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Abstract—Spatiotemporal data fusion is an effective way of gen-
erating a dense time series with a high spatial resolution. Tradition-
ally, the spatiotemporal fusion models, especially the popular ones
such as the spatial and temporal adaptive reflectance fusion model,
require at least three images as input, i.e., a coarse-resolution image
on the target date and a pair of fine- and coarse-resolution images
on the reference date. However, this cannot always be satisfied, as
the high-quality coarse-resolution image on the reference date may
be unavailable in some application scenarios. This led to efforts to
achieve data fusion only using the other two images as input. In
this article, we proposed an effective strategy that can be combined
with any spatiotemporal fusion model to accomplish the fusion
with simplified input. To confirm the validity of the method, we
comprehensively compared the fusion performances under the two
input modalities. In total, 38 tests were conducted with Moderate
Resolution Imaging Spectroradiometer (MODIS), Landsat, and
Sentinel-2 land surface reflectance products. Results suggest that
by applying the proposed method, the fusion performance with
only two input images is comparable or even superior to that
with three input images. This article challenges the stereotype
that spatiotemporal data fusion strictly needs at least three input
images. The proposed method extends the application scenarios
of spatiotemporal fusion, and creates opportunities to fuse sensors
with barely overlapping temporal coverages, such as the Landsat
8 Operational Land Imager and the Sentinel-2 MultiSpectral In-
strument.

Index Terms—Landsat 8, Moderate Resolution Imaging
Spectroradiometer (MODIS), Sentinel-2, simplified input modality,
spatiotemporal data fusion, two input images.

I. INTRODUCTION

DUE to the tradeoff between the swath width and revisit
frequency, space-borne remote sensors have to emphasize

either the spatial resolution or the temporal resolution, but not
both at the same time. The satellite imagery, as a consequence,
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cannot record the Earth’s surface information simultaneously at
a fine spatial resolution and a dense temporal frequency [1]–[3].
Acquisitions from medium-resolution sensors, such as the Land-
sat 8 Operational Land Imager (OLI) and the Terra Advanced
Spaceborne Thermal Emission and Reflection Radiometer, have
a sub-100-m spatial resolution, but their repeat cycles normally
last longer than 10 days. In contrast, although low-resolution
sensors, such as the Terra/Aqua Moderate Resolution Imaging
Spectroradiometer (MODIS) and the NOAA Advanced Very
High-Resolution Radiometer, deliver imagery at a daily basis,
the spatial resolution of over hundreds or even thousands of
meters cannot fully reflect the spatial details, especially over
heterogeneous landscapes. To overcome the limitation, the con-
cept of spatiotemporal data fusion has been put forward [4],
[5]. This technique fuses satellite imagery from two sensors
with similar spectral band specification, and the synthetic time
series simultaneously keeps 1) finer spatial resolution of the
two sensors and 2) integrated temporal resolution from the two
sensors. It shows great potential to meet the increasing demand
for observing and monitoring the Earth’s surface at fine spatial
and temporal scales [6]–[9].

Traditionally, spatiotemporal data fusion combines observa-
tions from two sensors with complementary spatial and temporal
resolutions, one with fine spatial resolution but sparse revisit
frequency (e.g., 16-day 30-m Landsat OLI/ETM+ imagery)
and the other with dense frequency but coarse resolution (e.g.,
daily 500-m Terra/Aqua MODIS imagery), so as to integrate the
advantageous resolution from the two sensors and synthesize the
fine-resolution dense time series (e.g., daily 30-m Landsat-like
imagery). Great achievements have been made in developing
fusion methods over the past decade. Generally, the current
models can be categorized into four groups: 1) weight-function-
based (or filter-based) methods [10], [11]; 2) unmixing-based
methods [12], [13]; 3) Bayesian-based methods [14], [15]; and 4)
learning-based methods [16], [17]. The weight-function-based
group applies a linear model to describe the relationship between
multisource observations over pure coarse-resolution pixels, and
further uses a weighting strategy to enhance the prediction
over mixed pixels [18], [19]. Among this group, the spatial
and temporal adaptive reflectance fusion model (STARFM) [5]
is the most popular approach, and extended versions based
on STARFM include the enhanced STARFM [20], the spatial
and temporal nonlocal filter-based fusion model (STNLFFM)
[21], and the fit-FC method [22]. The unmixing-based group
uses the spatial unmixing technique for fusion, in which the
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Fig. 1. Spatiotemporal fusion under the two input modalities. (a) Normal input
modality. (b) Simplified input modality.

fine-resolution end members are estimated by unmixing the
coarse-resolution pixels using the class fractions interpreted
from the reference image [23]. Following the framework pre-
sented by Zhukov et al. [4], the improved models include
the spatial and temporal reflectance unmixing model [12] and
the flexible spatiotemporal data fusion model (FSDAF) [13]. In
the Bayesian-based group, spatiotemporal fusion is considered
as a maximum a posteriori (MAP) problem, and the fusion
results are produced by maximizing the conditional probability
relative to the input and output. For example, as an ideal mathe-
matical framework, the total variation model has been employed
for data fusion [10], [15]. The learning-based group builds the
relationship between the input and output by utilizing the recent
advances in machine learning, including sparse representation
[24], [25], extreme learning machine [26], random forest [27],
and convolutional neural network [28], [29]. In addition to
the above four mainstream groups, several studies conduct the
spatiotemporal fusion task by exploring other techniques such
as wavelet transformation [30]. It is also worth noting that some
researches exploit multisensor satellite imagery to generate ho-
mogeneous time series [31], [32] or map land cover types [33],
[34]. Although the solutions differ from the models described
earlier regarding the research task (e.g., land cover mapping
[33]) and the input requirement (e.g., strictly requiring sensors
to have similar spatial resolutions [31]), they are associated to
the spatiotemporal fusion and represent a much broader research
concept. Overall, owing to the ability to integrate the spatial and
temporal resolutions from multiple sensors, the spatiotemporal
data fusion models have been applied to solve a variety of
missions, including monitoring crop growth conditions [35], [6],
estimating carbon storage [36], [37], characterizing the urban
thermal environment [38], [39], and mapping flood and wildfire
events [40], [41].

It has become an implicit consensus that at least three im-
ages are required as input for spatiotemporal data fusion [see
Fig. 1(a)], i.e., a coarse-resolution image on the target date and
a pair of fine- and coarse-resolution images on the reference
date, so as to synthesize the fine-resolution image on the target
date. Nevertheless, a high-quality coarse-resolution image on the
reference date cannot be collected in some application scenarios.
As a result, the current fusion models, especially the popular

ones, cannot accomplish the fusion task. On one hand, data from
two sensors with barely overlapping temporal coverage cannot
be fused by these models. For example, ideally, imagery from
the Sentinel-2 MultiSpectral Instrument (MSI) and the Landsat
8 OLI can be synergistically used to produce 10-m time series
at a nominal frequency of 2–3 days [42], [43]. But, the Landsat
mission has a long revisit cycle of 16 days, and it, in most cases,
cannot offer temporally matching counterparts to the collected
reference Sentinel-2 images. Although an extended timespan
between the reference and target dates helps to identify the
matching image pairs, it has been reported to result in degraded
fusion performance [21]. On the other hand, there are chances
that although the coarse-resolution image on the reference date
can be collected, it may suffer from degraded quality. For in-
stance, in the MODIS–Landsat fusion applications, the collected
MODIS image may have cloud contamination on the reference
date [44], as clouds possibly move during the half-an-hour
interval between MODIS and Landsat acquisitions. Also, the
strong angular effect can be another factor to degrade the quality
of MODIS images [45]. In such cases, using the low-quality
observations as an input component would incorporate signif-
icant errors in the fused results. To solve the problem, a few
studies have attempted to accomplish the spatiotemporal fusion
with only two images as input, as illustrated in Fig. 1(b). For
example, Fung et al. [46] proposed the Hopfield neural network
spatiotemporal data fusion model, which supports the input of
two images; and Wang et al. [42] and Shao et al. [47] specialized
in fusing Landsat 8 and Sentinel-2 observations and developed
the fusion models specifically for these two sensors.

For convenience, in this article, the fusion process with three
input images [see Fig. 1(a)] is called “normal input modality”
or “normal version,” while the process with only two input
images [see Fig. 1(b)] is called “simplified input modality”
or “simplified version.” In this article, we have proposed an
effective strategy that can enable the spatiotemporal fusion under
simplified input modality. To be specific, by combining with
any spatiotemporal fusion model (e.g., STARFM), the proposed
strategy can accomplish the fusion task in the scenarios where
only two input images are available. Unlike the previous studies
targeting specific sensor combinations [47], the strategy works
with great universality. Besides, given that previous studies have
never compared the fusion performance under the two input
modalities, we have comprehensively tested and analyzed this
point based on the proposed strategy in this article. In the rest
of this article, we introduce the proposed method in Section II,
describe the experimental setup and test dataset in Section III,
present the experimental results and discussions in Section IV,
and summarize the findings and contributions of this study in
Section V.

II. METHOD

A. Basic Idea of the Proposed Method

The previous spatiotemporal fusion models (e.g., STARFM)
are developed based on the normal input modality, i.e., requiring
model input of a coarse-resolution image on the target date and
a pair of fine- and coarse-resolution images on the reference
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TABLE I
BAND SPECIFICATIONS OF TERRA/AQUA MODIS, LANDSAT 8 OLI, AND

SENTINEL-2 MSI IN THE SIX BANDS ACROSS THE VISUAL, NEAR-INFRARED,
AND SHORT-WAVE INFRARED SPECTRUM

date. In this article, we aim to carry out the spatiotemporal
fusion under the simplified input modality, i.e., using a coarse-
resolution image on the target date and a fine-resolution image
on the reference date as input. Given the technical sophistication
and wide acceptance of the previous models, it would be an
interesting idea to generate a simulated coarse resolution image
on the reference date on our own, so as to use the previous models
for the fusion task. Fortunately, the multisensor observations
used in spatiotemporal fusion usually present high radiometric
consistency, providing the basis for implementing the above
idea. As described in [5], [20], the satellites imagery from multi-
ple optical sensors used for data fusion are highly consistent and
comparable. For instance, the three data sources in this article
(Aqua/Terra MODIS, Landsat 8 OLI, and Sentinel-2 MSI) show
a band-to-band correspondence in the six bands across the visi-
ble, near-infrared, and short-wave infrared spectrum, as reported
in Table I. The similar bandwidth specifications further lead to
a high level of radiometric consistency among the observations,
as confirmed by previous studies [48], [49]. As a result, if the
geolocation errors and slight radiometric differences are ignored,
the coarse-resolution image can be approximately considered as
a degraded observation of the fine-resolution image on the same
date. In this case, if the high-quality coarse-resolution image
on the reference date cannot be collected, we can generate a
simulated image by imposing an image degradation process on
the corresponding fine-resolution image. The simulated image is
then fed into any existing fusion model (e.g., STARFM), along
with the two input images, and the spatiotemporal fusion task
can be completed.

B. Description of the Proposed Method

Before describing the details of the proposed method, some
notations and definitions are given for convenience. F and C
denote the fine-resolution and coarse-resolution observations,
respectively; and tk and tp are the reference date and the target
date, respectively. Under the normal input modality, in order
to produce the fine-resolution image Ftp on the target date, the
coarse-resolution image Ctp on the target date and the fine- and
coarse- resolution image pair Ftk and Ctk on the reference date
are needed as input. Given the fact that the coarse-resolution
image Ctk on the reference date is potentially unavailable in
some application scenarios, the proposed method is aimed at
implementing the fusion under the simplified input modality,
i.e., with the two images Ftk and Ctp as input. To enable the

simplified version of spatiotemporal fusion, a simulated image
C ′

tk
is derived as the analog of the potentially unavailable image

Ctk . As mentioned before, due to the similar band specifications
between the two sensors to be fused, the multisensor observa-
tions show high overall consistency. Therefore, we can generate
a simulated coarse-resolution image on the reference date C ′

tk
by imposing an image degradation process on the fine-resolution
image Ftk . The image degradation model involves complicated
steps to downsample the fine-resolution image to the coarse
spatial resolution. In this article, we consider the two parts:
pixel aggregation and image blurring. The pixel aggregation
step is performed on the fine-resolution image Ftk , so as to
coordinate its spatial resolution to the coarse resolution. In
the implementation, the fine-resolution pixels within the extent
of each coarse-resolution pixel are averaged as the simulated
coarse-resolution pixel [48]. Mathematically, the pixel aggrega-
tion step can be formulated as

C ′
tk

(x, y) =
1

m
×

m∑

i=1

Ftk (xi, yi) (1)

where (x, y) is the coordinate index of a coarse-resolution pixel,
and (xi, yi) is the index of the ith fine-resolution pixel within
the extent of the coarse-resolution pixel. m is the number of
fine-resolution pixels within the coarse-resolution pixel. For the
special cases that spatial resolution gap between the two sensors
is not an integer, the fine-resolution pixels within a coarse-
resolution pixel do not equally contribute to the aggregated
coarse-resolution pixel. Instead, they are weighted according
to their overlapping area in the extent of the coarse-resolution
pixel. The image blurring step is also considered in the method.
Note that although incorporating this step helps to simulate the
image degradation process in the real scenarios, it may cause
the over-smoothness of the simulated coarse-resolution image.
Therefore, the inclusion of this step depends on experimental
results. In this article, we applied a 3 × 3 Gaussian kernel
with a standard deviation of 1.0 to blur the aggregated image,
and test results suggested the image blurring step improved the
fusion performance for MODIS–Landsat fusion, but decreased
the performance for Landsat–Sentinel fusion. This is probably
due to the remarkably different zoomed-in scale factor of spatial
resolution (about 16 times vs. 3 times) in the two cases. In the
following experiment, the image blurring step is employed for
the MODIS–Landsat tests, but not for the Landsat–Sentinel tests.

Although the radiometric consistency is overall high, the
spectral bandwidth shows slight differences between sensors,
inevitably resulting in small observation bias between the mul-
tisensor observations. The modeling of some fusion methods
relates to the observation bias. For example, STARFM assumes
the small bias to be stable on the reference and target dates
[5], and FSDAF assumes the bias to be reduced by applying
a radiometric normalization procedure [13]. In this case, if we
directly use the simulated image for fusion, theoretically, the
small observation bias would exist on the target date, but not
on the reference date. In order to satisfy the above assumptions
relating to the observation bias, the coarse-resolution image on
the target date should be adjusted to eliminate the observation
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Fig. 2. Flowchart of the developed method.

bias. Therefore, a relative radiometric correction procedure is
embedded in the proposed method. The procedure works in a
local way. As reported in [48], [49], for a given pixel location,
a linear relationship can be assumed between the different data
sources:

C ′
tp

(x, y) = a× Ctp (x, y) + b (2)

where C ′
tp

represents the corrected coarse-resolution image. a
and b are the slope and intercept coefficients, respectively, which
characterize the systematic transformation between the two data
sources. The two coefficients can be obtained by linearly regress-
ing a collection of coincident observations from the two sensors.
Note that the fine-resolution imagery has to be resized to the
coarse resolution to eliminate the impact of the different spatial
resolutions. In this article, for the MODIS–Landsat fusion, as
the coefficients may vary slightly from locations, we used all
the collected coincident image pairs over the study region to
estimate the coefficients and applied a 5 × 5 window for each
location to ensure the local adjustment. For the Landsat–Sentinel
fusion, the barely overlapping acquisition dates of the two
satellites led to a small number of coincident observations over
the study region, which significantly reduced the robustness of
the estimated coefficients. Thus, the coefficients in Zhang et al.
[49] based on a continental-scale assessment were employed.
After performing the radiometric correction, the fine-resolution
image Ftk , the simulated coarse-resolution image C ′

tk
, and the

corrected coarse-resolution image C ′
tp

were fed into the spa-
tiotemporal fusion model to produce the synthetic image on the
target date. The flowchart of the developed method is shown in
Fig. 2.

C. Three Spatiotemporal Fusion Models

In practical applications, the proposed strategy has to be
combined with an existing spatiotemporal fusion model to ac-
complish the fusion task. The three popular fusion models,
namely, STARFM, STNLFFM, and FSDAF, were employed
in the research. This section briefly introduces them. For more
details, please refer to Gao et al. [5], Cheng et al. [21], and Zhu
et al. [13].

1) STARFM: In STARFM, it is assumed that the small mul-
tisensor observation bias remains stable over a pure coarse-
resolution pixel during the acquisition interval. Accordingly,
an unknown fine-resolution pixel on the target date can be
estimated as the sum of the corresponding coarse-resolution
pixels on the same date and the observation bias on the reference
date. To enhance the prediction accuracy over mixed pixels,
the neighboring similar pixels of the same land-cover type are
combined based on a weighting scheme. The STARFM model
is mathematically depicted as

Ftp (x, y) =

n∑

j=1

w (xj , yj)×
[
Ctp (xj , yj)

+ Ftk (xj , yj)− Ctk (xj , yj)] (3)

where (x, y) and (xj , yj) are the coordinate indices of the central
pixel and the jth neighboring similar pixel around the central
one. n is the number of similar pixels for prediction. w(xj , yj)
is the weight of the jth similar pixel, which is determined by
the spectral similarity, the temporal difference, and the spatial
distance between the jth similar pixel and the central pixel.

2) STNLFFM: STNLFFM is an improved version of
STARFM. It follows the basic framework of STARFM, but
presents differences in the fundamental assumption, the weight
assignment, and the procedure of identifying similar pixels.
In STNLFFM, it is assumed that the temporal change of land
surface between the multitemporal observations is constant for
the different sensors, and thus the model derived from the
coarse-resolution sensor can be applied to the fine-resolution
one. The similar pixel information is also integrated to ease
the influence of the spatial resolution gap. Mathematically, the
STNLFFM model is formulated as

Ftp (x, y) =

n∑

j=1

w (xj , yj)

× [g (xj , yj)× Ftk (xj , yj) + h (xj , yj)] (4)

where (x, y) and (xj , yj) are in the same definition as in
STARFM. g(xj , yj) and h(xj , yj) are the linear coefficients
characterizing the temporal change of the jth similar pixel, and
they can be estimated by linearly regressing the similar pixels
recorded in the two coarse-resolution images. w(xj , yj) is the
weight of the jth similar pixel.

3) FSDAF: FSDAF combines the unmixing-based frame-
work and the weighted-function-based framework to capture
both the gradual and abrupt land-cover type changes. It generates
the fused results based on the three steps as follows:

1) The temporal changes recorded by the coarse-resolution
pixels are unmixed to obtain the fine-resolution temporal
change of each class.

2) The residuals in the first step are distributed to the fine
resolution for improving the fusion accuracy.

3) The neighboring similar pixels are integrated to eliminate
the block artifacts and enhance the prediction robustness.
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The FSDAF model is mathematically described as

Ftp (x, y) = Ftk (x, y) +
n∑

j = 1

w (xj , yj)

× [ΔF (c) + r (xj , yj)] (5)

where (x, y) and (xj , yj) are in the same definition as in
STARFM. ΔF (c) is the temporal change of the land-cover class
c, noting that the pixel at (xj , yj) belongs to the class c. r(xj , yj)
is the residual distributed to the jth similar pixel.w(xj , yj) is the
weight of the jth similar pixel, which is measured based on the
spatial distance between the target pixel and the similar pixel.

III. EXPERIMENTAL SETUP AND TEST DATA

A. Experimental Setup

To validate the effectiveness of the proposed strategy, we com-
pare the fusion performances of the same model under the two
input modalities. If the simplified version achieves comparable
or even superior performance to the normal version, the validity
of the method can be confirmed. To be specific, in each test, we
collect the four images, i.e., the two image pairs on the reference
date and the target date, respectively. The coarse-resolution
image on the target date and the image pair on the reference
date is used as model input: the normal version uses all the
three images as input, while the simplified version uses only
two input images. The fused results under two input modalities
are evaluated against the observed fine-resolution image on the
target date to reveal the fusion performance.

In the following experiments, the two kinds of scenarios are
investigated. In the first scenario (i.e., scenario 1), the high-
quality coarse-resolution image can be collected on the reference
date. In the second scenario (i.e., scenario 2), we can collect the
coarse-resolution image on the reference date, but the collected
image is of low quality, i.e., suffering from cloud contamina-
tion or significant inconsistency as compared to the coincident
fine-resolution image due to the mismatched temporal coverage.
The difference between the two scenarios is that the collected
coarse-resolution images on the reference dates are of good
quality in scenario 1, while they are of low quality in scenario
2. In this article, we conducted 38 tests in total, among which
26 tests (i.e., 24 MODIS–Landsat tests and 2 Landsat–Sentinel
tests) are grouped into scenario 1, and 12 tests (i.e., 2 MODIS–
Landsat tests and 10 Landsat–Sentinel tests) are grouped into
scenario 2.

B. Data Description

Two fusion choices were investigated in this article: MODIS–
Landsat fusion and Landsat–Sentinel fusion. Detailed descrip-
tions of the experimental materials are given as follows.

1) Fusion of Terra MODIS and Landsat 5 TM Observations:
The time-series dataset provided by Emelyanova et al. [50],
which has been widely used in data fusion research [13], [16],
was employed in this article. The study area is located in
the Lower Gwydir Catchment in northern New South Wales,
Australia. The dataset is made up of 14 pairs of coincident

TABLE II
SPATIAL LOCATION AND ACQUISITION DATES OF THE TEST MATERIALS

MODIS–Landsat images, and the details on the data locations
and acquisition dates are given in Table II. All the Landsat
images were acquired by the Thematic Mapper (TM) instrument
onboard Landsat 5 and were atmospherically corrected by the
algorithm developed by Li et al. [51]. The MODIS images were
collected from the MOD09GA Collection 6 daily reflectance
products and were reprojected and resampled to the projection
and spatial resolution of the Landsat observations. Two subset
regions were used for the experiments, with each region covering
1000 × 1000 pixels at the spatial resolution of the Landsat
observations. In each region, 14 MODIS–Landsat image pairs
were ordered chronologically, and the two adjacent pairs formed
a dataset for the follow-up tests, with the former date as the
reference and the latter date as the target. As a result, 26 tests in
total were performed in the two regions. By visually checking the
test materials, we found that in most tests, the MODIS images on
the reference dates showed good quality, but the MODIS image
on August 6, 2004, was partly contaminated by cloud cover (the
Landsat image on the same date is cloud-free). According to the
criterion to categorize the two scenarios, the two tests with Au-
gust 6, 2004, as the reference date were grouped into scenario 2,
while the rest 24 tests were grouped into scenario 1.

2) Fusion of Landsat 8 OLI and Sentinel-2 MSI Observa-
tions: The study site is located at Zhumadian, Henan province,
China. Due to the 16-day revisit cycle of the Landsat 8 satellite,
normally, we cannot find the matching counterparts on the same
date as the collected Sentinel-2 MSI observations. For example,
only one matching pair without cloud cover was collected in
2017 if the strict condition was applied. In order to obtain
more materials, the image pairs acquired with an interval of
fewer than 3 days were considered acceptable. Four cloud-free
image pairs in total were collected for 2017, and the acquisition
dates of the test images are shown in Table II. The Landsat
observations were collected as surface reflectance products. The
Sentinel-2 observations were downloaded as Level 1C product,
and they were atmospherically corrected by the Sen2Cor plugin
developed by the European Space Agency to derive surface
reflectance products. As in the previous case, two subset regions
were used for the tests, with each region covering 1000 ×
1000 pixels at a 10-m spatial resolution. In each region, the
four collected image pairs were ordered chronologically, and
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any two pairs were combined as a test dataset, with the former
date as the reference and the latter date as the target. In total,
we have performed 12 tests over the two regions. A detailed
visual examination indicated that the image pairs from July
and September presented significant differences characterized as
phenological or land-cover changes occurring during the 3-day
interval, and thus the Landsat images from July and September
should be considered as low-quality matching counterparts to
the Sentinel-2 images. According to the criterion to categorize
the two scenarios, the 10 tests using the image pairs in July and
September as reference were grouped into scenario 2, while the
rest two tests were group into scenario 1.

It should be noted that the SWIR bands of Sentinel-2 images
are at the 20-m spatial resolution, and ideally, they should
be downscaled to 10 m before performing the spatiotemporal
fusion. But given the fact that applying the downscaling method
would introduce additional uncertainty, we directly fused and
evaluated the SWIR bands at the 20-m spatial resolution in
this article. This helps to directly reveal the fusion performance
without incorporating effects from the downscaling step.

C. Model Parameter Setup and Computational Time

Three spatiotemporal fusion models, namely, STARFM,
STNLFFM, and FSDAF, were employed in the experimental
analysis, due to their wide acceptance and program availability.
In this article, the model parameters were optimized through
trial-and-error tests. For the MODIS–Landsat fusion, the win-
dow sizes in STARFM, STNLFFM, and FSDAF were set to 21,
41, and 41, respectively. The cluster number in STARFM and
FSDAF was set to 7 based on a visual interpretation. For the
Landsat–Sentinel fusion, due to the close spatial resolutions,
the window sizes were set small, as 7, 13, and 13 for the
three models, respectively. The cluster number in STARFM and
FSDAF was set to 8.

The computational time varies among the three models, since
they are implemented with different programming environment.
But notice that, for the same model, 1) the simplified version
usually requires about two more seconds than the normal ver-
sion, due to the additional processing steps of image degradation
and radiometric correction (e.g., for a MODIS–Landsat fusion
test based on STNLFFM, normal version vs. simplified version:
51 vs. 53 s); and 2) the computational efficiency is higher for
the sensor combination choice with close spatial resolutions than
that with considerably contrasting resolutions, because a smaller
window size can be set for the sensor combination choice with
closer spatial resolutions (e.g., for normal version of STNLFFM,
a MODIS–Landsat fusion test vs. a Landsat-Sentinel fusion test:
51 vs. 7 s).

D. Quality Evaluation of the Fused Results

The fused results are evaluated against the collected fine-
resolution images on the target dates visually and quantitatively.
The visual comparison checks the consistency between the fused
results and the observed images. The quantitative assessment is
performed by adopting the five widely used metrics: the mean
absolute error (MAE), the root-mean-square error (RMSE), the

Fig. 3. Observed and simulated coarse-resolution images (NIR, red, and green
bands as RGB). (a)–(c) Observed Landsat image, the simulated MODIS image,
and the observed MODIS image on December 28, 2004, respectively. (d)–(f)
Images on March 2, 2005, displayed in the same order as the previous case.
(g)–(i) Observed Sentinel image, the simulated Landsat image, and the observed
Landsat image on October 30, 2017, respectively.

correlation coefficient (CC), the spectral angle mapper (SAM),
and the structural similarity index (SSIM). Among the five
measures, MAE and RMSE measure the overall radiometric
difference between the simulated image and the observed image,
CC shows their degree of correlation, SAM assesses the spectral
distortion of the fused result from the spectral fidelity aspect, and
SSIM shows the similarity of the spatial structures between the
fusion result and the observed image. The ideal values of MAE,
RMSE, SAM, CC, and SSIM are 0, 0, 0, 1, and 1, respectively.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

A. Comparison Between the Simulated and Observed
Coarse-Resolution Images

Are the simulated coarse-resolution images on the reference
dates highly consistent with the corresponding observed images?
This is the basis of determining whether or not the proposed
strategy can be applied. The collected images, including the
MODIS–Landsat pairs and the Landsat–Sentinel pairs, were
used for the validation. By applying the proposed strategy,
we can generate a simulated coarse-resolution image, and the
simulated images are then evaluated against the observed ones.
As described in Section III-B, the observed coarse-resolution
images in some datasets suffered from cloud contamination or
land surface changes, so they were unsuitable as the evaluation
standard and excluded from the evaluation. Fig. 3 illustrates the
results of three tests, including two MODIS–Landsat pair tests
and one Landsat–Sentinel pair test. The acquisition dates of the
three image pairs are December 28, 2004; March 2, 2005; and
October 30, 2017, respectively. The results indicate that, overall,
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TABLE III
QUANTITATIVE ASSESSMENT OF THE MODIS–LANDSAT TEST AND THE LANDSAT–SENTINEL TEST

TABLE IV
QUANTITATIVE EVALUATION OF THE THREE TESTS IN SCENARIO 1

TABLE V
AVERAGED QUANTITATIVE RESULTS AMONG THE 24 MODIS–LANDSAT

FUSION TESTS IN SCENARIO 1

the simulated coarse-resolution images [see Fig. 3(b), (e), and
(h)] present close radiometric characteristics and spatial patterns
to the observed coarse-resolution images [see Fig. 3(c), (f), and
(i)], confirming their high similarity. It should be noted that,
although the observed coarse-resolution images are employed
as the evaluation standard, they are not perfect standards as there
exist slight intrinsic spectral differences due to bandwidth dif-
ferences between two sensors. Therefore, the simulated images
present similar spectral visual effects to the observed one, but
not completely the same.

In addition, the simulated images were quantitatively assessed
against the observed ones by the measures of MAE, RMSE,
and CC. The linear fit between the simulated images and the
observed images was also developed for all the included tests
in the two sensor combination choices by using ordinary least-
squares regression. The evaluation results are listed in Table III.
In the MODIS–Landsat case, the simulated MODIS images are
highly correlated with the observed MODIS images, with CC
values ranging from 0.8711 to 0.9256 in the six bands. The
linear fit between the simulated and observed MODIS images
falls around the ideal 1:1 line, and the regression in six bands is
highly significant (p-value < 0.0001), revealing the goodness of
fit. In the Landsat–Sentinel case, all bands except for the blue

TABLE VI
QUANTITATIVE EVALUATION OF THE THREE TESTS IN SCENARIO 2

TABLE VII
AVERAGED RESULTS OF THE QUANTITATIVE EVALUATION AMONG THE 10

LANDSAT–SENTINEL FUSION TESTS IN SCENARIO 2

one show high consistency. The blue band presents a certain
degree of inconsistency, with a lower CC value of 0.7353 and a
departure of the linear fit from the ideal 1:1 line. Possibly, this
is caused by the bits of thin clouds in the scenes, and the blue
band is more vulnerable to the cloud effect than the other bands
due to its shorter wavelength. Overall, the proposed strategy can
produce a simulated coarse-resolution image that is consistent
and comparable to the observed one, providing the chances to
adopt the simplified versions of spatiotemporal fusion.

B. Evaluation in Scenario 1

This section is aimed at comparing the spatiotemporal fusion
performance under the two input modalities in scenario 1, in
which the high-quality coarse-resolution image can be collected
on the reference date. We have conducted 26 tests in total,
including 24 MODIS–Landsat tests and two Landsat–Sentinel
tests. In each test, we generated the fused results under the
two input modalities, respectively. As the three models were
employed, in each test, we generated six fused results totally
(i.e., three results under the normal input modality and three
results under the simplified input modality).

To visually assess the fusion performance, the results of three
tests are shown in Figs. 4 –6, including two MODIS–Landsat
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Fig. 4. Test data and fused results in the MODIS–Landsat fusion test (NIR, red, and green bands as RGB). The target date and the reference date are January
13, 2005, and December 28, 2004, respectively. (a)–(d) Observed MODIS and Landsat images on the reference date and the target date, with (d) used as the
evaluation standard. (e)–(j) Fused results under the two input modalities. (a) MODIS (reference). (b) Landsat (reference). (c) MODIS (target). (d) Landsat (target).
(e) STARFM (normal). (f) STARFM (simplified). (g) STNLFFM (normal). (h) STNLFFM (simplified). (i) FSDAF (normal). (j) FSDAF (simplified).

Fig. 5. Test data and fused results in the MODIS–Landsat fusion test (NIR, red, and green bands as RGB). The target date and the reference date are November
26, 2004 and October 25, 2004, respectively. (a)–(d) Observed MODIS and Landsat images on the reference date and the target date, with (d) used as the evaluation
standard. (e)–(j) Fused results under the two input modalities. (a) MODIS (reference). (b) Landsat (reference). (c) MODIS (target). (d) Landsat (terget). (e) STARFM
(normal). (f) STARFM (simplified). (g) STNLFFM (normal). (h) STNLFFM (simplified). (i) FSDAF (normal). (j) FSDAF (simplified).

tests and one Landsat–Sentinel test. The target dates in the three
tests are January 13, 2005 (using December 28, 2004, as the
reference date), November 26, 2004 (using October 25, 2004,
as the reference date), and December 19, 2017 (using October
30, 2017, as the reference date). The visual comparison in Fig. 4
reveals that as compared with the observed Landsat image in
Fig. 4(d), the fused results in Fig. 4(e)–(j) are generally consis-
tent, but with slight spectral distortion. The fused images under
the simplified input modality in Fig. 4(f), (h), and (j) closely
resemble those under the normal input modality in Fig. 4(e), (g),
and (i), indicating that the simplified version of spatiotemporal
fusion can generate comparable results to the normal version.
The visual comparison in Figs. 5 and 6 reveals the same finding
that in scenario 1, the fused images under the simplified input
modality are comparable to the results under the normal input

modality. By taking STNLFFM as an example, Table IV reports
the quantitative results of the three tests. In the former two
tests, the normal version slightly outperforms the simplified
version, while in the latter test, the simplified version performs
slightly better. But, in general, the differences between the two
input modalities are insignificant, as the values of quantitative
measures vary in a very small extent.

The quantitative evaluation was performed on the 24 MODIS–
Landsat fusion tests to comprehensively assess the fusion
performance in scenario 1. By taking the STNLFFM model as
an example, Fig. 7 shows the MAE values and the SSIM values of
the fused images among the 24 tests. It can be found that, in more
than half of these tests, the normal version of spatiotemporal
fusion obtains lower MAE values and higher SSIM values,
as compared with the simplified version, but, on average, the
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Fig. 6. Test data and fused results in the Landsat–Sentinel fusion test (NIR, red, and green bands as RGB). The target date and the reference date are December 19,
2017 and October 30, 2017, respectively. (a)–(d) Observed Landsat and Sentinel-2 images on the reference date and the target date, with (d) used as the evaluation
standard. (e)–(j) Fused results under the two input modalities. (a) Landsat (reference). (b) Sentinel (reference). (c) Lansat (target). (d) Sentinel (target). (e) STARFM
(normal). (f) STARFM (simplified). (g) STNLFFM (normal). (h) STNLFFM (simplified). (i) FSDAF (normal). (j) FSDAF (simplified).

Fig. 7. Quantitative descriptions in terms of MAE and SSIM in the 24 MODIS–
Landsat fusion tests. The STNLFFM model is taken as an example. The dashed
line shows the mean value among the 24 tests. The order of the 24 tests in the
horizontal axis is reorganized: the closer to the left part, the more the normal
version outperforms the simplified version, and vice versa.

simplified versions show comparable performance to the normal
versions (MAE: 0.0196 vs. 0.0193; SSIM: 0.8726 vs. 0.8695).
Table V lists the averaged quantitative descriptions among
the 24 tests. Overall, a similar tendency is shown in the three
models, i.e., although less input data is used, the simplified
version of spatiotemporal fusion obtains even slightly better
performance than the normal version. For example, by adopting

the simplified version, SAM is decreased by 0.0503–0.4914,
and CC is increased by 0.0035–0.0149. As a result, it can
be concluded that by using the proposed strategy, the fusion
performance with only two input images is comparable to or
even slightly superior to that with three input images.

C. Evaluation in Scenario 2

This section is aimed at comparing the fusion performance
under the two input modalities in scenario 2, in which although
we can get the coarse-resolution image on the reference date,
the collected data is of low quality. In total, the 12 tests have
been conducted, including two Landsat–MODIS tests and 10
Landsat–Sentinel tests. As in the previous section, we generated
the fused results under the two input modalities and then assessed
the quality of fused results visually and quantitatively.

Figs. 8–10 display the data in the three tests, including one
MODIS–Landsat test and two Landsat–Sentinel tests. In Fig. 8,
the observed MODIS image on the reference date is partly
contaminated by clouds, and thus it is considered low-quality
input. In the two Landsat–Sentinel tests shown in Figs. 9 and
10, due to the 16-day revisit cycle of the Landsat mission, we
cannot have the Landsat observations acquired exactly on the
reference dates. Instead, the Landsat images on the neighboring
dates are collected. However, the collected Landsat images
present distinct inconsistency to the corresponding Sentinel-2
images on the reference dates [e.g., see the regions marked
in yellow in Fig. 9(a) and (b)], which is characterized as the
land surface change due to the mismatched acquisition dates,
and thus, they are also considered low-quality input. As the
low-quality coarse-resolution image on the reference date is
incorporated as the input component, the normal version of
spatiotemporal fusion yields fused results with significant errors.
For instance, as compared with the observed Sentinel-2 image in
Fig. 9(d), the fused images under the normal input modality show
distinct spectral distortion. Conversely, the simplified version of
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Fig. 8. Test data and fused results in the MODIS–Landsat fusion test (NIR, red, and green bands as RGB). The target date and the reference date are August 22,
2004 and August 6, 2004, respectively. (a)–(d) Observed MODIS and Landsat images on the reference date and the target date, with (d) used as the evaluation
standard. (e)–(j) Fused results under the two input modalities. (a) MODIS (reference). (b) Landsat (reference). (c) MODIS (target). (d) Landsat (target). (e) STARFM
(normal). (f) STARFM (simplified). (g) STNLFFM (normal). (h) STNLFFM (simplified). (i) FSDAF (normal). (j) FSDAF (simplified).

Fig. 9. Test data and fused results in the Landsat-Sentinel fusion test (NIR, red, and green bands as RGB). The target date and the reference date are October
10, 2017, and September 15, 2017, respectively. (a) Observed Landsat image on September 15, 2017. (b) Observed Sentinel image on September 12, 2017. (c)–(d)
Observed Landsat and Sentinel images on October 10, 2017, with (d) used as the evaluation standard. (e)–(j) Fused results under the two input modalities. (a)
Landsat (reference). (b) Sentinel (reference). (c) Landsat (target). (d) Sentinel (target). (e) STARFM (normal). (f) STARFM (simplified).(g) STNLFFM (normal).
(h) STNLFFM (simplified). (i) FSDAF (normal). (j) FSDAF (simplified).

spatiotemporal fusion avoids the above problem by using only
two input images, and accordingly, the results [see Fig. 9(f),
(h), and (j)] generally conform with the observed fine-resolution
image on the target date [see Fig. 9(d)]. By taking FSDAF as
an example, Table VI reports the quantitative descriptions under
the two input modalities in the three tests. It can be found that in
the three tests, the simplified version of spatiotemporal fusion
outperforms the normal version, with significantly lower MAE
values and higher CC values.

The quantitative evaluation was performed for the 10
Landsat–Sentinel fusion tests. By taking the FSDAF model
as an example, Fig. 11 shows the MAE values and the SSIM
values of the fused images among the 10 tests. It is shown
that in almost all the tests, the simplified version obtains higher

accuracy than the normal version, with lower MAE values and
higher SSIM values, and the average values among the 10 tests
report the precision differences are significant between the two
cases (MAE: 0.0280 vs. 0.0209; SSIM: 0.8523 vs. 0.9033).
Table VII lists the averaged quantitative descriptions among the
10 tests. We can find that the simplified version of spatiotemporal
fusion obtains considerably higher accuracy than the normal
version. For example, as compared with the normal version,
the simplified version decreases SAM by 1.4400–1.6781 and
increases CC by 0.0231–0.0324. This is in accordance with
the findings from the visual comparison. Therefore, we can
summarize that, for the scenario in which we cannot collect the
high-quality coarse-resolution image on the reference date, the
fused images show considerable differences under the two input
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Fig. 10. Test data and fused results in the Landsat–Sentinel fusion test (NIR, red, and green bands as RGB). The target date and the reference date are October
10, 2017 and July 24, 2017, respectively. (a) Observed Landsat image on July 24, 2017. (b) Observed Sentinel image on July 26, 2017. (c)–(d) Observed Landsat
and Sentinel images on October 10, 2017, with (d) used as the evaluation standard. (e)–(j) Fused results under the two input modalities. (a) Landsat (reference). (b)
Sentinel (reference). (c) Landsat (target). (d) Sentinel (target). (e) STARFM (normal). (f) STARFM (simplified). (g) STLFFM (normal). (h) STNLFFM (simplified).
(i) FSDAF (normal). (j) FSDAF (simplified).

Fig. 11. Quantitative descriptions in terms of MAE and SSIM in the 10
Landsat–Sentinel fusion tests. The FSDAF model is taken as an example. The
dashed line shows the mean value of the 10 tests. The order of the 10 tests in the
horizontal axis is reorganized: the closer to the right part in the horizontal axis,
the more the simplified version outperforms the normal one, and vice versa.

modalities, and the results derived under the simplified case are
significantly superior to those under the normal case.

D. Discussion

1) Sources of Spectral Errors in the Fused Images: The
spectral errors in the fused images are a key issue in the

spatiotemporal fusion, and this problem exists for both the
normal version and the simplified version. As we described
before, even though the multiple sensors show similar band
specifications, the multisource data inevitably have observation
differences and the differences would slightly vary with acquisi-
tion dates due to factors such as illumination and viewing condi-
tions. Hence, for the normal version of spatiotemporal fusion, the
basic assumptions that the observation differences remain stable
would not be completely satisfied, resulting in the spectral errors
in the fused results. As for the simplified version, two sources
potentially lead to spectral errors. First, the degradation model
from a fine spatial resolution to a coarse spatial resolution is
very complex in real scenarios. Although we have considered
the image downsampling and blurring steps, the estimated image
may still contain slight spectral errors as compared with the
coarse-resolution image observed in the same scene. Second,
we introduce a radiometric correction step to improve the con-
sistency between the data sources. This step helps to characterize
the systematic transformation, but as the observation differences
slightly vary with acquisition dates, there would exist random
uncertainty for the corrected observations for a given date. These
two sources of spectral errors would be accumulated in the fused
results under the simplified input modality.

It is noteworthy that even the proposed strategy cannot com-
pletely eliminate spectral errors, according to the experimental
results in Section IV-B, it is already enough to obtain comparable
or even slightly superior performance as compared with the
normal version of spatiotemporal fusion.

2) Potential Applications of the Proposed Method: The pro-
posed method can be combined with the existing spatiotemporal
fusion models, especially the popular ones such as STARFM, to
accomplish the fusion for the scenarios in which only two input
images are available. The applications of the method are twofold.
Most importantly, it can be used to fuse data from sensors with
barely overlapping temporal coverage, such as Landsat 8 OLI
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Fig. 12. Generation of 10-m time series by fusing observations from Landsat
8 OLI and Sentinel-2 MSI (NIR, red, and green bands as RGB).

and Sentinel-2 MSI. In this case, few coincident observations
can be identified as reference image pairs, on account of the
16-day revisit cycle of the Landsat mission and the negative
effect of cloud cover. By exploiting the proposed method, we
can fuse the data from such two sensors under the simplified
input modality. Besides, the proposed method can benefit some
special cases. For example, although a coarse-resolution image
can be acquired on the reference date, it may suffer from cloud
covers or strong angular effects. In these cases, the proposed
method avoids the problem of inputting the degraded image and
can be expected to achieve satisfactory fusion performance.

It should be emphasized that the prerequisite for adopting
the proposed method for fusion is that high consistency is
revealed between the multisensor observations. The land sur-
face reflectance products were investigated in this article. As
the MODIS, Landsat, and Sentinel-2 land surface reflectance
products are highly comparable and consistent, the proposed
method can be applied. Comprehensive validation of the data
consistency should be considered in the first place before ex-
tending the proposed approach to other sensors and quantitative
products.

3) Generation of Time-Series Data: The spatiotemporal fu-
sion technique is aimed at generating a fine-resolution dense
time series by fusing a coarse-resolution dense time series
with a fine-resolution sparse time series. To demonstrate the
ability of spatiotemporal fusion for generating the time series,
we provide an example of fusing observations from Landsat 8
OLI and Sentinel-2 MSI in Fig. 12. The 10-m Sentinel-2 image
on October 30 and the three 30-m Landsat 8 images on July
24, September 15, and December 19, are collected as input.
The three Landsat images are fused with the Sentinel image on
October 30, respectively, by using the proposed strategy and
FSDAF, and produced the synthetic 10-m images. The derived
time series provide denser observations than a single data source,
representing the enhanced ability to capture the temporal change
of land surface. Besides, the 10-m spatial resolution of the
synthetic time series reveals a strong capacity to characterize the
spatial details of Earth’s surface, especially over heterogeneous
landscapes.

V. CONCLUSION

Traditionally, spatiotemporal data fusion requires at least
three input images, i.e., a coarse-resolution image on the target
date and a pair of fine- and coarse-resolution images on the
reference date. However, new application scenarios call for
efforts to conduct spatiotemporal fusion with only two input
images, i.e., a coarse-resolution image on the target date and a
fine-resolution image on the reference date. In this article, we
developed a universal method that can be used to accommodate
the existing fusion models requiring three input images for
the scenarios in which only two input images are available.
Based on the developed method, we comprehensively compared
and assessed the spatiotemporal fusion performance under the
two input modalities. According to the experimental results, by
applying the proposed strategy, the fusion performance with
only two input images is comparable or even superior to that
with three input images. The findings in this article challenge
the stereotype that spatiotemporal fusion strictly requires at least
three input images. Furthermore, the proposed method extends
the potential applications of the existing fusion models, espe-
cially the popular ones, such as STARFM, and allows us to adapt
these models for new scenarios. It is also worth noting that most
of the existing spatiotemporal fusion models were considered
unable to fuse the data from sensors with barely overlapping
temporal coverage, such as Landsat 8 OLI and Sentinel-2 MSI,
while our study indicates these models can be adapted by the
method proposed in this article to accomplish the fusion task.
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