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Learnable Optical Flow Network for Radar
Echo Extrapolation

Chengwei Zhang , Xudong Zhou , Xiaoyong Zhuge , and Meng Xu

Abstract—The impact of extreme weather on maintaining flight
schedules is becoming more pronounced. Currently, radar echo
extrapolation technology is widely used in the nowcasting of severe
convection, in which the optical flow method is a representative
example of traditional extrapolation algorithms. By training a
large number of known samples to find the optimal solution, the
deep extrapolation models have gradually become better than the
traditional algorithms in recent years. In this study, after examining
the optical flow method and other deep learning models, a learnable
optical flow deep model with a fully convolutional structure is
proposed. Using the convolutional deep learning of optical flow
information, this new model can overcome the kernel size limitation
of traditional convolutional neural networks, and it can correlate
the data history further in time and space. The six-year radar
mosaics of Guangdong Province, China, were used as the data
set to independently train and verify the new model. The results
reveal that the new model outperformed the traditional optical flow
method and it is also better than other deep learning models.

Index Terms—Deep learning (DL), nowcasting, optical flow,
radar echo extrapolation.

I. INTRODUCTION

S EVERE convective weather is one of the most important
factors affecting aviation safety and efficiency. For the

Pearl River Delta region of Guangdong, China, where flights
are numerous and airspace resources are tight, it is particu-
larly important to study nowcasting for severe convection. The
objective short-term forecasting technique is mainly classified
into two types: 1) numerical prediction modeling and 2) radar
extrapolation. The numerical modeling based on atmospheric
dynamic equations can provide weather forecasts for as short
as a few hours to as long as approximately two weeks. Due to
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the uncertainty and imperfection of the cloud-related subgrid-
scale parameterization scheme, numerical modeling is unable to
provide satisfactory and refined convective weather nowcasting
at the current technology level. Thus, it is noticeably deficient
in aviation meteorological applications where prediction “in the
right location at the right time with high accuracy” is highly
desired.

Although the radar echo extrapolation method is a phe-
nomenological technique, it is often able to achieve better results
in weather nowcasting. Radar echo extrapolation utilizes the
fundamental equations of fluid mechanics, and local weather
(e.g., precipitation) is constrained by the formation and dissipa-
tion terms, as well as the advection term. The advection term
is mainly approximated by the radar-retrieved wind field, so
the key to extrapolation is to reasonably estimate the sizes of the
formation and dissipation terms. The commonly used radar echo
extrapolation methods in practice include the centroid tracking
method and the cross-correlation method [1]. The centroid track-
ing method treats thunderstorms as three-dimensional entities
for identification and analysis and performs extrapolation by
fitting the location of the centroid of the predicted echoes,
which is only suitable for the tracking of convective systems
[2]. The cross-correlation method determines the motion vector
by searching the position with maximum correlation coeffi-
cient (CC) on two consecutive radar images. The calculation
is simple and can be used for stratiform precipitation and is
often used by meteorological agencies [3]. For locally formed
or rapidly changing radar echoes, the tracking failures by the
cross-correlation method may increase significantly. The op-
tical flow (OptFlow) [4] method proposed by Gibson in the
field of computer vision can overcome the above shortcomings.
Among these approaches, multiscale optical-flow by variational
analysis (MOVA) [5] has currently achieved the best results.
Even so, all these methods traditionally must divide the radar
echo extrapolation into two stages, estimating the wind field
then extrapolating the radar echo. Since they can hardly explain
the complex relationship between the formation and dissipation
terms and the existing flow fields, they are generally only able
to predict the movement of radar echoes over a short time.

In recent years, deep learning (DL) algorithms emerging
from the field of computer vision have acquired the ability to
hierarchically learn representative and discriminative semantic
features from the data [6] and have achieved amazing success in
fields such as image recognition, signal processing, and natural
language processing [7]. The DL-based radar echo extrapola-
tion model is also inspired by the video prediction algorithm
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[19]–[22], with the difference that the proportion of interest
samples on radar images is seriously imbalanced compared to
their importance. Those pixels only constitute a small portion
of the image but contribute the majority of the severe weather.
Therefore, the direct migration of the computer vision method
does not perform well, so special treatment must be applied to
archive practical results. At present, the state-of-the-art models
for radar echo extrapolation in DL are mainly the convolu-
tional long short-term memory network (ConvLSTM) [8] and
the improved trajectory gate recurrent unit (TrajGRU) [9]. The
evaluation of these methods has indicated that their application
has great potential compared with the traditional variational
OptFlow method.

The rest of this article is organized as follows. Section II
proposes a new DL model, featuring a fully convolutional struc-
ture based on the analysis of the ConvLSTM and TrajGRU
models. Section III introduces the training and test sets and
a comparative experiment design. Section IV compares and
analyzes the results. Section V presents the conclusion.

II. MODEL

ConvLSTM replaces the matrix multiplication in the tradi-
tional long short-term memory network (LSTM) [10] model
with a convolution operation. Using the other spatiotemporal
correlations in the convolution kernel-associated sample space
at particular locations, it comprehensively takes advantage of the
strength of the convolutional neural network (CNN) [11], [14]
and the LSTM. The issue is that in order to detect motions with
larger incremental steps, a larger convolution kernel is needed
[12], and the learning and calculation of a larger convolution
kernel is expensive [13], [14]. A more serious problem is that
in the CNN model, which was mainly developed from image
recognition and classification, the training process and goal
include learning a fixed set of location-independent convolution
kernel parameters [14], [16]. For radar echo extrapolation, it is
equivalent to forcing the a priori constraint that “the motion
effects at different points on the sample are equal everywhere,”
which is problematic (for example, different underlying surfaces
clearly have different effects on an echo).

To solve ConvLSTM’s fixed convolution kernel problem and
shift-invariant problem [14], [15], [17] which are inherently
characteristic of CNN networks, TrajGRU uses a shallow CNN
model to calculate the radar echo optical flow [23], [24] and then
selectively samples the past spatio-temporal information based
on the OptFlow approaches. Due to the adoption of the recurrent
neural network (RNN), no matter whether it is for forward prop-
agation or backward propagation, the computational cost of the
training process and the storage cost of the intermediate process
are both very expensive. The TrajGRU model often cannot be
stacked to a suitable depth [25], and, thus, the advantages of the
deep model cannot be better utilized (more computing power is
used in the RNN state transition).

For the above considerations, we proposed the learnable opti-
cal flow network (LofNet) model, which predicts the optical flow
for each pixel in a sample and the kernel at that location using
a fully convolutional network (FCN) [18], and then utilizes this

information to obtain the predicted result for the last frame of the
input image sequence. FCNs can achieve pixel-level classifica-
tion of images. Unlike CNNs, which perform the classification
by employing fully connected layers to obtain fixed-length
feature vectors after the convolution layer, FCNs can accept
input images of any size and use the deconvolution layer to
upsample the feature vectors of the last convolution layer, thus
restoring the size of this layer to the size of the input image.
In this way, a prediction can be generated for each pixel while
retaining the spatial information in the original input image [27],
and the pixelwise classification can then be conducted on the
upsampled feature maps. LofNet considers the optical flow at
each point [23], [24] to overcome the issue of ConvLSTM’s fixed
convolution kernel, and the use of a deep network for calculating
the optical flow to overcome the problem of the stacking defects
caused by RNN in TrajGRU.

The LofNet model is defined as: 𝒢(It−n, . . . , It−1, It; θ).
It is the radar echo at time t, while 𝒢 is an FCN and
(It−n, . . . , It−1, It) is the sequence of model input. In the
radar echo extrapolation task, the radar reflectivity is stacked
in the channel direction into the sequence to obtain the input
(It−n−1, . . . , It−1, It) ∈ RN×H×W . LofNet needs to train and
learn the parameter θ

θ =

⎡
⎢⎢⎢⎢⎣

U
V
Kh

Kv

bias

⎤
⎥⎥⎥⎥⎦

where U and V are the wind field components obtained as the
optical flow, while Kh and Kv describe the locally connected
kernel; thus, we have U, V ∈ RH×W , Kh ∈ R1×S×H×W ,
and Kv ∈ RS×1×H×W . Using separable convolution to divide
the local connection weights of size S × S ×H ×W into two
convolutions, Kh and Kv , we can reduce the computational
and spatial complexity from O(S2) to 2S [26]. Finally, the
extrapolation is achieved by

It+1 = ℋ
(
ω
(
It, U, V

)
, Kh⊗outerKv

)
+ bias.

Here, ω denotes a grid-sample operation, andℋ is defined as
the locally connected layer.

This model is inspired by the spatial transformer network [27].
Unlike TrajGRU and ConvLSTM, LofNet explicitly demands
the model to generate a specific output on the corresponding
channel by comparing the parameters of the network 𝒢 to get
the significative result. The innovation of the physical structure
of the model is that clear prior knowledge has been instructed
for the model to learn to generate reasonable optical flow pre-
dictions and the relevant information about the neighborhood of
each pixel through Kh and Kv . By reducing the ambiguity of
learning, model parameters can be used more effectively; there-
fore, LofNet can theoretically produce more accurate prediction
results.

For severe weather nowcasting, calculation efficiency must
be considered if rapid results are required. Easier stacking depth
and higher efficiency than RNN are the benefits of CNN which
we can take advantage of. In comparison with ConvLSTM and
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Fig. 1. Comparison of ConvLSTM, TrajGRU, and LofNet in terms of the
number of parameters and prediction performance, where the batch size of
models is set to 1 to simulate the real-time scenarios. The experiments were
run on a computer with a single NVIDIA GTX 1080Ti GPU.

TrajGRU, our model can efficiently utilize the more abstract
features. Evaluation shows that we have achieved significant
performance improvements which are about 10 times the effi-
ciency improvement while generating reasonable predictions.
Fig. 1 compares ConvLSTM, TrajGRU, and LofNet in terms of
the number of parameters and prediction performance.

III. DATA AND COMPARATIVE DESIGN

The radar images used were the mosaic constant-altitude
plan position indicator of reflectivity factor at 3-km altitude
from 9 Doppler weather radars of the Guangdong Provincial
Meteorological Bureau between 2013 and 2018. The spatial and
temporal resolution for the radar images are 1 km and 6 min,
respectively. The number of pixels in each image is 256 × 256.
In this study, the ground clutter and sun spikes were removed [9]
and only the images with a maximum echo intensity >17 dBZ
were retained. After this, about 55 000 samples were taken using
a sliding window with a step size of 6 (half an hour) and a
window size of 40 (2 h before and after each slide). After the
images were sorted by time, the first 50 000 samples were used
as the training set, and the last 5000 as the test set (there was
no overlap between the training set and the test set). To ensure
that the results represent the strong echo situations, all of the
samples in the test set were sorted by the area with echo intensity
>17 dBZ, and 500 cases were then randomly selected from the
top 25% of the sorted test set. For these 500 cases, the 6-min
interval radar images from the current time through the future
150 min were restored.

In the next section, we will compare the prediction skills
of OptFlow, ConvLSTM, TrajGRU, and LofNet models. The
OptFlow method does not need a training process. The MOVA
algorithm in [5] was used to directly extrapolate the radar echo.
The specific configures for the latter three DL models were

ConvLSTM: 2 layers, hidden_size = 64, kernel_size = 3,
stride = 1, padding = 1;

TrajGRU: 3 layers, L = (13, 13, 9), hidden_size = (64, 192,
192), kernel_size = (7, 3, 1), stride = (5, 1, 1);

LofNet: 6 layers, num_kernel = (8, 16, 32, 64, 128, 256),
kernel_size = 3, stride = 1, padding = 1.

The training set was used to generate the ConvLSTM, Traj-
GRU, and LofNet models until they converged. Then, the above
four models are used to predict the radar image for 500 cases. The
maximum prediction lead time is 150 min. Finally, an objective
evaluation was carried out between the predicted radar images
and the associated “truth” for the four models.

IV. RESULTS

In the evaluation, the radar echo is converted to hourly
rainfall intensity by using a Z−R relationship in [9]: dBZ =
10log58.53 + 15.6logR, where R is the rainfall intensity with
the unit of mm. The evaluation is conducted at the pixel level
from the dichotomous and continuous views, respectively.

First, the rainfall intensity was divided into the thresholds
of >10 mm and >1 mm. If the predicted rainfall intensity and
the observed value were both greater than a given threshold, a
hit occurred. If the observed value exceeded a threshold and the
predicted one was less than the threshold, a report was missed. If
the predicted value exceeded a threshold, but the observed value
did not, a false alarm was made. This study used the following
three scores to evaluate the results: the probability of detection
(POD), the false alarm ratio (FAR), and the critical success index
(CSI):

POD =
Hit

Hit + Miss

FAR =
False

Hit + False

CSI =
Hit

Hit + Miss + False

where Hit represents the number of hits, Miss represents the
number of missed reports, and False represents the number of
false alarms.

In addition, we calculated the root-mean-square error
(RMSE), and the CC between the predicted value and the actual
value, using the following formula:

RMSE =

√∑n
i=1 (Rp,i −Ro,i)

2

n

CC =

∑n
i=1

(
Rp,i −Rp

) (
Ro,i −Ro

)
√∑n

i=1

(
Rp,i −Rp

)2√∑n
i=1

(
Ro,i −Ro

)2
where Rp represents the predicted rainfall intensity, Rp is its
average value, Ro represents the actual rainfall intensity, Ro is
its average value, and n is the total number of pixels. In these
scores, since POD, FAR, and CSI are counted using thresholds,
while RMSE and CC calculate all pixels individually, the latter
scores are more objective and rigorous.

A. Overall Performance

Fig. 2 presents all of the evaluation scores for the 500 cases.
Because each case contained 256 × 256 pixels, the total number
of pixels in the statistics was 32 768 000.

Since the OptFlow method cannot learn the statistical rules
of the historical cases, it can be seen from the line graphs
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Fig. 2. Evaluation scores of the extrapolation performance of test samples. The first and second rows are scores for 10 and 1 mm rainfall intensity, respectively.

that the three DL models essentially outperformed OptFlow. In
particular, as the prediction lead time increased, their advantages
became greater. It can also be seen, however, that the RMSE
values of the ConvLSTM and TrajGRU models were not as good
as those of OptFlow. In terms of POD, ConvLSTM performed
better overall (especially for the rainfall intensity of 1 mm),
yet, at the same time, its FAR was at a high level, indicating
that ConvLSTM tended to overpredict the echo coverage area.
In terms of the more rigorous scores, CSI and RMSE, the
TrajGRU model was an improvement over ConvLSTM (except
for precipitation >10 mm, for which its CSI was somewhat
less). A noticeable fact is that LofNet performed better than the
other models by a large margin (except for the 30-min RMSE,
which was slightly inferior to that of OptFlow), which was the
closest to the observations, and thus represents the best solution
among all of these extrapolation technologies. Furthermore, as
the prediction lead time increased, LofNet exhibited increas-
ingly better performance. Compared to OptFlow, LofNet’s CSI
increased by 85.9%, its CC increased by 49.6%, and its RMSE
decreased by 20.9%. Compared to the current best DL models,
i.e., the ConvLSTM and TrajGRU (using their best values for
comparison), LofNet’s CSI increased by 38.9%, its CC increased
by 33.1%, and its RMSE decreased by 27.7%.

Fig. 3. Comparison of extrapolation results from the case at 17:36 BJT, July
13, 2018. “Obs” represents the observed value. The white lines in the predicted
graphs depict the contours of the observed echoes after 150 min. “A” was the
newly generated convection and “B” was the weakening echo. The echo at “C”
moved and gradually disappeared.

B. Case Analysis

Two cases, one in which the motion of radar echoes was the
dominant characteristic, and the other in which the formation



1264 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

Fig. 4. Evaluation scores of the extrapolation performance of case at 17:36 BJT, July 13, 2018. POD, FAR, and CSI are for 1 mm rainfall intensity.

and dissipation of radar echoes predominated, were selected
for comparative analysis. (More details concerning the cross-
comparisons of all test set processes as well as their score curves
can be found at https://up.metled.com.cn/rc/.)

1) Motion-Dominant Mode: Convective cells are continually
forming, developing, and dissipating. The “motion-dominant
mode” refers to the scenario in which, under the influence of an
essentially consistent environmental wind field, the radar echoes
exhibit a tendency of monolithic translation. Figs. 3 and 4 show
the comparisons for the extrapolation results reported at 17:36
Beijing Time (BJT; equals to UTC+8), July 13, 2018.

Because the “motion-dominant mode” process happens to fol-
low the traditional extrapolation algorithm, in which the extrap-
olation is performed by calculating the initial wind field, both the
RMSE and CC values of OptFlow exceeded those of ConvLSTM
and TrajGRU, and even exceeded LofNet at 30 min. However, as
the extrapolation time increased, the performance of OptFlow
declined. The new convection marked “A” in Fig. 3 was not
predicted, and there were certain misaligned precipitation areas.
After all, the environmental wind field cannot stay unchanged.
ConvLSTM exhibited areas of false-alarmed precipitation that
were too large, as mentioned above. Even though TrajGRU
improved on the problem of overly large precipitation areas,
it failed to predict the precipitation at “A” and “B” and produced
a false alarm at “C,” where the precipitation had dissipated.
Because LofNet can obtain the optical flow of each pixel through
DL, it has pronounced advantages over the other methods, and
its prediction at 150 min was closest to the actual observation.

2) Formation and Dissipation-dominant Mode: Figs. 5 and
6 show the comparisons for the extrapolation results reported
at 14:48 BJT, June 23, 2018. Obviously, the traditional extrap-
olation algorithms appeared unable to deal with the scenario of

Fig. 5. Comparisons of extrapolated results from the case at 14:48 BJT, June
23, 2018. “Obs” represents the observed value. The white lines in the predicted
graphs depict the contours of the observed echoes after 150 min. “D” was the
newly generated convection and “E” was free of echo. The large echo area at
“F” disappeared.

frequent formation and dissipation. ConvLSTM still overpre-
dicted the precipitation areas, and it failed to predicate the
dissipation at “F.” TrajGRU performed significantly better than
ConvLSTM. It successfully predicted the echo formation at
“D,” and part of the dissipation at “F,” although it produced
false alarms for a large number of echoes near “E.” The RMSE
and CC of LofNet were the best, and its results were closest
to the observations. LofNet accurately predicted not only the
formation and dissipation of echoes but also areas and shapes
that were consistent overall with the observations.

https://up.metled.com.cn/rc/
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Fig. 6. Evaluation scores of the extrapolation performance of case at 17:36 BJT, July 13, 2018. POD, FAR, and CSI are for 1 mm rainfall intensity.

V. CONCLUSION

This study described the proposed LofNet model and com-
pared it with the OptFlow method, ConvLSTM, and TrajGRU
models for radar nowcasting experiments. The following con-
clusions are drawn. 1) Traditional algorithms are more suitable
only for the situation in which the environmental wind field
is consistent overall, i.e., the “motion-dominant” scenario, yet
exhibit a poor ability to predict the formation and dissipation
of radar echoes, and their ability diminishes rapidly as the
prediction lead time increases. 2) The DL model generally
performs better than the traditional algorithms, and its advantage
becomes more pronounced as the prediction lead time increases.
It displays a particular ability to predict echo formation and
dissipation, which is worthy of further study and application.
ConvLSTM tends to overpredict the precipitation areas. Traj-
GRU has improved on the overprediction issue to some extent,
which indicates that the introduction of optical flow information
can improve the prediction ability of DL models. LofNet com-
bines the advantages of ConvLSTM and TrajGRU and learns
the optical flow of each pixel through a FCN. It features the
best ability and efficiency for spatial feature extraction, i.e.,
predictions by the LofNet model are closest to the observations
among these algorithms.

At the same time, as a nonlinear statistical model, DL has the
following limitations when applied to radar echo extrapolation:
1) the training of the model has certain requirements for the
amount of historical data, and not many historical cases of
severe convective weather are available; and 2) since weak-echo
pixels predominate, the prediction results of the model tend to
weaken the echoes. In the future, it will be necessary to continue
examining the imbalance problem mentioned above regarding

the number of radar echo samples and to further optimize the
prediction network model.
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