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One-Class Remote Sensing Classification From
Positive and Unlabeled Background Data

Wenkai Li , Qinghua Guo , and Charles Elkan

Abstract—One-class classification is a common situation in
remote sensing, where researchers aim to extract a single land
type from remotely sensed data. Learning a classifier from labeled
positive and unlabeled background data, which is the case-control
sampling scenario, is efficient for one-class remote sensing classi-
fication because labeled negative data are not necessary for model
training. In this study, we propose a novel positive and background
learning with constraints (PBLC) algorithm to address this one-
class classification problem. With user-specified information of
maximum probability as the constraint, PBLC infers the posterior
probability of positive class directly in one-step model training.
We test PBLC on a synthetic dataset and a real aerial photograph
to perform different one-class classification tasks. Experimental
results demonstrate that PBLC can successfully train linear and
nonlinear classifiers including generalized linear model, artificial
neural network, and convolutional neural network. Probabilistic
and binary predictions by PBLC are more similar to the gold-
standard positive-negative method, outperforming the two-step
positive and background learning algorithm that post-calibrates a
naïve classifier based on an estimated constant. Hence, the proposed
PBLC algorithm has the potential to solve one-class classification
problems in the case-control sampling scenario.

Index Terms—Case-control sampling, labeled and unlabeled
data, one-class classification, positive and background learning
with constraints (PBLC), remote sensing.

I. INTRODUCTION

IN REMOTE sensing classification, there are situations when
users are only interested in extracting a single land type,

which is the so-called one-class classification in the literature
[1]–[3]. The land type of interest is called positive class and
other land types of no interest are called negative class. The
task of one-class classification can be performed by applying
a standard binary classifier given a complete and exhaustively
labeled training set [4], [5]. In other words, if one is only inter-
ested in mapping urban areas, training samples from all possible
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land types (e.g., urban, tree, grass, soil, etc.) should be labeled,
which is a time-consuming and labor-intensive process. If users
fail to identify some land types, the training set is incomplete
and hence the classification accuracy may be decreased [5], [6].
Meanwhile, one-class classification is also a common problem in
many other applications where users have difficulty in labeling
negative data [7]–[9]. In the wildland search and rescue risk
assessment, for example, researchers use historical observation
data to train a binary classifier to understand the relationship
between incident occurrence and environmental variables, but
the problem is that negative observation data (locations where
incidents have not occurred and will not occur) are usually not
available [9]. Hence, it is beneficial to develop classification
methods that do not require labeled negative training data.

One-class classification without negative data is more chal-
lenging than binary classification with both positive and negative
data, as it is difficult to find the optimal decision boundary [10].
In the early stage, positive-only methods were proposed for one-
class classification, such as Gaussian domain descriptor (GDD)
and one-class support vector machine (OCSVM) [4], [11]. Given
positive-only training data, GDD models the density of features
for the positive class assuming a Gaussian distribution whereas
OCSVM fits a hypersphere to separate positive from negative
data [10], [12]. These methods require users to empirically
tune a threshold or free parameters to balance overprediction
and underprediction, which is difficult when negative data are
not available [4], [10], [13]. Later, researchers demonstrated
that unlabeled data are also helpful in classifier learning in
addition to positive data, and positive-unlabeled methods usually
outperform positive-only methods, which make this category of
methods become more and more popular in one-class classifi-
cations in many fields [7], [14], [15]. One common approach of
this category involves heuristically identifying likely negative
data (sometimes as well as likely positive data) from unlabeled
set iteratively that are combined with the labeled data in the
previous step, and then train a standard binary classifier [7],
[16]. The biased support vector machine (BSVM) is another
approach by treating the unlabeled set as weighted positive and
weighted negative data during model training, which has been
shown to be superior than the previous heuristic approach [17].
However, the accuracy of BSVM is sensitive to the weights, and
users are required to search for the optimal weights iteratively
with an independent validation set, which may preclude its usage
by nonexpert users due to complicated model selection proce-
dure [7], [15], [17]. The positive and unlabeled learning (PUL)
algorithm proposed by Elkan and Noto trains a binary classifier
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using positive and unlabeled data and estimates a constant using
an independent validation set; the original “pseudo” posterior
probability predicted by the trained classifier is post-calibrated
by the constant to obtain a true posterior probability of positive
class, and hence a threshold of 0.5 can be applied to produce
binary classification [7]. Actually, PUL is not a specific classifier,
but a learning algorithm than can be applied to train standard
binary classifiers such as logistic regression, support vector
machine (SVM), neural networks, etc. [7], [15], [18]. Please
note that there are also other semisupervised learning methods
that can generate good performance by combining labeled and
unlabeled data, such as transductive SVM [19], context-sensitive
semisupervised SVM [20], and semisupervised Laplacian SVM
[21], but these methods still require labeled negative data, and
hence they are not considered in this research.

The PUL algorithm has good potential in one-class clas-
sification, but it requires a “selected completely at random”
assumption that may be violated in some real-world applications,
i.e., the positive and unlabeled data are randomly collected
in a single-training-set, and each positive sample is labeled
with the same constant probability. In one-class remote sensing
classification, for example, users normally label the first set
of positive samples randomly and then extract a second set
of random background pixels as the unlabeled data separately,
which is referred to as a case-control scenario in contrast to the
single-training-set scenario. To address the PUL problem under
case-control sampling scenario, the positive (also called pres-
ence) and background learning (PBL) algorithm was proposed
by Li et al. [22], and it has also been successfully applied in
one-class remote sensing classification with good performance
in different case studies. With space-borne microwave bright-
ness temperature measurements and in situ observations, Xu
et al. [23] applied the PBL algorithm to map global snow cover
from 1987 to 2010. Ao et al. [24] used PBL to classify a single
class such as building, tree, terrain, and power line from airborne
light detection and ranging point cloud data. Zhang et al. [25]
applied the PBL algorithm to map surface water bodies using
Sentinel-2 imagery and OpenStreetMap data.

Although the PBL algorithm has shown promise in one-class
remote sensing classification, it still has two major drawbacks
that can affect its performance. First, PBL relies on a constant
to calibrate the posterior probability of positive class, but the
constant is consistently underestimated by the existing approach.
Second, the classifier is post-processed based on the constant
after training, which may produce probabilities greater than one
due to inaccurate probability predictions. In order to overcome
these problems, we propose a new approach to learn a binary
classifier using positive and unlabeled data focusing on the
case-control scenario. To investigate its effectiveness in one-
class remote sensing classification, we use both synthetic and
real datasets to test the performance of the new method. In
the following sections, we provide details about the algorithm,
experiments, and discussions.

II. LEARNING A BINARY CLASSIFIER FROM POSITIVE AND

BACKGROUND DATA

Let y = 1 denote positive class, y = 0 denote negative class, x
denote the features (or covariates) of a given pixel, and Pr(y

= 1) denote the prior (or prevalence) of positive class. Our
aim is to model the posterior probability of the positive class
at a specific pixel: Pr(y = 1 | x). If both positive and negative
training data are available, this task can be performed by training
a standard binary classifier such as logistic regression, but it
becomes a problem when negative data are not available. Let s
= 1 denote labeled data and s = 0 denote unlabeled data. Since
we only label positive data, s = 1 implies y = 1, but either y
= 1 or y = 0 can be true when s = 0. In the single-training-set
scenario, samples are randomly drawn from the population, and
only positive samples are labeled with a constant probability,
and the rest of the samples (both positive and negative) are
recorded as unlabeled data [7]. In the case-control scenario, the
labeled data are randomly sampled from the positive subset,
and the unlabeled data are randomly sampled from the entire
population (background pixels), separately [22]. A major differ-
ence between both scenarios is that the proportion of positive
data (labeled positive plus unlabeled positive) in the training set
is equal to the class prior Pr(y = 1) in the single-training-set
scenario, but larger than the class prior in the case-control
scenario.

If we train a binary classifier using labeled and unlabeled data,
we obtain a naïve model: Pr(s = 1 | x) in the single-training-set
scenario or Pr(s = 1 | x, η = 1) in the case-control scenario.
Here η = 1 is just a notation for the case-control scenario. In
the single-training-set scenario, the trained model and desired
model have the following relationship [7]:

Pr(y = 1|x) = Pr(s = 1|x)/c. (1)

In the case-control scenario, however, this relationship be-
comes [22]

Pr (y = 1|x) = 1− c

c
× Pr (s = 1|x, η = 1)

1− Pr (s = 1|x, η = 1)
. (2)

In both of the above equations, c is the ratio of the number of
labeled positive samples to the total number of positive samples
in the training set, and it is a fixed constant whose value depends
on the class prior. Equivalently, c can be defined as the labeling
effort of positive class: c = Pr(s = 1 | y = 1). Suppose that
the number of labeled positive samples is n1 and the number
of background samples is n0, then c = n1 / [n1 + n0 × Pr(y =
1)]. Assuming that there is a subset of “prototypical positive”
samples whose values of Pr(y = 1 | x) are one, the following
estimator of c can be derived:

c =
1

k

∑
x∈PP

Pr(s = 1|x) (3)

c =
1

k

∑
x∈PP

Pr(s = 1|x, η = 1) (4)

where k refers to the cardinality of prototypical positive subset
PP. (3) and (4) are actually the same, but we use different
notations to distinguish two different sampling scenarios. The
PUL and PBL algorithms use (1) and (2) to calibrate the naïve
models, respectively, both of which share the same estimator of c
in (3) or (4). They are two complementary algorithms to address
two different sampling scenarios correspondently. Details about
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PUL can be found in [7], and details about PBL can be found in
[22].

In real-world applications, researchers usually treat part of
the observed positive data (e.g., top 50% with higher prediction
values) or all the observed positive data in a separate validation
set as the prototypical positive subset to estimate c, but the prob-
lem is that some of the selected positive samples actually have
probabilities smaller than one, so the constant c is consistently
underestimated by (3) or (4), and Pr(y = 1 | x) is overestimated
consequently. Meanwhile, an artifact of the two-step processing
is that a small number of pixels whose predicted probability
values are greater than one may be produced due to inaccurate
model prediction. Instead of arbitrarily selecting a subset of
positive samples to estimate c and post-calibrate the naïve model
in two separate steps, here we propose a new approach to infer the
desired model Pr(y = 1 | x) directly in one-step model training.

We focus on the case-control scenario as it is more common
in one-class remote sensing classification, and “positive and
background data” refer to case-control positive and unlabeled
data throughout the article. (2) can be rewritten as:

Pr (s = 1|x, η = 1) =
Pr(y = 1|x)

Pr (y = 1|x) + (1− c) /c
. (5)

Let Pr(y = 1 | x) = f(x, ω) and Pr(s = 1 | x, η = 1) = g(x, β)
where f and g are functions, and ω and β are model parameters
to be estimated. Consider the maximum likelihood estimation as
an example, we can infer the model parameter β by minimizing
the following negative log-likelihood function with observed
labeled and unlabeled data:

L (β)=−
n∑

i = 1

{silog [g (xi, β)]+(1− si) log [1− g (xi, β)]}
(6)

where n refers to the number of training samples: (xi, si) with
i = 1, 2, 3, …, n. The above negative log-likelihood function
can be replaced by other forms of loss functions as well, such as
the mean squared error function [26]. According to (5), we can
rewrite (6) as

L (ω, c) = −
n∑

i = 1

{
silog

[
f (xi, ω)

f (xi, ω) +
(1−c)

c

]

+ (1− si) log

[
1− f (xi, ω)

f (xi, ω) + (1− c) /c

]}
.

(7)

Given observed labeled and unlabeled data, can we infer the
model parameter ω by minimizing the loss function in (7)?
Generally, if we knew the class prior, then the constant c is
also known and hence model Pr(y = 1 | x) is identifiable through
(7). In reality, however, the class prior is usually unknown, then
model Pr(y= 1 | x) is only identifiable under certain assumptions
or conditions [27], [28]. The PUL and PBL algorithms assume
that the posterior probability values of selected prototypical
positive samples reach one, which, therefore, makes Pr(y = 1 |
x) identifiable based on the estimator of c [7], [22]. By contrast,
we assume that the maximum value of posterior probabilities of
the entire population, denoted as Pmax, is a priori knowledge,

and a constraint term (regularizer) is added to (7), resulting in

L (ω, c) = −
n∑

i = 1

{
silog

[
f (xi, ω)

f (xi, ω) +
(1−c)

c

]

+ (1− si) log

[
1− f (xi, ω)

f (xi, ω) +
(1−c)

c

]}

+ ƛ|max [f (x, ω)]− Pmax|2 (8)

where ƛ is a regularization parameter. The constant c now
becomes a model parameter that will be optimized together
with ω during model training. The regularizer in (8) can also
be combined with other regularizers such as weight decay to
improve generalization [26]. Therefore, we can obtain Pr(y = 1
| x) by minimizing the loss function in (8), assuming that the prior
information on Pmax is available. In one-class remote sensing
classification, it is reasonable to assume that Pmax reaches one,
but we can instead assume a value smaller than one if the
positive class is less separable from the negative class. This
model assumption is less strong and more flexible than the
previous assumption made by PUL/PBL, and it is not necessary
to arbitrarily find a subset of prototypical positive samples in
order to estimate c. In summary, (8) provides a new flexible
way to train a binary classifier using positive and background
data, and the form of Pr(y = 1 | x) can be either linear (e.g.,
logistic regression) or nonlinear (e.g., neural networks). We
name this new algorithm positive and background learning with
constraints (PBLC) to distinguish it from the previous PBL
algorithm in [22].

III. EXPERIMENT

We tested the proposed PBLC algorithm using both synthetic
and real datasets to investigate its effectiveness in one-class
remote sensing classification. We focused on the case-control
sampling scenario, so the most relevant algorithm PBL was
selected for comparison. Three typical linear and nonlinear
binary classifiers including generalized linear model (GLM)
[29], multilayer artificial neural network (ANN) [30], and con-
volutional neural network (CNN) [31] were used to imple-
ment PBL and PBLC, all of which were trained using positive
and background data. Compared with learning from positive
and background data, a binary classifier trained by both positive
and negative data is regarded as the gold-standard model, so
we also trained the binary classifiers using positive-negative
(PN) data as benchmark models. Therefore, we have three
classifiers, each of which was trained by three different learning
approaches. For convenience, we use GLM_PN, GLM_PBL,
and GLM_PBLC to refer to a GLM classifier trained by standard
PN data, PBL, and PBLC, respectively, etc.

A. Dataset

The performances of PBL and PBLC depend on the ability
to predict Pr(y = 1 | x), but we are not able to observe true
posterior probability in reality, so we used synthetic data to
evaluate the accuracy of predicted probability. The synthetic
dataset was generated by a logistic model since it is a commonly
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Fig. 1. (a) Synthetic dataset: true probability curve; (b) positive and negative samples; and (c) positive and background samples. Red asterisk: positive samples.
Blue asterisk: negative or background samples. Sample size: Np = 200.

Fig. 2. Location (red rectangle) of the selected scene in El Cerrito, California (a) and the aerial photograph (b). Spatial resolution: 0.3 m. Extent: 500 m × 500 m.
Number of pixels: 1667 × 1667.

used model assumption in binary classification [22], [32]. The
posterior probability of positive class was modeled as

Pr(y = 1 |x) =
eb0+b1x

1 + eb0+b1x
(9)

where b0 and b1 are model parameters. We set b0 =−7.5, b1 =
15, and 0≤×≤ 1. The true probability curve contained 100 001
data points, which was used as the test set [see Fig. 1(a)]. Binary
data were realized from the probability curve using the following
procedure: at each data point, we generated a random value 0
≤ r < 1 and assigned that data point as positive (y = 1) if r
≤ Pr(y = 1 | x) or negative (y = 0) otherwise. For PBL and
PBLC, we randomly extracted a set of positive samples from
the positive subset, and then randomly extracted a second set
of background samples from the whole population. A single
training set with completely labeled positive and negative data
was also extracted by random sampling in order to train the
classifiers in a standard PN approach. We tested different sample

sizes Np, including 200, 1000, and 5000. Here Np only refers
to the number of labeled positive data in a training set, and
the number of background data was five times of Np following
[22]. Therefore, the true value of constant c is 0.2857 since
the class prior Pr(y = 1) is 0.5. Each training set was repeated
by 10 different random realizations. Examples of PN samples
and positive-background samples with Np = 200 are shown in
Fig. 1(b) and (c), respectively. For this dataset, we produced
probabilistic prediction rather than binary classification, and
the agreement between predicted and true probabilities of the
whole curve was evaluated using Pearson’s correlation coeffi-
cient (COR) and root mean square error (RMSE).

The second dataset was extracted from an aerial photograph
(0.3-m spatial resolution) of the city El Cerrito in California,
which was acquired by a Leica ADS40 digital camera, including
three visible bands (see Fig. 2). The extent of selected scene
is 500 × 500 m, and we tried four examples of one-class
classifications, including extraction of urban areas (houses plus
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roads), trees, grasses, and soils, respectively. For each band,
we calculated the mean, variance, homogeneity, contrast, and
second moment using a 3 × 3 pixel template, and all of these
features were rescaled to the range of 0–1 [15]. Please note
that these manually designed features were only necessary for
GLM and ANN, whereas the features for CNN were learned
automatically. For GLM and ANN, a sample was just a single
pixel associated with label and features. For CNN, a sample was
an image patch (5 × 5 pixels) whose label was determined by
the center pixel, and the window-sliding approach was used to
produce pixel-wise classification [32], [33] so that CNN was
comparable with GLM and ANN. For each classification task,
we collected two types of training sets: one with positive and
background data (case-control sampling), and the other with
positive and negative data (simple random sampling). Again,
we tried different sample sizes Np, including 200, 1000, and
5000, and the number of background data was five times of Np

[22]. All of the training sets were randomly realized 10 times.
The true labels of the entire image via manual interpretation
were used as the test set, so the true values of class prior and
constant c were also available. Specifically, the image includes
636 826 pixels (22.92%) of urban, 585 171 pixels (21.06%)
of tree, 522 546 pixels (18.80%) of grass, and 284 249 pixels
(10.23%) of soil. The binary classifications were evaluated by
overall accuracy. The producer’s accuracy, user’s accuracy, and
F-score of the positive class were also reported.

B. Model Implementation

We implemented the classifiers GLM, ANN, and CNN in
TensorFlow [34]. We set two hidden layers for ANN, and the
activation function was logistic sigmoid for the output layer and
rectified linear unit (ReLU) for other layers. For CNN, we set
two convolutional layers, two fully connected layers, and a final
output layer; each convolutional layer was followed by a max-
pooling layer and a normalization layer; the activation function
was logistic sigmoid for the final layer and ReLU for other layers.
We used a negative log-likelihood loss function and trained the
classifiers using Adam optimizer [35]. The initial training set
was randomly split as two folds: 75% for training and 25% for
validation. The validation set was used to determine the learning
rate and number of iterations. A common practical guide is to
strop training when training error becomes stable but validation
error starts to increase [26]. For GLM and ANN, we trained
the models 10 times and averaged the outputs. However, it is
too expensive to train CNN multiple times, so we used dropout
to improve model generalization [26]. Because CNN requires a
large training set, so we only applied it to the aerial photograph
with the sample size (Np) of 5000.

We trained the binary classifiers in three different approaches:
PN, PBL, and PBLC. The PN approach trained the standard
binary classifiers with positive and negative data, which pro-
duced the gold-standard models. For PBL, the classifiers were
trained similarly to the standard approach but with positive and
background data, and the trained classifiers were post-calibrated
based on the constant c in a second step according to (2); the
constant c was estimated using all positive data in the validation

set according to (4). For PBLC, the loss function in (8) was used,
and the classifiers were trained by positive and background data.
By default, we set the regularization parameter ƛ = 0 and tuned
it by gradually increasing its value if the maximum predicted
probability was smaller than a user-specified threshold. In this
study, we empirically specified the threshold as 0.9 rather than
one, accounting for the situation where the classes were not
separable or model prediction was not accurate due to certain
reasons like outliers in the training set. Finally, we applied a
threshold of 0.5 to all models to produce binary classifications.

C. Results

1) Synthetic Dataset: Figs. 3 –5 show the predicted probabil-
ities by classifiers trained using PBL, PBLC, and PN. Obviously,
the probabilities predicted by PBLC are much closer to the true
values than that by PBL, and PN provides the most accurate
and stable predictions than the other two. ANN_PBL consis-
tently overestimates the probabilities, whereas the behaviors of
GLM_PBL are mixed, and both methods show a common arti-
fact that the maximum predicted probability goes beyond one.
In the following accuracy assessment, we cut those extremely
large probabilities to one because a probability larger than one
makes no sense. Meanwhile, GLM_PBLC consistently produces
probabilities in the range of 0–1 with the default regularization
parameter ƛ = 0, but the maximum probability produced by
ANN_PBLC is affected by ƛ. According to Fig. 6, the maximum
predicted probability by ANN_PBLC becomes more and more
closer to one when ƛ increases from 0 to 0.1.

Detailed accuracy assessment is provided in Table I. Overall,
PBLC and PN produce low RMSE values and high COR values,
and the estimated class prior Pr(y = 1) and constant c are
close to the true values. By contrast, PBL shows larger dis-
crepancies between predictions and true values, with Pr(y = 1)
being overestimated and c underestimated consistently. With the
sample size of 1000, the average RMSE values by GLM_PBL,
GLM_PBLC, and GLM_PN are 0.1227, 0.0192, and 0.0070,
respectively, and the corresponding average COR values are
0.8421, 0.9992, and 0.9999, respectively; the estimated values
of class prior by GLM_PBL, GLM_PBLC, and GLM_PN are
0.5066, 0.5013, and 0.5011, respectively, whereas the estimated
values of c by GLM_PBL and GLM_PBLC are 0.2416 and
0.2903, respectively. Meanwhile, increasing the sample size
generally results in increased COR and decreased RMSE. For
example, the RMSE and COR values by ANN_PBLC are 0.0479
and 0.9973 with Np = 200, but these values become 0.0271 and
0.9996 with Np = 5000.

2) Aerial Photograph: In Figs. 7 –10, we present part of the
binary classification maps of different land types. Since the clas-
sification maps of 10 random realizations of the same training
set are similar, here we only present the average prediction. For
classes of urban and grass, the classification results by different
methods are quite similar visually, but the differences become
more obvious for classes of tree and soil. Generally, we can
observe that PN produces the best binary classification results,
and PBLC provides better results than PBL. For different classi-
fiers, CNN produces the best classification results whereas GLM
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Fig. 3. Probabilistic predictions of synthetic dataset. Classifiers were trained by PBL, PBLC, and PN. Predictions of ten training sets: (a) GLM and (b) ANN.
Average prediction over ten training sets: (c) GLM and (d) ANN. GLM: ƛ = 0. ANN: ƛ = 0.1. Colored solid line: predicted probability. Black dashed line: true
probability. Sample size: Np = 200.
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Fig. 4. Probabilistic predictions of synthetic dataset. Classifiers were trained by PBL, PBLC, and PN. Predictions of ten training sets: (a) GLM and (b) ANN.
Average prediction over ten training sets: (c) GLM and (d) ANN. GLM: ƛ = 0. ANN: ƛ = 0.1. Colored solid line: predicted probability. Black dashed line: true
probability. Sample size: Np = 1000.
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Fig. 5. Probabilistic predictions of synthetic dataset. Classifiers were trained by PBL, PBLC, and PN. Predictions of ten training sets: (a) GLM and (b) ANN.
Average prediction over ten training sets: (c) GLM and (d) ANN. GLM: ƛ = 0. ANN: ƛ = 0.1. Colored solid line: predicted probability. Black dashed line: true
probability. Sample size: Np = 5000.
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TABLE I
MODEL PERFORMANCES ON SYNTHETIC DATASET WITH DIFFERENT SAMPLE SIZES (Np)

RMSE: Root mean square error. COR: Pearson’s correlation coefficient. True class prior: Pr(y = 1) = 0.5. True constant: c = 0.2857. Bold values refer to averages. Italic values refer
to standard deviations; GLM_PBL: A GLM model trained from positive and background data using PBL; GLM_PBLC: A GLM model trained from positive and background data using
PBLC; GLM_PN: A GLM model trained from positive and negative data using standard approach; ANN_PBL: An ANN model trained from positive and background data using PBL;
ANN_PBLC: An ANN model trained from positive and background data using PBLC; ANN_PN: An ANN model trained from positive and negative data using standard approach.

Fig. 6. Average prediction over 10 training sets of synthetic dataset by
ANN_PBLC with varied regularization parameter ƛ. Sample size: Np = 1000.

produces relatively poor results. For the tree class, in particular,
GLM_PBL and GLM_PBLC show obvious over-predictions
whereas GLM_PN shows obvious under-prediction.

The accuracies of different models for each land type are
reported in Tables II–V. Again, we can see that the overall
rank of classification accuracy by different learning methods
is PN > PBLC > PBL, and the overall rank of classification
accuracy by different classifiers is CNN > ANN > GLM. With
the sample size Np = 5000 of urban class, for example, the F
values by GLM_PBL, GLM_PBLC, and GLM_PN are 0.7848,
0.8084, and 0.8092; the F values by ANN_PBL, ANN_PBLC,

and ANN_PN are 0.8590, 0.8627, and 0.8669, respectively; the
F values by CNN_PBL, CNN_PBLC, and CNN_PN are 0.8697,
0.8720, and 0.8867, respectively. The classification accuracy
generally increases as the sample size increases, but this effect
is more obvious for ANN compared with GLM.

The PBLC algorithm also provides more accurate estimates
of class prior Pr(y = 1) and constant c compared with PBL. For
the urban class, the true class prior to Pr(y = 1) is 0.2292 and
the true constant c is 0.4660. With Np = 1000, the estimated
Pr(y = 1) by GLM_PBL and ANN_PBL are 0.2633 and 0.2893,
whereas the estimated values by GLM_PBLC and ANN_PBLC
are 0.2558 and 0.2297; the estimated c by GLM_PBL and
ANN_PBL are 0.3614 and 0.3816, whereas the estimated val-
ues by GLM_PBLC and ANN_PBLC are 0.4410 and 0.4823,
respectively (see Table II).

IV. DISCUSSION

In this study, we investigate the problem of one-class remote
sensing classification using positive and unlabeled data, with a
focus on the case-control sampling scenario. The positive data
are randomly sampled from the target class, and the unlabeled
data come from randomly sampled background data without
label information, both of which are sampled separately. Given
a training set, the ratio of the number of positive data in the
labeled set to the total number of positive data in the entire
training set is a fixed constant, namely c = Pr(s = 1 | y = 1),
which is a key parameter that should be estimated in order to
infer the desired model Pr(y = 1 | x) [7], [22]. Assuming that
the posterior probability Pr(y = 1 | x) of a prototypical positive
reaches the maximum value one, the PBL algorithm arbitrarily
selects a prototypical positive subset to estimate the constant c,
but this approach usually underestimates c due to the fact that an
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Fig. 7. Average binary classification maps of urban over ten random realizations of training sets. Classifiers were trained by PBL, PBLC, and PN. (a) GLM with
Np = 1000. (b) ANN with Np = 1000. (c) CNN with Np = 5000.

observed positive sample may actually have a probability value
smaller than one [22]. According to (2), the posterior probability
Pr(y= 1 | x) and hence the class prior Pr(y= 1) are overestimated
with an underestimated constant c. By contrast, PBLC treats the
constant c as a model parameter whose value is automatically
estimated during model training, and this approach provides
more accurate estimates of c, Pr(y = 1 | x), and Pr(y = 1). Unlike
PBL that obtains Pr(y = 1 | x) indirectly in two-step processing,
PBLC infers Pr(y= 1 | x) directly in one-step training without the
artifact that estimated probabilities are larger than one. For these
reasons, PBLC outperforms PBL in our experiments, providing
more accurate probabilistic and binary predictions.

Compared with learning from positive and negative data in a
standard approach, learning a classifier from positive and back-
ground data is more challenging since the training set contains
less information, which is the reason why PN produces the best
results in our experiments [22]. In order to make Pr(y = 1 | x)
identifiable from positive and background data, additional infor-
mation such as Pr(y = 1) or model assumptions are necessary
[27], [28], [36]. In reality, it is difficult to know Pr(y= 1) without
negative data, so we only consider the situation that Pr(y = 1)
is unknown in this study. Previous studies have revealed that
assuming Pr(y = 1 | x) to be certain parametric forms (such as
linear logistic model) can make the model identifiable, but it is
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Fig. 8. Average binary classification maps of tree over ten random realizations of training sets. Classifiers were trained by PBL, PBLC, and PN. (a) GLM with
Np = 1000. (b) ANN with Np = 1000. (c) CNN with Np = 5000.

not recommended because the linear assumption can be violated
easily in real-world applications [27], [28]. Instead of relying on
certain parametric assumptions, PBL assumes that the posterior
probabilities of selected prototypical positive data are one, but
it might be difficult to select such pure positive data in prac-
tice. By contrast, PBLC makes a less strong and more flexible
assumption than PBL, i.e., prior information on the maximum
value of Pr(y = 1 | x), namely Pmax, is available. Like PBL,
setting Pmax = 1 is a reasonable default choice as classes are
normally separable with appropriate features in remote sensing
classification, but we can further relax the assumption by setting

a smaller value of Pmax when classes are less separable in the
feature space.

The regularization coefficient ƛ is a free parameter related
to the model assumption of Pmax. According to our experi-
ments, GLM_PBLC with ƛ = 0 consistently produces Pmax =
1. The reason might be that the parametric structure of GLM
(i.e., linear logistic model) is sufficient to make Pr(y = 1 |
x) identifiable as mentioned previously, so additional model
assumption of Pmax seems not necessary. On the synthetic
dataset, GLM_PBLC produces high accuracies since the dataset
matches the parametric form, but it produces lower accuracies
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Fig. 9. Average binary classification maps of grass over ten random realizations of training sets. Classifiers were trained by PBL, PBLC, and PN. (a) GLM with
Np = 1000. (b) ANN with Np = 1000. (c) CNN with Np = 5000.

on the real aerial photograph probably because the parametric
form is misspecified [7], [28]. Please also be aware that the
model structure of GLM matches the assumption of Pr(y =
1 | x) on the synthetic dataset, but the naïve model Pr(s = 1
| x, η = 1) does not satisfy the assumption of linear logistic
model anymore, so GLM is misspecified when it is used to fit
the naïve model, which is the reason why GLM_PBL produces
poor results on the synthetic dataset. Clearly, the advantage of
GLM is that it can produce relatively high accuracies for linearly
separable data, which might be the reason that GLM outperforms
ANN on classifying urban and grass with a small sample size
(Np = 200). By contrast, nonlinear models such as ANN and
CNN can deal with much more complex relationships, but they

usually require a larger training set, and it is necessary to tune
the regularization parameters as well. According to our test, it is
not necessary to strictly force Pmax = 1 by setting a large value
of ƛ. Instead, allowing Pmax to vary within a range (e.g., 0.9 ≤
Pmax ≤ 1) using a small value of ƛ is sufficient to produce good
results, and the default value ƛ = 0 is fine most of the time in
our experiments.

Learning a classifier without requiring labeled negative data is
beneficial in many applications [7], [8], [37]. Compared with the
positive class, the negative class is usually a mixture of many
diverse classes, and exhaustively labeling all of the classes is
labor-intensive and sometimes impossible. In the example of
mapping global snow cover, the in situ snow cover observation
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Fig. 10. Average binary classification maps of soil over ten random realizations of training sets. Classifiers were trained by PBL, PBLC, and PN. (a) GLM with
Np = 1000. (b) ANN with Np = 1000. (c) CNN with Np = 5000.

data provided by Global Surface Summary of Day product
only records the observed snow cover (labeled positive) with-
out recording observed snow absence (labeled negative) [23].
Although it is still possible to manually collect labeled negative
data in order to train a standard binary classifier, learning a clas-
sifier from positive and background data is much more efficient
for this one-class classification problem on a global scale. There
is another category of applications where users are not able
to observe reliable negative data, such as the wildland search
and rescue risk assessment [9]. In the brownfield redevelopment
assessment, historical observation data are used to train a model
to understand the relationship between redevelopment suitability
and relevant indicators (e.g., elevation, landscape fragmentation,

educational facility, transport accessibility, population, etc.), but
only positive samples are available in this urban renewal practice
[38]. Although we only test it using a synthetic dataset and aerial
photograph in this study, the proposed PBLC has the potential to
be applied in other one-class classification scenarios. And users
should be cautious about the validity of the model assumption
when it is applied in practice.

In the current work, we only implement PBLC using GLM,
ANN, and CNN as the first attempt, but other classifiers such as
SVM and random forest are also possible, which should be inves-
tigated in the future. Meanwhile, random sampling is a common
requirement for many statistical models, but observation data
are usually biased toward areas of high spatial accessibility,
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TABLE II
MODEL PERFORMANCES OF URBAN WITH DIFFERENT SAMPLE SIZES (Np)

OA: Overall accuracy. F: F-score. PA: Producer’s accuracy of positive class. UA: User’s accuracy of positive class. True class prior: Pr(y = 1) = 0.2292. True
constant: c = 0.4660. Bold values refer to averages. Italic values refer to standard deviations; GLM_PBL: A GLM model trained from positive and background
data using PBL; GLM_PBLC: A GLM model trained from positive and background data using PBLC; GLM_PN: A GLM model trained from positive and negative
data using standard approach; ANN_PBL: An ANN model trained from positive and background data using PBL; ANN_PBLC: An ANN model trained from
positive and background data using PBLC; ANN_PN: An ANN model trained from positive and negative data using standard approach; CNN_PBL: A CNN model
trained from positive and background data using PBL; CNN_PBLC: A CNN model trained from positive and background data using PBLC; CNN_PN: A CNN
model trained from positive and negative data using standard approach.

TABLE III
MODEL PERFORMANCES OF TREE WITH DIFFERENT SAMPLE SIZES (Np)

OA: Overall accuracy. F: F-score. PA: Producer’s accuracy of positive class. UA: User’s accuracy of positive class. True class prior: Pr(y = 1) = 0.2106. True
constant: c = 0.4871. Bold values refer to averages. Italic values refer to standard deviations; GLM_PBL: A GLM model trained from positive and background
data using PBL; GLM_PBLC: A GLM model trained from positive and background data using PBLC; GLM_PN: A GLM model trained from positive and negative
data using standard approach; ANN_PBL: An ANN model trained from positive and background data using PBL; ANN_PBLC: An ANN model trained from
positive and background data using PBLC; ANN_PN: An ANN model trained from positive and negative data using standard approach; CNN_PBL: A CNN model
trained from positive and background data using PBL; CNN_PBLC: A CNN model trained from positive and background data using PBLC; CNN_PN: A CNN
model trained from positive and negative data using standard approach.
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TABLE IV
MODEL PERFORMANCES OF GRASS WITH DIFFERENT SAMPLE SIZES (Np)

OA: Overall accuracy. F: F-score. PA: producer’s accuracy of positive class. UA: User’s accuracy of positive class. True class prior: Pr(y = 1) = 0.1880.
True constant: c = 0.5154. Bold values refer to averages. Italic values refer to standard deviations; GLM_PBL: A GLM model trained from positive and
background data using PBL; GLM_PBLC: A GLM model trained from positive and background data using PBLC; GLM_PN: A GLM model trained from
positive and negative data using standard approach; ANN_PBL: An ANN model trained from positive and background data using PBL; ANN_PBLC: An ANN
model trained from positive and background data using PBLC; ANN_PN: An ANN model trained from positive and negative data using standard approach;
CNN_PBL: A CNN model trained from positive and background data using PBL; CNN_PBLC: A CNN model trained from positive and background data
using PBLC; CNN_PN: A CNN model trained from positive and negative data using standard approach.

TABLE V
MODEL PERFORMANCES OF SOIL WITH DIFFERENT SAMPLE SIZES (Np)

OA: Overall accuracy. F: F-score. PA: Producer’s accuracy of positive class. UA: User’s accuracy of positive class. True class prior: Pr(y = 1) = 0.1023.
True constant: c = 0.6616. Bold values refer to averages. Italic values refer to standard deviations; GLM_PBL: A GLM model trained from positive and
background data using PBL; GLM_PBLC: A GLM model trained from positive and background data using PBLC; GLM_PN: A GLM model trained from
positive and negative data using standard approach; ANN_PBL: An ANN model trained from positive and background data using PBL; ANN_PBLC: An ANN
model trained from positive and background data using PBLC; ANN_PN: An ANN model trained from positive and negative data using standard approach;
CNN_PBL: A CNN model trained from positive and background data using PBL; CNN_PBLC: A CNN model trained from positive and background data
using PBLC; CNN_PN: A CNN model trained from positive and negative data using standard approach.
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and spatial uncertainties and outliers may exist as well [20],
[39]–[43]. For example, the wildland search and rescue incident
occurrence data of Yosemite National Park are georeferenced
from textual locality descriptions that are associated with large
uncertainties, so the georeferenced coordinate of a positive
sample point might be actually attached to a negative point
[44]. These issues may affect the model performance and how to
debias/denoise the observation data requires future research as
well. Furthermore, future research could consider introducing
a spatiotemporal autocorrelation of environmental variables to
improve model performance [45].

V. CONCLUSION

In this study, we propose a novel PBLC algorithm to address
the one-class classification problem in the case-control sampling
scenario. The algorithm trains a binary classifier from positive
and background data, with user-specified prior information on
the maximum value of posterior probability. Unlike PBL that
post-calibrates the trained model in a separate process, PBLC in-
fers the desired model directly in the one-step training with more
accurate estimates of model parameters. Using both synthetic
and real aerial photograph datasets, we show that PBLC can suc-
cessfully train linear and nonlinear classifiers including GLM,
ANN, and CNN, providing more accurate probabilistic and
binary predictions than the PBL algorithm. Without requiring la-
beled negative data, the proposed PBLC algorithm has the poten-
tial to solve one-class classification problems in relevant fields.
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