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Hierarchical Attention and Bilinear Fusion for
Remote Sensing Image Scene Classification

Donghang Yu , Haitao Guo , Qing Xu , Jun Lu, Chuan Zhao , and Yuzhun Lin

Abstract—Remote sensing image scene classification is an im-
portant means for the understanding of remote sensing images.
Convolutional neural networks (CNNs) have been successfully ap-
plied to remote sensing image scene classification and have demon-
strated remarkable performance. However, with improvements in
image resolution, remote sensing image categories are becoming
increasingly diverse, and problems such as high intraclass diversity
and high interclass similarity have arisen. The performance of
ordinary CNNs at distinguishing increasingly complex remote sens-
ing images is still limited. Therefore, we propose a feature fusion
framework based on hierarchical attention and bilinear pooling
called HABFNet for the scene classification of remote sensing
images. First, the deep CNN ResNet50 is used to extract the deep
features from different layers of the image, and these features are
fused to boost their robustness and effectiveness. Second, we design
an improved channel attention scheme to enhance the features
from different layers. Finally, the enhanced features are cross-
layer bilinearly pooled and fused, and the fused features are used
for classification. Extensive experiments were conducted on three
publicly available remote sensing image benchmarks. Comparisons
with the state-of-the-art methods demonstrated that the proposed
HABFNet achieved competitive classification performance.

Index Terms—Bilinear pooling, channel attention, hierarchical
feature fusion, remote sensing image, scene classification.

I. INTRODUCTION

THE tremendous progress in Earth observation technology
has provided a steady stream of remote sensing image data

for observing and understanding changes on the Earth’s surface
[1]. Full utilization of massive remote sensing data to promote
effective analysis and understanding has become a popular and
critical issue that must be urgently investigated. Remote sensing
image scene classification is one of the important components of
remote sensing image understanding. Its main task is to assign
predefined category information to crops in large-scale remote
sensing images [1], such as airports, ports, farmland, or resi-
dential areas. The category information is usually determined
according to the function of the ground area, so that the same
type of remote sensing image scene usually contains multiple
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types of objects. Unlike pixel-level and object-level informa-
tion, a remote sensing image scene contains semantic-level
information, which has a wide and important application value
[1]–[4] in forest and farmland coverage investigation, geological
disaster monitoring, object detection and recognition, and urban
planning and environment evaluation.

The key to remote sensing image scene classification is to
extract the discriminative features of the input image. In the
past few decades, many handcrafted features have been applied
in the field of computer vision and significantly developed in
the task of remote sensing image scene classification [1], [2].
Examples include texture descriptors [5], color histogram [6],
scale-invariant feature transformation [7], histogram of oriented
gradients [8], and GIST features [9]. Encoding local features
to obtain a global image description has been the mainstream
method of remote sensing image scene classification; these
features include the improved Fisher kernel [10], vector of
locally aggregated descriptors [11], spatial pyramid matching
[12], and bag-of-visual-words [13]. When remote sensing image
categories are simple and easy to distinguish, these methods can
achieve acceptable results. However, with the improvements in
the resolution of remote sensing images, the amount of image
data continues to expand, and the types of scenes have become
increasingly diverse. These handcrafted features can no longer
meet the needs of a high-precision scene classification. Fortu-
nately, breakthroughs in deep learning have provided efficient
solutions for image recognition. Krizhevskey [14] proposed the
first deep convolutional neural network (CNN) called AlexNet
and applied it to the large-scale image dataset ImageNet [15] in
2012. Its performance in image classification tasks far exceeded
traditional handcrafted features. Since then, higher-performance
CNNs, such as VGGNet [16], GooLeNet [17], ResNet [18], and
DenseNet [19], have been proposed and successfully applied to
image classification, object detection, and semantic segmenta-
tion. The essence of scene classification is image classification;
therefore, some scholars have begun to apply deep CNNs to
remote sensing images for scene classification and object detec-
tion, even weakly supervised methods for scene classification
[20] and object detection have been applied [21]–[23]. These
applications have greatly improved the accuracy and efficiency
of scene classification, and currently, CNNs are the mainstream
methods for remote sensing image scene classification. How-
ever, when the scenes become fine-grained, ordinary CNNs
cannot achieve satisfactory results, either. This is because remote
sensing images have three characteristics [1], [2] compared with
natural images like ImageNet: Large intra-class differences, high
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inter-class similarities, and multidirectional and multiscale ob-
jects on the images. Because of these characteristics, achieving a
high-precision and fine-grained classification of remote sensing
images with large datasets is still highly challenging.

Like remote sensing image scene classification, the task of
fine-grained visual categorization involves distinguishing simi-
lar images. In addition, the attention mechanism is crucial for im-
proving the performance of CNNs. Inspired by the fine-grained
visual categorization and the attention mechanism in CNNs,
for the scene classification task of a remote sensing image, we
propose a feature fusion algorithm called hierarchical attention
and bilinear fusion net (HABFNet), based on channel attention
and hierarchical bilinear pooling (HBP) [24], which has shown
excellent performance in fine-grained visual categorization. We
adopt ResNet50 to extract the features of different layers from
the input image, and then use the channel attention to enhance
the features. Finally, cross-layer bilinear pooling and feature
connection are utilized for fusion. In summary, the main contri-
butions of this article are as follows.

1) We introduce HBP into the remote sensing image scene
classification task. This approach has been verified by
experiments that demonstrate that the HBP model can
extract a more discriminative feature representation than
ordinary CNNs.

2) We improve the channel attention mechanism for remote
sensing image scene classification, and the improved chan-
nel attention has a more obvious enhancement effect on
features.

3) We design an end-to-end remote sensing image scene
classification method using feature cross-layer bilinear fu-
sion and the channel attention mechanism. In experiments
using three challenging datasets, compared with state-of-
the-art methods, our method achieves higher accuracies.

The remainder of this article is organized as follows. In
Section II, related work is summarized, including the latest
research progress in remote sensing image scene classification,
fine-grained visual categorization, and the attention mechanism
in CNNs. Our proposed method is introduced in detail in Sec-
tion III. Section IV displays the experimental data and im-
plementation details, and comparisons with the state-of-the-art
methods. Section V contains a discussion about our method.
Finally, the conclusion is drawn in Section VI.

II. RELATED WORK

A. Scene Classification of Remote Sensing Images
Using CNNs

Currently, there are three main methods used to recognize
categories of remote scene sensing images using CNNs: Trans-
ferring learning, improving existing CNNs, and designing loss
functions with strong discriminability.

Transferring learning mainly uses a pretrained model as a
feature extractor to extract high-level and robust semantic fea-
tures of remote sensing images. These features can be used for
classification directly or through postprocessing. Penatti et al.
[25] applied CNN to the remote sensing image scene classifica-
tion and demonstrated its feasibility. Hu et al. [26] adopted the

pre-trained CNN as a feature extractor, which extracted features
of the convolutional layer and the fully connected layer respec-
tively and a strong robust global representation of the image
was obtained. Nogueira et al. [27] fine-tuned six popular CNNs.
Compared with traditional methods, they achieved remarkable
classification accuracies with limited data. Zhou et al. [28]
utilized a pretrained CNN to extract deep features for image
retrieval. Cheng et al. [29] re-encoded the features extracted
by CNN to construct a bag of convolutional features. Li et al.
[30] utilized a pretrained CNN to extract features and adopted
a fusion mechanism for different layers of features to improve
the accuracy of scene classification. Zhu et al. [31] designed a
classification algorithm by fusing high-level, middle-level, and
low-level features. Xue et al. [32] connected the features ex-
tracted by multiple CNNs from the same image, which improved
the robustness of the features.

In addition to directly using the pretrained CNNs as feature
extractors, a more popular method is to improve the structure
of the existing CNNs according to the characteristics of remote
sensing images or design an end-to-end feature fusion method
to improve the robustness of features. Wang et al. [33] adopted
active rotating filters based on VGG16 to enhance directional in-
formation. Xie et al. [34] proposed a scale-free CNN (SF-CNN)
that can support images of any size. Wang et al. [35] introduced
recurrent attention in CNN to enhance useful information and
suppress useless information. Liu et al. [36] applied the Siamese
CNN to the scene classification of a remote sensing image. He
et al. [37] adopted multilayer stacked covariance pooling in
CNN. Sun et al. [38] adopted the gated bidirectional connection
method for feature fusion. Zhang et al. [39] used a multidilation
pooling module, inverse residual, and channel attention in CNN,
and designed a lightweight scene classification model.

In addition, inspired by face recognition, some scholars began
to adopt a strong discriminative loss function in CNN training.
Ye et al. [40] used the cross-entropy loss function and center
loss function together to optimize the CNN. Wei et al. [41] used
the marginal center loss to minimize the divergence between
features from the same scene. Cheng et al. [42] added metric
learning constraints to the features extracted by CNN, so that
in the new feature space, the feature distribution of the same
scene was more compact, which could effectively improve the
accuracy of scene classification.

B. Fine-Grained Visual Categorization

Fine-grained visual categorization has already become an
exceedingly important research topic in the fields of computer
vision and pattern recognition in recent years. Its purpose is to
classify images from the same basic category into more detailed
subcategories [43], such as identifying different kinds of birds,
dogs, and cats. Therefore, there is a high similarity between
different subcategories and a large difference between image
from the same category. This is the reason fine-grained visual
categorization is so challenging. We found that the character-
istics of fine-grained visual categorization are similar to those
of remote sensing image scene classification. The categories of
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high-resolution remote sensing images are becoming increas-
ingly fine-grained. For example, the categories for residential
areas consist of three subcategories: dense, medium, and sparse
residential areas. Even for images of the same category, many
images have different scales and perspectives.

To realize fine-grained visual categorization, Lin et al. [44]
proposed bilinear CNN models by introducing the concept of
bilinear pooling and achieved excellent classification perfor-
mance. The form of bilinear pooling is simple and facilitates
gradient back-propagation and end-to-end training. Gao et al.
[45] proposed compact bilinear pooling to reduce the dimension
of features. Fukui et al. [46] proposed multimodal compact
bilinear pooling and applied it to visual question answering. Kim
et al. [47] proposed the use of element-wise multiplication to
perform low-rank bilinear pooling in feature fusion. Yu et al. [24]
proposed HBP that utilized the cross-layer feature to enhance
the representation ability of the model. Yu et al. [48] introduced
bilinear pooling to the scene classification of remote sensing
images, and the second-order information obtained by bilinear
pooling significantly improved the accuracy of scene classi-
fication. Therefore, certain fine-grained visual categorization
methods can help improve the accuracy of remote sensing image
scene classification.

C. Attention in CNNs

The core idea of attention in CNNs is to design a mechanism
that can automatically ignore irrelevant information and focus on
important information. There have been many attention mech-
anisms successfully applied to image classification, semantic
segmentation, and object detection tasks. Hu et al. [49] proposed
squeeze-and-excitation (SE) networks by utilizing the SE mod-
ule to obtain the importance of different feature channels through
training and won the championship of the ImageNet 2017 image
classification task. Woo et al. [50] added an attention module in
spatial and channel maps simultaneously and applied it to boost
the representation power of CNNs. Wang et al. [51] designed a
nonlocal structure that aimed to gather information from other
locations to enhance the features of the current location and
overcome problems in expressing local receptive field features.
Nonlocal structures can be easily integrated into CNNs to im-
prove the performance of tasks such as object detection, semantic
segmentation, and pose estimation. Fu et al. [52] proposed the
use of spatial attention and channel attention to obtain spatial
and channel dependency relationships. The output of the two
attention modules was fused by multiplication to improve the
accuracy of the semantic segmentation results. Bello et al. [53]
proposed the use of self-attention as an alternative to convolution
to improve the ability to express global information. Many
experiments have verified that the introduction of the attention
mechanism into CNNs effectively improves the performance.
Inspired by the attention mechanism, we introduced an improved
channel attention approach in our remote sensing image scene
classification model to enhance the features extracted by the
CNN.

III. PROPOSED METHOD

Through the current research on bilinear CNN models, we
have learned that the bilinear model can obtain the second-order
information of the image (realization by the outer product or dot
product of the features), which is much more robust and discrim-
inative than general features. Using second-order information,
excellent performance can be achieved in fine-grained visual
categorization. In fine-grained visual categorization, not only
images of different categories are similar, but images of the same
category also have diversity in perspectives and scales, which
are consistent with the characteristics of remote sensing image
scene classification tasks. Introducing the idea of the dot product
on features to obtain second-order information from remote
sensing images can improve the accuracy of scene classification.
In addition, the attention mechanism is another technology that
can significantly improve the performance of CNNs, which is
based on a simple idea and structure. Inspired by the ideas of
fine-grained visual categorization and attention in CNNs, the
proposed HABFNet framework is shown in Fig. 1. HABFNet
mainly includes three stages: Extraction of hierarchical features,
enhancement of hierarchical features using channel attention,
and bilinear pooling and fusion of hierarchical features. In
the extraction of the hierarchical features stage, the image is
input into ResNet50, which has been pretrained by ImageNet,
and fine-tuning is performed based on the weight required to
extract the deep features. Features from three layers are utilized
for fusion. Then, channel attention is adopted to enhance the
extracted features. Finally, the enhanced features are cross-layer
bilinearly pooled and fused for classification.

A. ResNet50 for Feature Extraction

ResNet50 introduced residual learning to CNNs, thus, in-
creasing the depth of the network to hundreds of layers, and
its performance in image classification tasks exceeded that of
humans, for the first time. ResNet50 is currently one of the
most widely used networks in image classification and object
detection tasks. Subsequently, many high-performance CNNs
have been further improved based on ResNet50; thus, ResNet50
was used to extract features in this study. ResNet50 contains
49 convolutional layers and a fully connected layer. The ar-
chitecture information of ResNet50 is shown in Table I. The
49 convolutional layers can be divided into five stages. Stage
1 contains only one convolutional layer and the number of
convolution kernels is 64, the size of the convolution kernels
is 7 × 7, and the stride is 2. Stages 2–5 have repeated similar
units. The difference between each stage is the number of units
and the number of convolution kernels in each unit. In each
stage, except for the first unit, the other units adopt short-cuts
across layers. Each unit has three convolutional layers. In every
unit, the kernel size of the first convolutional layer is 1 × 1,
the kernel size of the second convolutional layer is 3 × 3, and
the kernel size of the third convolutional layer is 1 × 1. Stage
5 consists of three units, denoted as Stage 5-1, Stage 5-2, and
Stage 5-3. The size of the output feature maps of each unit in
Stage 5 is 2048 × 7 × 7. Most methods also adopted ResNet50
to extract the features of remote sensing images, but only utilized
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Fig. 1. Framework of HABFNet.

TABLE I
ARCHITECTURE OF RESNET50

the features from the Stage 5-3 layer. We wanted to fully utilize
the features from different layers to obtain more discriminative
features. Therefore, features from Stages 5-1, 5-2, and 5-3 were
exploited for enhancement and fusion.

B. Channel Attention

We have improved the SE module and used the improved SE
to enhance the features. SE uses the relationship between dif-
ferent channels of the feature maps to boost the performance of
CNN. The SE module mainly includes three operations, namely,
squeeze, excitation, and scale, to realize the recalibration of
feature maps, which can be regarded as reweighting the feature
maps.

In the SE module, the input feature maps U are squeezed
to a channel descriptor. Generally, each channel with a spatial
dimension of H × W is compressed into a channel descriptor
with a global receptive field. The squeeze operation is usually
realized by global mean pooling, and the implementation is as

follows:

zc = Fsq(uc) =
1

H ×W

H∑

i=1

W∑

j=1

uc(i, j) (1)

where uc is the cth channel of the feature maps U, uc(i, j) is
the value of the cth channel at position (i, j), Fsq represents the
squeeze operation, and zc is the channel descriptor.

To fully utilize the information extracted by the squeeze op-
eration, in the excitation operation, a two-layer fully connected
neural network is used for nonlinear transformation. After the
first fully connected layer, ReLu is used as the activation func-
tion, and after the second fully connected layer, Sigmoid is used
as the activation function to obtain the weight values of different
channels. The implementation of the excitation operation is as
follows:

s = Fex(z,W) = σ(W2δ(W1z)) (2)

where z is the output of the squeeze operation, W1 and W2

are the weights in the fully connected layer, δ represents the
activation function of ReLu, σ represents the activation function
of Sigmoid, Fex represents the excitation operation, and s is the
output of the excitation operation.

In the scale operation, s is used to reweight different channels
of the feature maps U as follows:

x̃c = Fscale(U, s) = sc · uc. (3)

In the formula, sc represents the weight of the cth channel of
the feature maps U, Fscale represents the scale operation, and x̃c

represents the reweighted feature.
The structure of the SE module is simple. Adding the SE

module to CNN can improve the performance of natural image
classification. However, using the SE module directly in remote
sensing image scene classification tasks could not achieve an ef-
fective improvement in accuracy within the experiments. There-
fore, based on the SE module, this study designed an improved
SE module, as shown in Fig. 2. This was performed by adding
a batch normalization [54] layer after each fully connected
layer of the SE module, and replacing all activation functions
in the SE module with HardTanh. Batch normalization is a
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Fig. 2. Schematic of channel attention (1) SE module (2) Improved SE module.

widely used technology to enhance the generalization of CNNs.
The batch normalization layer normalizes the input value to a
distribution with a mean of 0 and a variance of 1, which ensures
the effectiveness of the gradient during training. At the same
time, the model can use a larger learning rate, thereby avoiding
local extreme values, enhancing the ability of generalization,
and greatly speeding up training. HardTanh is a linear piecewise
approximation of the Tanh activation function and it is easier
to calculate than existing methods, which improves learning
speeds. The SE module has a reduction factor r that is used
to adjust the number of neurons in the fully connected layers.
The value of r in the SE module is 16, which can achieve a better
balance between accuracy and calculation. The value of r in the
improved SE module in this study is set to 2.

C. Cross-Layer Bilinear Pooling and Fusion

The core idea of bilinear pooling is to use two CNNs to
obtain feature A and feature B of the same image and perform a
fusion operation (outer product) on the two features to generate
a new feature. Through pooling on the new feature, a bilinear
vector can be obtained. Then, the signed square root and L2
normalization operations on the bilinear vector are used for
fine-grained image classification. If feature A and feature B
come from two different feature extractors, this type of bilinear
pooling is called multimodal bilinear pooling; if feature A and
feature B come from the same feature extractor, i.e., A = B, this
type of bilinear pooling is called homogeneous bilinear pooling
or second-order pooling. Yu et al. [24] gave the general form of
the bilinear model and designed a HBP model. If the feature
of the image I extracted by a single CNN is X ∈ Rh×w×c,
the output Zout of the homologous bilinear pooling can be
calculated as follows:

Zout = P T (QTX ∗RTX) (4)

whereQ ∈ Rc×d andR ∈ Rc×d are projection matrices that can
change the dimension of the feature. If the features of the image I
extracted by two different feature extractors, X ∈ Rh×w×c and
Y ∈ Rh×w×c, the output Zout of the heterogeneous bilinear
model can be calculated as follows:

Zout = PT(QTX ∗RTY) (5)

where Q ∈ Rc×d and R ∈ Rc×d are projection matrices that
can transform and reduce the dimension of the feature maps,
P ∈ Rd×o is the classification matrix, ∗ is the bilinear pooling
using the dot product, h, w, and c are the height, width, and
channel number of feature maps X and Y, respectively, d is
the channel number of the feature maps transformed by the
projection matrix, and o is the number of output categories.

If X ∈ Rh×w×c, Y ∈ Rh×w×c, and Z ∈ Rh×w×c are the
features of different layers from the same CNN, these three
features can be cross-layer bilinearly pooled and feature fused,
i.e., cross-bilinear pooling is performed between features of
different layers, and the results are connected and fused for
classification. The output result ZHBP can be expressed as
follows:

ZHBP = P T concat(QTX ∗RTY ,QTX

∗ STZ,RTY ∗ STZ). (6)

In the formula, P is the classification matrix, and Q, R, and S
are the projection matrices of the features from different layers.
In the HBP algorithm, before cross-layer bilinear pooling, three
convolutional layers are used to perform projection transforma-
tion on X, Y, and Z, respectively. Ordinary convolutional layers
cannot effectively enhance the features. Therefore, we proposed
the introduction of channel attention into the HBP algorithm.
Before bilinear pooling of the three feature maps of X, Y, and Z,
the improved SE module was adopted to recalibrate the feature
maps respectively, and the output ZHABF can be expressed as
follows:

ZHABF = P T concat(QT
caX ∗RT

caY ,QT
caX

∗ ST
caZ,RT

caY ∗ ST
caZ) (7)

whereQT
ca�R

c×d,RT
ca�R

c×d, andST
ca�R

c×d are the projection
matrices formed by the improved SE module.

IV. RESULTS AND ANALYSIS

A. Experimental Data

In this article, three publicly available and challenging remote
sensing image datasets are used for evaluating the proposed
approach.

The first dataset is the UC Merced dataset [13], which was re-
leased in 2010. The images in this dataset were selected from the
United States Geological Survey National Map, covering more
than 20 regions of the United States. The UC Merced dataset
contains 2100 RGB color images, 100 images for each category.
The image size is 256 × 256 pixels, and the pixel resolution is
30 cm. The UC-Merced dataset has 21 scene categories, namely
agricultural land, airplane, baseball diamond, beach, buildings,
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chaparral, dense residential area, forest, freeway, golf course,
harbor, intersection, medium residential area, mobile home park,
overpass, parking lot, river, runway, sparse residential area,
storage tanks, and tennis courts.

The second dataset is the AID dataset [55], which was released
in 2017. The images in the AID dataset were selected from
Google Earth images and covered a wide range of countries
and regions. The AID dataset contains 30 categories and a
total of 10 000 RGB color images. However, the number of
images in each category varies from 220 to 420. The image
size in AID dataset is 600 × 600 pixels, and the pixel resolution
ranges from 8 to 0.5 m, which further increases the classification
challenge. The 30 categories are airport, bare land, baseball field,
beach, bridge, center, church, commercial area, dense residential
area, desert, farmland, forest, industrial area, meadow, medium
residential area, mountain, park, parking area, playground, pond,
port, railway station, resort, river, school, sparse residential area,
square, stadium, storage tanks, and viaduct.

The third dataset is the NWPU-RESISC45 dataset [2], which
was released in 2017 and contains 45 scene categories, covering
more than 100 countries and regions, with a total of 31 500
RGB color images. Each category contains 700 images with a
size of 256 × 256 pixels. The spatial resolution ranges from
30 to 0.2 m. The 45 categories are airplane, airport, baseball
diamond, basketball court, beach, bridge, chaparral, church,
circular farmland, cloud, commercial area, dense residential
area, desert, forest, freeway, golf course, ground track field, har-
bor, industrial area, intersection, island, lake, meadow, medium
residential area, mobile home park, mountain, overpass, palace,
parking lot, railway, railway station, rectangular farmland, river,
roundabout, runway, sea ice, ship, snowberg, sparse residential
area, stadium, storage tank, tennis court, terrace, thermal power
station, and wetland. NWPU-RESISC45 is one of the largest
datasets, with the most categories and largest image differences,
making it the most challenging dataset for remote sensing image
scene classification.

B. Implementation Details

Before conducting the experiment, we divided the data into
two parts: training set and test set. The data in the training
set was used to train the model. When the training loss and
accuracy of the model stabilized, the data in the test set was used
to verify the model generalization. To fully utilize the limited
training data and avoid the problem of overfitting, we rotated the
training images clockwise by 90°, 180°, and 270°, and flipped the
images horizontally and vertically to expand the data six times.
To facilitate comparisons with other methods, we set the training
ratio in accordance with published papers. For the UC-Merced
dataset, we randomly selected 20%, 50%, and 80% of the data
as the training images, and left the remaining images as the test
images. For the AID dataset, the training ratios were set to 20%
and 50%. For the NWPU-RESISC45 dataset, the training ratios
were set to 10% and 20%. The overall accuracy and confusion
matrix were used to evaluate the performance of our method.
The overall accuracy calculation method comprised the number
of correctly classified images divided by the number of all test

TABLE II
OVERALL CLASSIFICATION ACCURACY (%) COMPARISON FOR THE

UC MERCED DATASET

The highest accuracy appears in boldface font.

images. To reduce the influence of random factors in the data
division, the images in the training set were randomly selected
from all the images five times on each dataset at each training
ratio. The average and standard deviation of the overall accuracy
were calculated.

We used the deep learning framework PyTorch to build the
model. The input size of the model was 224 × 224 × 3 pixels.
The model was optimized using a stochastic gradient descent
(SGD) algorithm, and the batch size was 32. The initial learning
rate of the feature extraction was 0.01 (the weight of pretrained
ResNet50 was loaded as the initial value), and the initial learning
rate of the attention enhancement layer and classification layer
was 0.1. The learning rate was reduced to 0.5 times after every
10 epochs. The model was trained with a total of 60 epochs,
the weight decay factor was 0.00001, and the momentum was
0.9. The model training was implemented on a workstation
equipped with an i7-6900K, 3.2 GHz, 64 GB memory processor.
A graphics processing unit NVIDIA GeForce GTX1080Ti with
11 GB memory was used for acceleration.

C. Comparison With State-of-the-Art Methods

1) Classification of the UC Merced Dataset: For the
UC Merced dataset, the performance comparison between
HABFNet and the state-of-the-art methods is shown in Table II.
Compared with the other two datasets, the UC Merced dataset
has fewer categories, and the difference between the categories
is also more obvious. When this dataset was released, it was
mainly used to evaluate the performance of methods using
handcrafted features. When using this dataset for experiments,
most methods set the training ratio to 80%, and the overall
accuracies have been close to 99%. Under the training ratio of
80%, the overall accuracy of our method reached 99.29%, ex-
ceeding most scene classification methods. Although the overall
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Fig. 3. Confusion matrices for HABFNet on the UC Merced dataset with a training ratio of 20% (left) and 50% (right).

accuracies of ARCNet [35], CNN-CapsNet [56], and GBNet
[38] were close to ours when the training ratio was 80%, the
accuracy of our method exceeds them when the training ratio was
50%. Compared with ARCNet, CNN-CapsNet, and GBNet, the
overall accuracy of our method was improved by 1.66%, 0.88%,
and 1.42%, respectively. There are a few methods that set the
training ratio to 20%, mainly because the training dataset is so
small that it could easily overfit. For example, Liu et al. [36] used
20% of the image to train ResNet50, and the overall accuracy
was only 74.11%. When training Siamese ResNet50, the overall
accuracy was only increased to 76.50%. Chaib [57] used VGG16
as a feature extractor instead of training and fused the extracted
features. At a training rate of 20%, they achieved an overall
accuracy of 92.96%. Under the same training ratio, the overall
accuracy of HABFNet reached 96.95%. This demonstrates that
the feature fusion by HABFNet is more efficient than addition.

Fig. 3 shows the confusion matrices of HABFNet on the UC
Merced dataset when the training ratios were 20% and 50%,
respectively. When the training ratio was 20%, 19 of the 21 cat-
egories had a classification accuracy above 91%. The categories
with lowest accuracies were dense residential area (0.84) and
mobile home park (0.86). Some images from the dense residen-
tial area category can be mistaken for buildings and medium
residential area. The main ground objects of the three scenes
(dense residential area, building, and medium residential area)
are buildings, and the only difference is the building density in
the image. When the training ratio was 50%, 20 of 21 categories
had a classification accuracy above 96%, and the accuracy of
dense residential area (0.86) was still the lowest. Under the same
training ratio, the classification accuracy of dense residential
area by CNN-CapsNet was only 80%. Obviously, our method
can better learn the spatial differences of similar images and
more effectively recognize fine-grained scenes.

2) Classification of the AID Dataset: When using the AID
dataset for the experiments, the training ratios were set to 20%
and 50%. The performance comparison between HABFNet and
the state-of-the-art methods is shown in Table III. The table
shows that when the training ratios were 20% and 50%, the
overall classification accuracies of our method reached 95.48%

TABLE III
CLASSIFICATION ACCURACY (%) COMPARISON FOR AID

The highest accuracy appears in boldface.

and 96.95%, respectively, which surpasses those of most of the
latest methods. The advantages of our method are most obvious
at the training ratio of 20%. When comparing the six compet-
itive algorithms of MSCP, D-CNN, SF-CNN, CNN-CapsNet,
MSDFF, and DDRL-AM, their overall accuracies were close
to those of our method when the training ratio was 50%, but
when the training ratio was 20%, the overall accuracy of our
method was improved as compared to its counterparts by ap-
proximately 3.27%, 4.66%, 1.88%, 1.69%, 2.01%, and 3.12%,
respectively. Chaib [57] fused features together, and at a training
ratio of 50%, their overall accuracy was 91.87%, which is lower
than the 96.95% of HABFNet. MSDFF adopted three popular
CNNs as feature extractors and fused features by connection.
At a training rate of 20%, the overall accuracy of MSDFF was
93.47%, which is lower than the 95.48% accuracy of HABFNet.
GBNet also used hierarchical features for feature fusion, but
under the training ratios of 20% and 50%, the overall accuracies
were lower than those of our method by 3.28% and 2.37%,
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Fig. 4. Confusion matrices for HABFNet on AID with a training ratio of 20% (left) and 50% (right).

respectively. FACNN aggregated the features of multiple layers
for fusion. At a training rate of 50%, its overall accuracy was
1.80% lower than that of HABFNet. The performance of all
four feature fusion methods were significantly inferior to our
method, which demonstrated that the method of feature fusion in
HABFNet achieved the strongest performance and significantly
improved the classification accuracies in the AID dataset.

Fig. 4 shows the confusion matrixes of the proposed method
under different training ratios on the AID dataset. When the
training ratio was 20%, 27 of the 30 categories had an accuracy of
more than 91%, whereas CNN-CapsNet only has 24 categories.
The categories with the lowest accuracy in our method were
resort (0.77), school (0.82), and park (0.86), whereas the three
classes with the lowest accuracies in CNN-CapsNet were school
(0.68), resort (0.73), and center (0.81), which are all lower
than those of our method. The resort, school, and park images
mainly incorporate buildings and vegetation, and the texture
information is relatively similar, thus, explaining the difficulty in
distinguishing these classes effectively. When the training ratio
was 50%, the accuracies of the three categories (resort, school,
and park) were improved to 85%, 87%, and 88%, but the accura-
cies were still lower than those of the other categories. Therefore,
the confusion of the three categories with other categories was
the main reason for the limited improvement of the overall
accuracy. Therefore, to further improve the performance of scene
classification, future research should focus on improving the
classification accuracies of these categories.

3) Classification of the NWPU-RESISC45 Dataset: For the
NWPU-RESISC45 dataset, the performance comparison be-
tween our method and the existing state-of-the-art methods is
shown in Table IV. For this dataset, HABFNet also achieved
a remarkable performance, with its overall accuracies reaching
92.75% and 94.54%, respectively. When the training ratio was
20%, the performance of our method was better than that of
most methods, being only weaker than that of FDPResNet [66].
FDPResNet uses ResNet101 to extract features and combines
shallow and deep features via PCA, which cannot realize end-
to-end training and prediction, and the calculation amount and
complexity are much higher than in our method. Compared with
the latest three methods (GLANet, DDRL-AM, and MSDFF),

TABLE IV
OVERALL CLASSIFICATION ACCURACY (%) COMPARISON ON THE

NWPU-RESISC45 DATASET

The highest accuracy appears in boldface.

the overall accuracy of our method showed improvements of
1.09%, 3.08%, and 1.99%, respectively, with a training ratio of
20%. With a training ratio of 10%, compared with the latest four
methods (GLANet, FDPResNet, DDRL-AM, and MSDFF), the
overall accuracy of our method was improved by 1.62%, 0.43%,
0.58%, and 1.19%, respectively. Therefore, with less training
data, the advantages of our method are more obvious.

Fig. 5 shows the confusion matrices of our method on the
NWPU-RESISC45 dataset with different training ratios. We can
observe the different categories being misclassified in detail.
Using a training ratio of 10%, there were 11 categories whose
accuracies were less than 90%: church (0.74), commercial area
(0.88), dense residential area (0.87), freeway (0.87), medium
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Fig. 5. Confusion matrices for HABFNet on NWPU-RESISC45 with a training ratio of 10% (up) and 20% (down).

residential area (0.89), palace (0.72), railway station (0.83), run-
way (0.89), and wetland (0.83). The highest mis-categorization
occurred in the palace and church categories (at 14% and 11%,
respectively) because they both had similar styles of buildings.
Even when the training ratio was 20%, the accuracies of the
church and palace categories were 81% and 78%, compared
with 79% and 68% in CNN-CapsNet. There were six categories
whose accuracy was less than 90%, whereas there were nine
categories in CNN-CapsNet. The performance on the NWPU-
RESISC45 dataset further verified the effectiveness of bilinear
attention pooling and hierarchical feature fusion.

V. DISCUSSION

The goal of the method in this study was to apply HBP with
improved channel attention to the scene classification of remote
sensing images. To further verify the effect of the attention
mechanism on feature enhancement, the performances of the
HBP, HBP with the SE module, and HABFNet (HBP with
improved SE module) were compared for the three datasets,
as shown in Tables V–VII, respectively. The HBP algorithm
adopts bilinear pooling to obtain second-order information of
the image, and cross-layer features are connected to form a
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TABLE V
OVERALL ACCURACY (%) COMPARISON FOR THE UC MERCED DATASET

WITH DIFFERENT ATTENTIONS

The highest accuracy appears in boldface.

TABLE VI
OVERALL ACCURACY (%) COMPARISON FOR THE AID DATASET WITH

DIFFERENT ATTENTIONS

The highest accuracy appears in boldface.

TABLE VII
OVERALL ACCURACY (%) COMPARISON FOR THE NWPU-RESISC45 DATASET

WITH DIFFERENT ATTENTIONS

The highest accuracy appears in boldface.

strong robust feature. Without any improvement, this approach
achieved a remarkable performance for all three datasets. With
a training ratio of 20%, the overall accuracies of HBP for
the UC Merced, AID, and NWPU-RESISC45 datasets were
96.31%, 94.84%, and 92.75%, respectively, which exceeded
those of most state-of-the-art methods. SE is a module that
is effective in boosting model performance for natural image
classification. However, directly applying the SE module to the
HBP algorithm will reduce the performance of HBP. For the
three datasets with different training ratios, the overall accuracy
of HBP with the SE module was significantly lower than that
of the original HBP algorithm and our method. As a compar-
ison, the introduction of the improved SE module in the HBP
algorithm further improved the accuracy of the HBP in remote
sensing image scene classification to a certain extent. For the
UC Merced, AID, and NWPU-RSEISC45 datasets, when the
training ratios were 20% and 80%, 20% and 50%, and 10% and
20%, respectively, the proposed method improved the overall
accuracy of HBP by 0.64% and 0.35%, 0.64% and 0.27%, and
0.55% and 0.33%, respectively. When the training ratio was
20%, the improved SE module boosted the overall accuracies
by 1.57%, 1.40%, and 1.58% as compared with the SE module,
respectively. Moreover, when there were less training data, the
performance improvement was more obvious.

TABLE VIII
OVERALL ACCURACY (%) COMPARISON BASED ON RESNET18

The highest accuracy appears in boldface.

TABLE IX
OVERALL ACCURACY (%) COMPARISON BASED ON RESNET34

The highest accuracy appears in boldface.

To verify the generalizability of the feature fusion method in
this article to other CNNs, ResNet18, and ResNet34, which have
a similar structure to ResNet50, were also selected for experi-
ments. ResNet18 and ResNet34 were used to extract the hierar-
chical features of the image like ResNet50. Then, the features
were enhanced by channel attention and fused. The results for
the UC Merced (20% training ratio), AID (20% training ratio),
and NWPU-RESISC45 (10% training ratio) datasets are shown
in Tables Ⅷ and Ⅸ. The tables show that no matter which
CNN was used, the HBP algorithm with the SE module had the
lowest accuracies, while HABFNet had the highest accuracies
among the three methods. These results were consistent with
those of ResNet50 for feature extraction, demonstrating that
our improvement of the SE module is effective. In addition,
ResNet50 had the best performance and, as the backbone, it can
improve the accuracy of SE by about 1%. ResNet34 comes next
and improved the accuracy of SE by ∼0.5%. ResNet18 only im-
proved the accuracy by∼0.3%. The stronger the performance of
the backbone, the more obvious the advantages of the improved
SE module.

VI. CONCLUSION

In recent years, developments in deep learning, especially
CNNs, have provided efficient and simple solutions for scene
classifications of remote sensing images. However, with
improvements in resolution, the scene categories of remote
sensing images are becoming increasingly diversified and
fine-grained. Images of different categories are becoming
increasingly similar in spatial distribution, which makes
classification increasingly challenging. Existing methods still
cannot completely solve the problems of intraclass diversity
and interclass similarity, mainly because they cannot extract
enough robust and discriminative features. Fine-grained visual
categorization, which has been extensively studied, has a strong
similarity with remote sensing image scene classification.
However, there are few studies that regard remote sensing
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image scene classification as fine-grained classification. Bilinear
pooling is a simple and efficient approach for fine-grained image
classification that can obtain second-order information from the
image. Compared with first-order information, second-order
information has better representation capability. For remote
sensing image scene classification, second-order information is
also applicable. Inspired by the fine-grained image classification
and attention mechanism, this study proposes an end-to-end
hierarchical attention and bilinear feature fusion algorithm for
the scene classification of remote sensing images. Experiments
were conducted on three popularly used datasets. The results
prove the effectiveness of the attention and future fusion
mechanism in this study. Future research should focus on
studying the application of high-order information and fine-
grained classification and design lightweight and high-precision
classification algorithms for remote sensing images.
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