations, and this

excludes the AIC criterion minimization and prediction error
estimation. This gives a total method complexity of O(N3).

Unlike the previous method, the present method only com-
putes the AR model once. The magnitude of the complexity is ap-
proximatelyO(NK2), whereNK2 is the numerical complexity
of the most expensive processing block, SS. Using the proposed
value for K = N

log2N
, the complexity gain of the method, com-

pared to the traditional, AIC-based, method is approx. (log2N)2.
This gain can further be increased for large N, depending on
how sparse the image is. The raw SAR image used to provide
the experimental results in this article has 10 000 range samples
and 3700 cross-range samples. The reconstruction is done for
each isorange, consisting in a 3700 sample vector.

The largest aperture is approximately N = 1000 samples.
Thus, using the proposed method leads to a computational
gain of 100. The traditional method’s complexity could also
be reduced by stopping at the first local minimum, but will no
longer ensure optimal performance.

E. Numerical Results

Further on, a performance comparison is presented between
the proposed method and the traditional method. Simulation
parameters have been chosen to mimic the experimental bistatic
SAR scenario, where the signals of interest represent the slow
time response of a given number of targets. The geometry spec-
ifications were chosen to match those in our experimental setup
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Fig. 6. RMSE of the AR model when using dim(θ) estimated with the
proposed method, as a function of SNR and parameter αSNR.

Fig. 7. Optimal values for αSNR, selected from Fig. 6.

(e.g., Sentinel 1A/B height, velocity, bandwidth, and receiver
sampling rate). The RMS error was computed between the ideal,
artificially generated signal, and the AR-filled gaps based on
the estimated dim(θ). For both the proposed and classic order
estimation methods, signal reconstruction was done with Burg’s
method. The RMS error was averaged over 10 000 realizations.
The number of targets was set randomly between 1 and 8, and
the gap size was set between 0 and 0.1 s.

Fig. 6 presents the rms error as a function of two variables;
the first is αSNR which is related to dim(θ) by (2), and the
second is the SNR of the input signal. A key observation is that,
by choosing large values for αSNR, which result in large orders
when the SNR is low, the error will begin to increase. This is
caused by the previously mentioned effect of overfitting.

In Fig. 7, the optimal values of αSNR are shown, chosen as
a compromise between performance and complexity, based on
the results of Fig. 6. The SNR value was defined for the weakest
point-target after azimuth compression.

Fig. 8 presents a comparison between the results of the classic
method, the proposed method when αSNR has a constant value
of 8, and when αSNR takes different values depending on the
SNR, assuming it is a priori estimated. The values of αSNR as a
function of SNR were chosen from Fig. 6.

IV. EXPERIMENTAL RESULTS

This section presents an evaluation of the proposed multia-
perture focusing procedure with a bistatic acquisition performed

Fig. 8. Comparison between the classic method and the proposed method with
αSNR = 8 and with optimal αSNR.

Fig. 9. Received pulses for the acquisition performed on 07.04.2017. (a) PRI
(nominal and computed from the time stamps). (b) Amplitude.

on 07.04.2017 over an area of Bucharest city, Romania, with the
ground receiver being placed on top of the rectorate building of
University Politehnica of Bucharest and the Sentinel-1B satellite
flying on an ascending orbit. The implementation details of the
ground receiver are presented in [5].

The PRI and amplitude of the received pulses versus slow
time are shown in Fig. 9. Fig. 9(a) displays the nominal PRI
for each subswath and the PRI computed as difference between
consecutive GPS timestamps stored by the ground receiver,
whereas Fig. 9(b) shows the amplitude of each received pulse.
The maximum amplitude is obtained for the burst from subswath
2 (with 689μs PRI), but there are also pulses received from bursts
belonging to subswaths 1 and 3.

A. Signal Reconstruction Assessment

In this subsection, we assess the impact of the AR-based signal
reconstruction on the focused image. In this regard, we consider
only the main beam of the azimuth signal (between −0.21 and
0.11 s slow time) and artificially introduce gaps of different
sizes in the middle of the lobe. The multiaperture focusing
procedure is applied on the resulting signal (two apertures with
one continuous gap in between) with and without the signal
reconstruction stage. The focused bistatic images are compared
with the reference one obtained without any gap (classical
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Fig. 10. Azimuth signal reconstruction assessment in multiaperture focusing for an artificially introduced gap of 50 ms. (a) Reference image. (b) Focused image
with the gap filled with zeros. (c) Focused image with AR model-based filled gap.

Fig. 11. RMS Error of the AR model when using different order estimating
methods, normalized to the largest error.

focusing). The grid used in the BP algorithm is aligned with the
latitude/longitude axis and its origin is the receiver’s position.

Fig. 10(a) presents the reference image, Fig. 10(b) displays
the focused image with zero-filled gaps, while Fig. 10(c) shows
the focused image after AR model-based gap filling for a 50
ms gap duration. The negative impact of the zero-filled focusing
is clear, and thus the method is of little practical interest. In
Fig. 11, we present the root mean squared error (RMSE) of
the reconstructed signals, for the two order-estimating methods
and for various constant orders, as a function of gap size. The
RMSE is computed between the complex reconstructed samples
and the original samples. The parameters of the proposed order-
estimating method were K = N

log2N
, and αSNR = 8.

The results clearly illustrate that if the order is chosen either
too high or too low, the signal will not be correctly reconstructed
due to overfitting or underfitting, respectively. The reconstruc-
tion was done for an isolated, highly reflective target, situated at
relative coordinates (457,3152).

Table I presents the corresponding phase errors of the isolated
peak, after azimuth compression. The true phase is 93.45°.

In Table II, instead of reconstructing a strong isolated target
as before, the reconstruction is done for a cluster positioned at
coordinates (306,2296) relative to the receiver. The true phase
of the target of interest is 146.16°. The RMSE is presented in
Fig. 12.

The parameters for the proposed methods are kept the same
as in the previous experiment. It is shown that by choosing

TABLE I
PHASE ERROR FOR AN ISOLATED TARGET

TABLE II
PHASE ERROR FOR CLUSTERED TARGETS

Fig. 12. RMS error of the AR model when using different order estimating
methods, normalized to the largest error, for an area with many reflectors.

a constant order the error becomes highly unpredictable, and
both underfitting and overfitting become an issue. An interesting
result is that for a similar RMS error, overfitting has less impact
on phase reconstruction than underfitting.

B. Resolution Enhancement

To emphasis the azimuth resolution enhancement that can be
obtained by multiaperture focusing, we applied the procedure on
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Fig. 13. Resolution enhancement with multiaperture focusing. a) is a high
resolution multiaperture focused bistatic SAR image; b) and c) are focused
images overlaid on Google Earth of the area inscribed by the red rectangle in
a), where image b) was generated using single aperture focusing, while image
c) was generated using the proposed multiaperture focusing methodology.

the azimuth signal shown in Fig. 9 for the groups of consecutive
pulses between −1.02 to 0.76 s. In this interval, the maximum
gap size is below 0.1 s. The resulting multiaperture bistatic SAR
image [Fig. 10(a)] is focused on the same grid as the single-
aperture image shown in Fig. 13(a). Fig. 13(b) and (c) present
the single-aperture bistatic image and the multiaperture bistatic
image of a high-rise building overlaid on a Google Earth picture,
respectively.

Based on the main response of the building, the measured
−6 dB resolution for the single-aperture image is 34.2 m, while
for the multiaperture one is 6.8 m. Besides the drawback of a few
focusing artifacts (that yield a measured peak to side lobe ratio of
around 26 dB), in the multiaperture image the scattering centers
are much more clearly highlighted than in the single-aperture
case.

For the extended aperture, the proposed order-estimating
method was approx. 30 times faster, on average, than the tra-
ditional method.

V. CONCLUSION

This article presented a methodology on how to focus space-
borne transmitter–stationary receiver bistatic data that span sev-
eral along-track apertures with gaps in between. The possibility
of increasing the azimuth resolution by using the proposed
procedure was shown on a dataset acquired with Sentinel-1B
operating in TOPSAR mode as transmitter of opportunity. Each

subaperture is normalized with the AP and interpolated on a
common grid (PRI). The gaps between the apertures are then
filled using an AR model. Furthermore, a novel and highly
efficient method is proposed to estimate the optimal order for the
AR model. Unlike the traditional approach which uses the AIC
to directly estimate the order, the proposed method indirectly
estimates the order by detecting the number of targets using
PCA. The optimal order is chosen as an integer multiple of the
number of targets, which depends on SNR.

REFERENCES

[1] F. Behner, S. Reuther, H. Nies, and O. Loffeld, “Synchronization and
processing in the HITCHHIKER Bistatic SAR experiment,” IEEE J. Sel.
Topics Appl. Earth Observ. Remote Sens., vol. 9, no. 3, pp. 1028–1035,
Mar. 2016.

[2] S. Duque et al., “Repeat-pass interferometry using a fixed-receiver and
ERS-2/ENVISAT as transmitters of opportunity,” in Proc. IEEE Int.
Geosci. Remote Sens. Symp., Jul. 2009, pp. II-246–II-249.

[3] X. Fan et al., “Passive SAR with GNSS transmitters: Latest results and re-
search progress,” in Proc. IEEE Int. Geosci. Remote Sens. Symp., Jul. 2017,
pp. 1043–1046.

[4] V. Kubica, X. Neyt, and H. D. Griffiths, “Along-track resolution enhance-
ment for bistatic SAR imaging in burst-mode operation,” IEEE Trans.
Aerosp. Electron. Syst., vol. 52, no. 4, pp. 1568–1575, Aug. 2016.

[5] A. Anghel, R. Cacoveanu, A. Moldovan, B. Rommen, and M. Datcu,
“COBIS: Opportunistic C-band bistatic SAR differential interferometry,”
IEEE J Sel. Topics Appl. Earth Observ. Remote Sens., vol. 12, no. 10,
pp. 3980–3998, Oct. 2019.

[6] W. Etter, “Restoration of a discrete-time signal segment by interpolation
based on the left-sided and right-sided autoregressive parameters,” IEEE
Trans. Signal Process., vol. 44, no. 5, pp. 1124–1135, May 1996.

[7] A. Anghel, R. Cacoveanu, B. Rommen, and M. Datcu, “Multi-aperture
focusing in spaceborne transmitter-stationary receiver bistatic SAR,” in
Proc. Int. Geosci. Remote Sens. Symp., 2019, pp. 1120–1123.

[8] I. Kauppinen and K. Roth, “Audio signal extrapolation—Theory and
applications,” in Proc. 5th Int. Conf. Digit. Audio Effects, Sep. 2002,
pp. 105–110.

[9] H. Ding and B. F. Chao, “Detecting harmonic signals in a noisy time-series:
The z-domain autoregressive (AR-z) spectrum,” Geophys. J. Int., vol. 201,
no. 3, pp. 1287–1296, 2015.

[10] C. E. Froberg, Introduction to Numerical Analysis, 2nd ed. Reading, MA,
USA: Addison-Wesley, 1969.

[11] B. F. Chao, “On the use of maximum entropy/autoregressive spectrum
in harmonic analysis of time series,” Pure Appl. Geophys., vol. 134,
pp. 303–311, 1990.

[12] S. M. Kay and S. L. Marple, “Spectrum analysis—A modern perspective,”
Proc. IEEE, vol. 69, no. 11, pp. 1380–1419, Nov. 1981.

[13] S. Marple, “A new autoregressive spectrum analysis algorithm,” IEEE
Trans. Acoust., Speech, Signal Process., vol. 28, no. 4, pp. 441–454,
Aug. 1980.

[14] J. P. Burg, “Maximum entropy spectral analysis,” Ph.D. dissertation, Dept.
Geophys., Stanford Univ., Stanford, CA, USA, May 1975.

[15] L. Veci, “SAR basics tutorial,” Sentinel-1 Toolbox, 2015. [Online]. Avail-
able: http://step.esa.int/docs/tutorials/S1TBX%20SAR%20Basics%
20Tutorial.pdf. Accessed: Feb. 27, 2020.

[16] P. Stoica and R. Moses, Spectral Analysis of Signals. Upper Saddle River,
NJ, USA: Prentice Hall, 2005, pp. 168–170.

[17] P. Stoica and Y. Selen, “A review of information criterion rules,” IEEE
Signal Process. Mag., vol. 21, no. 4, pp. 36–47, Jul. 2004.

[18] H. Aikaike, “Fitting autoregressive models for prediction,” Ann. Inst.
Statist. Math., vol. 21, pp. 243–247, 1969.

[19] C. M. Hurvich and C. L. Tsai, “Regression and times series model selection
in small samples,” Biometrika, vol. 76, no. 2, pp. 297–307, 1989.

[20] A. Barron, J Rissanen, and B. Yu, “The minimum description length
principle in coding and modeling,” IEEE Trans. Inf. Theory, vol. 44, no.
6, pp. 2743–2760, Oct. 1998.

[21] M. Wax and T. Kailath, “Detection of signals by information theoretic
criteria,” IEEE Trans. Acoust., Speech, Signal Process., vol. 33, no. 2,
pp. 387–392, Apr. 1985.

[22] V. K. Madisetti and D. B. Williams, Digital Signal Processing Handbook.
Cleveland, OH, USA: CRC Press, 1999, pp. 1426–1436.

http://step.esa.int/docs/tutorials/S1TBX&percnt;20SAR&percnt;20Basics&percnt;20Tutorial.pdf


5832 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 13, 2020

Filip Rosu received the M.Sc. degree in communica-
tion circuits and systems from Politehnica University
of Bucharest (UPB), Bucharest, Romania, in 2018.
He is currently working toward the Ph.D. degree in
multistatic synthetic aperture radar at the UPB.

He is currently a Radar Systems Engineer with
NXP Semiconductors, Bucharest, Romania, The
Netherlands. His research interests include multi-
static synthetic aperture radar, mostly for earth-
observation applications, signal processing, machine
learning, and phased array design for the next gener-

ation of radar systems used in assisted and autonomous driving.

Andrei Anghel (Member, IEEE) received the en-
gineering (as valedictorian) and M.S. degrees (with
the highest grade) in electronic engineering and
telecommunications from the University Politehnica
of Bucharest, Bucharest, Romania, in 2010 and 2012,
respectively, and the joint Ph.D. degree (summa cum
laude) in signal, image, speech, and telecoms from
the University of Grenoble Alpes, Grenoble, France,
and in electronic engineering and telecommunica-
tions from the University Politehnica of Bucharest,
Bucharest, Romania, in 2015.

Between 2012 and 2015, he was a Doctoral Researcher with Grenoble Image
Speech Signal Automatics Laboratory (GIPSA-lab), Grenoble, France. In 2012,
he was with the University Politehnica of Bucharest as a Teaching Assistant,
where he is currently an Associate Professor with the Telecommunications
Department, Faculty of Electronics, Telecommunications and Information Tech-
nology. He has authored more than 50 scientific publications, two textbooks, and
a book about SAR signal processing for infrastructure monitoring. His research
interests include remote sensing, radar, microwaves, and signal processing.

Dr. Anghel regularly acts as a Reviewer for several IEEE and IET journals.
He was the recipient of two gold medals (in 2005 and 2006) at the International
Physics Olympiads.

Remus Cacoveanu received the M.S. degree in
electronics and telecommunications from the “Po-
litehnica” University of Bucharest (UPB), Bucharest,
Romania, in 1983, and the Ph.D. degree in mi-
crowave, optics and optoelectronics from the Institut
National Politechnique de Grenoble INPG, Grenoble,
France, in 1997.

He was an Associate Professor in telecommunica-
tions with UPB. For more than 10 years, he was the
Technical Lead with the Redline Communications’
Romanian branch, and between 2011 and 2015, he

was a Technical Consultant with Blinq Networks Canada. Since 2016, he has
been a Lead Scientist with EOS Electronic Systems. His research interests
include wireless communication systems, antennas, radar sensors, propagation,
and microwave circuits.

Björn Rommen received the M.S. degree in electrical
engineering from Delft University of Technology,
Delft, the Netherlands, in 1999.

From 1999 onwards, he has been working in the
field of Earth observation with the Research and Tech-
nology Centre of the European Space Agency, Noord-
wijk, The Netherlands. He is currently a Mission Sci-
entist with ESA’s Biomass mission as well as for the
Earth Explorer 10 candidate mission Harmony. His
research interests include wide range within the do-
main of active microwave remote sensing—involving

work at both microwave instrument conceptual level as well as leading R&D
activities investigating wave interaction with the Earth’s surface (including
bio/geophysical parameter retrieval) and atmosphere—which for a large extent
has been driven by SAR missions in preparation at the European Space Agency.
He has been involved in the Sentinel-1A and -1B prelaunch and postlaunch
activities including the commissioning phases covering overall SAR in-orbit
performance and system calibration activities. His research interests include
electromagnetics theory, computational electromagnetics, and radar remote
sensing.

Mihai Datcu (Fellow, IEEE) received the M.S. and
Ph.D. degrees in electronics and telecommunications
from the University Politehnica Bucharest (UPB),
Bucharest, Romania, in 1978 and 1986, respectively,
and the habilitation a Diriger Des Recherches degree
in computer science from the University Louis Pas-
teur, Strasbourg, France, in 1999.

From 1992 to 2002, he had a longer Invited Pro-
fessor Assignment with the Swiss Federal Institute
of Technology (ETH Zurich), Zurich, Switzerland.
He was a Visiting Professor with the University of

Oviedo, Oviedo, Spain; University Louis Pasteur; International Space Univer-
sity, Strasbourg, France; the University of Siegen, Siegen, Germany; University
of Innsbruck, Innsbruck, Austria; University of Alcala, Alcala de Henares,
Spain; University Tor Vergata, Rome, Italy; the Universidad Pontificia de
Salamanca, Madrid, Spain; University of Camerino, Camerino, Italy; and the
Swiss Center for Scientific Computing, Manno, Switzerland. Since 1981, he has
been a Professor with the Department of Applied Electronics and Information
Engineering, Faculty of Electronics, Telecommunications and Information Tech-
nology, UPB. Since 1993, he has been a Scientist with the German Aerospace
Center (DLR), Wessling, Germany. He is developing algorithms for model-based
information retrieval from high-complexity signals and methods for scene
understanding from very-high-resolution synthetic aperture radar (SAR) and
interferometric SAR data. Since 2011, he has been leading the Immersive Visual
Information Mining Research Laboratory, Munich Aerospace Faculty, and he
is the Director of the Research Center for Spatial Information, UPB. Since
2001, he had been initiating and leading the Competence Center on Information
Extraction and Image Understanding for Earth Observation, ParisTech, Paris
Institute of Technology, Telecom Paris, Paris, France, a collaboration of DLR
with the French Space Agency (CNES). He has been a Professor with the
DLR-CNES Chair, ParisTech, Paris Institute of Technology, Telecom Paris. He
has initiated the European frame of projects for image information mining (IIM)
and is involved in research programs for information extraction, data mining
and knowledge discovery, and data understanding with the European Space
Agency (ESA), NASA, and in a variety of national and European projects. He
and his team have developed and are developing the operational IIM processor
in the Payload Ground Segment systems for the German missions, TerraSAR-X,
TanDEM-X, and the ESA Sentinel-1 and Sentinel-2. He is a Senior Scientist and
the Data Intelligence and Knowledge Discovery Research Group Leader with
the Remote Sensing Technology Institute, DLR. His research interests include
explainable and physics aware Artificial Intelligence, smart sensors design, and
qauntum machine learning with applications in Earth Observation.

Dr. Datcu is a member of the ESA Working Group Big Data from Space.
He was the recipient of the Best Paper Award and the IEEE Geoscience and
Remote Sensing Society Prize, in 2006, the National Order of Merit with the
rank of Knight, for outstanding international research results, awarded by the
President of Romania, in 2008, and the Romanian Academy Prize Traian Vuia
for the development of the SAADI image analysis system and his activity in
image processing, in 1987. He was also the recipient of the Chaire d’excellence
internationale Blaise Pascal 2017 for international recognition in the field of data
science in earth observation. He has served as a Co-organizer for international
conferences and workshops and as Guest Editor for a special issue on AI and
Big Data of the IEEE and other journals.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


