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Analysis and Classification of SAR Textures Using
Information Theory
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Abstract—The use of Bandt–Pompe probability distributions
and descriptors of information theory has been presenting sat-
isfactory results with low computational cost in the time series
analysis literature [1]–[3]. However, these tools have limitations
when applied to data without time dependency. Given this context,
we present a newly proposed technique for texture analysis and
classification based on the Bandt–Pompe symbolization for SAR
data. It consists of linearizing a 2-D patch of the image using the
Hilbert–Peano curve, build an ordinal pattern transition graph
that considers the data amplitude encoded into the weight of the
edges, obtain a probability distribution function derived from this
graph, and compute information theory descriptors (permutation
entropy and statistical complexity) from this distribution and use
them as features to feed a classifier. The ordinal pattern graph we
propose considers that the edges’ weight is related to the absolute
difference of observations, which encodes the information about the
data amplitude. This modification considers the unfavorable signal-
to-noise ratio of SAR images and leads to the characterization
of several types of textures. Experiments with data from Munich
urban areas, Guatemala forest regions, and Cape Canaveral ocean
samples show the effectiveness of our technique in homogeneous ar-
eas, achieving satisfactory separability levels. The two descriptors
chosen in this work are easy and quick to calculate and are used
as input for a k-nearest neighbor classifier. Experiments show that
this technique presents results similar to state-of-the-art techniques
that employ a much larger number of features and, consequently,
impose a higher computational cost.

Index Terms—Ordinal patterns transition graphs, permutation
entropy, synthetic aperture radar (SAR), texture, terrain
classification.

I. INTRODUCTION

T EXTURE is an elusive trait. When dealing with remotely
sensed images, the texture of different patches carries

relevant information that is hard to quantify and transform into
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useful and parsimonious features. This may be since textures,
in this context, is a synesthesia phenomenon that triggers tactile
responses from visual inputs. This article presents a new way of
extracting features from textures, both natural and resulting from
anthropic processes, in synthetic aperture radar (SAR) imagery.

SAR systems are a vital source of data because they provide
high-resolution images in almost all weather and day-night
conditions. They provide basilar information, complementary
to that offered by sensors that operate in other regions of the
electromagnetic spectrum, for a variety of earth observation
applications. Although they present rich information, such data
have challenging characteristics. Most notably, they do not fol-
low the usual Gaussian additive model, and the signal-to-noise
ratio is usually low.

Yue et al. [4] provided a comprehensive account of how the
physical properties of the target are translated into first- and
second-order statistical properties of SAR intensity data. There
is general agreement that nondeterministic textures are encoded
in the second-order features, i.e., in the spatial correlation struc-
ture. Therefore, is frequent the use of covariance matrix and
other measures that assume that a linear dependence, namely the
Pearson correlation coefficient, suffices to characterize natural
textures. However, in SAR imagery, texture is often visible
only over large areas, and the multiplicative and non-Gaussian
nature of speckle antagonizes with the additive assumption that
underlies classical approaches, making complex the process of
characterizing such data.

Surface classification and land use are among the most critical
applications of the SAR image [5]. In recent years, handcrafted
features and representation learning (supervised and unsuper-
vised) algorithms have been proposed [6]–[8]. Algorithms of the
unsupervised generative adversarial network have revolution-
ized the classification of SAR images, improving performance
in small sample problems, and helping the interpretability of
such data [9]. Among the supervised algorithms, support vector
machine [10], random forest [11], and neural network (NN) [12]
have been frequently used in remote sensing. The principle
component analysis [13], autoencoder [14] and the Boltzmann
machine [15] can to extract nonlocal resources and classify
nonlabeled PolSAR pixels using an unsupervised approach.
However, methods such as graph-based semisupervised deep
learning algorithms [16] can improve classification accuracy in
problems with few labeled samples.

Handcrafted features in SAR textures can be studied following
two complementary approaches, namely analyzing the marginal
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properties of the data (first-order statistics), and observing their
spatial structure [4], [17]. In this work, we focus on the sec-
ond approach, which shows relevant results using techniques
from the image processing literature, such as co-occurrence
matrices and Haralick’s descriptors [18]. Through the gray-level
co-occurrence matrices (GLCM), we can extract features that
reflect statistical relationships of the pixel intensity values. On
the other hand, Haralick’s descriptors can capture information
on intensity and amplitude based on global statistics of SAR
images. Radford et al. [19] used textural information derived
from GLCM, along with random forests, for geological mapping
of remote and inaccessible localities; the authors obtained a clas-
sification accuracy of ≈ 90%, even when using limited training
data (≈ 0.15% of the total data). Hagensieker and Waske [20]
evaluated the synergistic contribution of multitemporal L-, C-,
and X-band data to tropical land cover mapping, comparing
classification outcomes of ALOS-2 [21], RADARSAT-2 [22],
and TerraSAR-X [23] datasets for a study site in the Brazilian
Amazon using a wrapper approach. The wrapper utilizes the
GLCM texture information and a random forest classifier to
estimate scene importance. Storie [24] proposed an open-source
workflow for detecting and delineating the urban-rural boundary
using Sentinel-1A SAR data. The author used a combination
of GLCM information and a k-means classifier to produce a
three-category map that distinguishes urban from rural areas. In
higher resolution image classification activities, it is necessary
to obtain more granular information from the data by extracting
local characteristics such as scale and orientation. In this sce-
nario, techniques such as Fourier power spectrum [25], random
fields [26], Gabor filter [27], and wavelet transform [28] are
usually applied.

In our approach, we opt to analyze the 1-D signals resulting
from the linearization of the image samples, using nonparametric
time series analysis techniques. With this approach, we reduce
the dimensionality of the data while preserving the spatial
correlation structure. Observations are then transformed into
ordinal patterns with the Bandt–Pompe symbolization. We use
information theory descriptors to analyze the distributions these
patterns induce, both directly and by building transition graphs
among subsequent patterns. Those descriptors are the entropy
and the statistical complexity, which are easy to obtain and are
interpretable. They reveal important features of the underlying
process.

The following question guides us.

What is the best representation of a texture patch that allows extract-
ing expressive information theory descriptors to characterize textures
in the presence of speckle?

We verified that both the histogram of Bandt–Pompe or-
dinal patterns and classical transition graphs do not convey
enough information for suitable applications as, for instance,
classification.

Henceforth, we propose the weighted amplitude transition
graph (WATG). This graph incorporates the absolute difference
among observations as weights of the edges between nodes
transitions. Such weights take part in the computation of the

probabilities and, thus, influence both entropy and statistical
complexity.

This work’s main contribution is the proposal of a new repre-
sentation of SAR textures, which allows a low-dimensional char-
acterization useful for, among other applications, their classifica-
tion. We compare its performance with the classical histograms
of Bandt–Pompe ordinal patterns and the regular transition
graph. Since the proposed approach has a low computational
cost, the results obtained suggest that this technique has good
potential in other applications, such as texture segmentation
tools of SAR images.

The rest of this article is structured as follows. Section II
describes our proposed methodology. Section II-A presents the
patch linearization process of the images. In Section II-B, we
report the Bandt–Pompe symbolization process. Section II-C
describes the ordinal patterns of transition graphs. Section II-
E shows our technique of ordinal amplitude transition graph
weighting by amplitudes. In Section II-F, we report the informa-
tion theory descriptors used throughout this work. In Section II-
D, we summarize the weighted ordinal patterns methods used to
compare with our proposal. Section III describes the SAR image
datasets, the analysis of ordinal pattern methods, experiments of
sliding window selection, and a quantitative assessment. Finally,
Section IV concludes this article.

II. METHODOLOGY

As outlined in Section I, we are interested in methods that
employ Information Theory descriptors obtained from ordinal
patterns. Such techniques are defined for time series, so the
first step of our proposal consists of turning 2-D image patches
into a 1-D signal; this is discussed in Section II-A. The second
step, presented in Section II-B is obtaining the ordinal patterns.
Such patterns can be used directly, or be the basis for building
transition graphs; these graphs and their variants are described in
Sections II-C and II-D. Our proposal is detailed in Section II-E,
and its properties are assessed in Section II-G

All these transformations produce different empirical prob-
ability distributions. The final features computed on these dis-
tributions are the entropy and statistical complexity, which are
discussed in Section II-F.

A. Linearization of Image Patches

We perform a data dimensionality reduction by turning the
2-D patch into a 1-D signal. This could be accomplished by
reading the data by lines, columns, or any transformation of 2-D
indexes into a sequence of integers. In this work, we chose to
use the Hilbert–Peano [29] curve, due to its low computational
cost and its ability to preserve relevant properties of pixel spatial
correlation.

Nguyen et al. [30] first employed space-filling curves, to map
texture into a 1-D signal. Carincotte et al. [31] used the Hilbert–
Peano curve in the problem of change detection in pairs of
SAR images. The authors noted that this transformation exploits
the spatial locality and that its pseudorandomness of direction
changes work well for a large family of images, especially
natural ones.
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Fig. 1. Hilbert–Peano curves in areas of: (a) 8× 8, (b) 16× 16, and (c) 32×
32 pixels.

Assuming an image patch is supported by an M ×N grid,
we have the following definition.

Definition 1: An image scan is a bijective function f :
N ×N → N in the ordered pair set {(i, j) : 1 ≤ i ≤M, 1 ≤
j ≤ N}, which denotes the points in the domain, for the
closed range of integers {1, . . . ,MN}. A scan rule is
{f−1(1), . . . , f−1(MN)}.

This definition imposes that each pixel is visited only once
and that all pixels are visited.

Space-filling curves, such as raster-1, raster-2, and Hilbert–
Peano scanning techniques, stipulate a proper function f .
Hilbert–Peano curves scan an array of pixels of dimension
2k × 2k, k ∈ N, never keeping the same direction for more
than three consecutive points, as shown in Fig. 1. Using the
Hilbert–Peano curve, we reduce the data dimensionality while
maintaining the patch’s spatial dependence information. In this
work, we use Hilbert–Peano patches of size 128× 128.

Fig. 6(a)–(e) shows five image patches with different textures.
Fig. 6(f)–(j) presents their 1-D representation as signals.

B. Bandt–Pompe Symbolization

Bandt and Pompe [32] introduced the representation of time
series by ordinal patterns as a transformation resistant to noise,
and invariant to nonlinear monotonic transformations. The first
step of the WATG subroutine is to calculate the ordinal patterns
of the 1-D signal by Bandt–Pompe symbolization.

Consider X ≡ {xt}Tt=1 a real valued time series of length
T . Let AD (with D ≥ 2 and D ∈ N) be the symmetric group
of order D! formed by all possible permutation of order D, and
the symbol component vectorπ(D) = (π1, π2, . . . , πD) so every
element π(D) is unique (πj �= πk for every j �= k). Consider for
the time seriesX ≡ {xt}Tt=1 its time delay embedding represen-
tation, with embedding dimension D ≥ 2 and time delay τ ≥ 1
(τ ∈ N, also called “embedding time,” “time delay”, or “delay”)

X
(D,τ)
t = (xt, xt+τ , . . . , xt+(D−1)τ ) (1)

for t = 1, 2, . . . , N with N = T − (D − 1)τ . Then, the vector
X

(D,τ)
t can be mapped to a symbol vector πD

t ∈ AD. This
mapping is such that preserves the desired relation between
the elements xt ∈ X

(D,τ)
t , and all t ∈ {1, . . . , T − (D − 1)τ}

that share this pattern (also called “motif”) are mapped to the
same πD

t .
We define the mapping X

(D,τ)
t 	→ πD

t by ordering the
observations xt ∈ X

(D,τ)
t in increasing order. Consider the

Fig. 2. Illustration of the Bandt and Pompe coding

time seriesX = (1.8, 1.2, 3.2, 4.8, 4.2, 4.5, 2.3, 3.7, 1.2, .5) de-
picted in Fig. 2. Assume we are using patterns of length
D = 5 with unitary time lag τ = 1. The code associated
to X

(5,1)
3 = (x3, . . . , x7) = (3.2, 4.8, 4.2, 4.5, 2.3), shown in

black, is formed by the indexes in π5
3 = (1, 2, 3, 4, 5), which

sort the elements of X
(5,1)
3 in increasing order: 51342. With

this, π̃5
3 = 51342, and we increase the counting related to this

motif in the histogram of all possible patterns of size D = 5.
The dash-dot line in Fig. 2 illustratesX(5,2)

1 , i.e., the sequence
of length D = 5 starting at x1 with lag τ = 2. In this case,
X

(5,2)
1 = (1.8, 3.2, 4.2, 2.3, 1.2), and the corresponding motif

is π̃5
1 = 51423.

The classic approach to calculating the probability distribu-
tion of ordinal patterns is through the frequency histogram.
Denote Π the sequence of symbols obtained by a given series
X

(D,τ)
t . The Bandt–Pompe probability distribution is the relative

frequency of symbols in the series against the D! possible
patterns {π̃D

t }D!
t=1

p(π̃D
t ) =

#
{
X

(D,τ)
t is of type π̃D

t

}
T − (D − 1)τ

(2)

where t ∈ {1, . . . , T − (D − 1)τ}. These probabilities meet the
conditions p(π̃D

t ) ≥ 0 and
∑D!

i=1 p(π̃
D
t ) = 1, and are invariant

before monotonic transformations of the time series values. For
example, the presence of α multiplicative noise in X does not
change the results of the patterns produced.

C. Graph of Transitions Between Ordinal Patterns

Alternatively, one may form an oriented graph with the tran-
sitions from π̃D

t to π̃D
t+1. The ordinal pattern transition graph

G = (V,E) represents the transitions between two consecutive
ordinal patterns over time t. The vertices are the patterns,
and the edges the transitions between them: V = {vπ̃D

t
}, and

E = {(vπ̃D
t
, vπ̃D

t+1
) : vπ̃D

t
, vπ̃D

t+1
∈ V } [33].

The literature reports two approaches to compute the weight
of edges. Some authors employ unweighted edges [34], [35],
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Fig. 3. Outline of the methodology used for the classification of textures.

which represent only the existence of transitions, while oth-
ers apply the frequency of transitions [36], [37]. The weights
W = {wv

π̃D
i
,v

π̃D
j

: vπ̃D
i
, vπ̃D

j
∈ V } assigned to each edge de-

scribe the chance of transitions between the patterns (vπ̃D
i
, vπ̃D

j
)

The weights are calculated as the relative frequency of each

Fig. 4. Ground truth, speckled, and speckled transposed versions. (a) z.
(b) I(1). (c) IT(1).

Fig. 5. Modifications to the H ×C plane features by adding different multi-
plicative noises.

transition, i.e.,

wv
π̃D
i
,v

π̃D
j

=
|Ππ̃D

i ,π̃D
j
|

T − (D − 1)τ − 1
(3)

where |Ππ̃D
i ,π̃D

j
| is the number of transitions from pattern π̃D

i

to pattern π̃D
j ,

∑
v
π̃D
i
,v

π̃D
j

wv
π̃D
i
,v

π̃D
j

= 1, and the denominator

is the number of transitions between sequential patterns in the
series of motifs of length T − (D − 1)τ .

D. Weighted Ordinal Patterns Methods

Recent works proposed using weights in the calculation of
relative frequencies for ordinal patterns. They all aim at incor-
porating the information coded in the amplitude of the observa-
tions back into the permutation entropy. We summarize in the
following those that we used for comparison with our proposal.

1) Weighted Permutation Entropy: The weighted permuta-
tion entropy (WPE) was proposed by Fadlallah et al. [38].

Denote X
(D,τ)
t the arithmetic mean

X
(D,τ)
t =

1

D

D∑
k=1

xt+(k−1). (4)

The weight wt is the sample variance of each vector X(D,τ)
t

wt =
1

D

D∑
k=1

[
xt+(k−1) −X

(D,τ)
t

]2
. (5)
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Fig. 6. Types of regions (Guatemala forest, Canaveral ocean types 1 and 2, Munich urban area, and pasture area), their signal representation, and histograms.
(a) Forest. (b) Sea – lower contrast. (c) Sea – higher contrast. (d) Urban. (e) Pasture. (f) Signal – forest. (h) Signal – sea. (i) Signal – urban. (j) Signal – pasture.
(k) Histogram – forest. (l) Histogram – sea. (m) Histogram – sea. (n) Histogram – urban. (o) Histogram – pasture.

Then, the probability distribution is given from the weighted
relative frequencies

p(π̃D
t ) =

∑
i:{X(D,τ)

i 	→π̃D
t } wi∑T−(D−1)τ

i=1 wi

. (6)

Fig. 7(b) shows the weighted graph produced by the urban
area shown in Figs. 6(d) (as image) and (i) (as signal).

2) Fine-Grained Permutation Entropy: The fine-grained per-
mutation entropy (FGPE) was introduced in [39].

Let βt be the difference series

βt =
{|xt+1 − xt|, . . . , |xt+(D−1) − xt+(D−2)|

}
. (7)

The weight wt quantifies such differences

wt =

⌊
max{βt}
αs(βt)

⌋
(8)

where s is the sample standard deviation, α is a user-defined
parameter, and 
·� is the floor function. Then, wt is added as a
symbol at the end of the corresponding pattern, leading to an
update of Π

π′Dt = {π̃D
t ∪ wt}. (9)

Finally, the probability distribution is calculated as

p(π′Dt ) =
#
{
X

(D,τ)
t is of type π′Dt

}
T − (D − 1)τ

. (10)

3) Amplitude-Aware Permutation Entropy: The amplitude-
aware permutation entropy (AAPE) was proposed in [40]. It
consists of weighting the amplitude of ordinal patterns by both
the mean and the differences of the elements. For this, only an
additional parameter A ∈ [0, 1] is required

wt =
A|xt|
D

+

D−1∑
k=1

(
A|xt+k|

D
+

(1−A)|xt+k − xt+k−1|
D − 1

)
. (11)

The probability distribution is given from the weighted relative
frequencies

p(π̃D
t ) =

∑
i:{X(D,τ)

i 	→π̃D
t } wi∑T−(D−1)τ

i=1 wi

. (12)



668 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

E. Weighted Graph of Transitions Between Ordinal
Patterns – WATG

Most man-made targets are anisotropic scatterers because
their particular shape determines the relationship between their
scatterings and vision directions. Natural targets, such as lawns
and forests, are generally isotropic in flat areas because they
produce volume scatterings with random phases. In this way,
we can associate nonstationary signals with man-made targets
and stationary signals with natural targets. Water surfaces cause
the mirror-like reflection of the incident electromagnetic wave.
It results in an unusually low backscatter, which, thanks to mul-
tiplicative noise, translates into a homogeneous region, almost
without characteristics and without textures [41]. In any case,
speckle produces low signal-to-noise ratio images.

Our proposal hereinafter referred to WATG, differs from the
traditional ordinal pattern transition graph by incorporating the
absolute difference between successive patterns. Since WATG
encodes the amplitude of the signal into the edges’ weights, the
information on the intensity of dispersion can be captured and
used to distinguish classes of regions. Our hypothesis is that
such encoding is effective to discriminate the regions captured
by SAR imagery.

First, each X time series is scaled to [0, 1], since we are
interested in a metric able to compare datasets

xi − xmin

xmax − xmin
	−→ xi (13)

where xmin and xmax are, respectively, the minimum and maxi-
mum values of the series. This transformation is relatively stable
before contamination, e.g., if instead of xmax we observe kxmax

with k ≥ 1, the relative values are not altered. Nevertheless,
other more resistant transformations as, for instance, z scores,
might be considered.

Each X
(D,τ)
t vector is associated with a weight βt that mea-

sures the largest difference between its elements

βt = max{|xi − xj |} (14)

where xi, xj ∈ X
(D,τ)
t .

We propose that the weight assigned to each edge is propor-
tional to the amplitude difference observed in the transition

wv
π̃D
i
,v

π̃D
j

=
∑

i:{X(D,τ)
t 	→π̃D

i }

∑
j:{X(D,τ)

t 	→π̃D
j }
|βi − βj |. (15)

Thus, the probability distribution taken from the weighted am-
plitude transition graph is given as follows:⎧⎨

⎩
λv

π̃D
i
,v

π̃D
j

= 1, if (vπ̃D
i
, vπ̃D

j
) ∈ E,

λv
π̃D
i
,v

π̃D
j

= 0, otherwise
, and (16)

p(π̃D
i , π̃D

j ) =
λv

π̃D
i
,v

π̃D
j

· wv
π̃D
i
,v

π̃D
j∑

v
π̃D
a
,v

π̃D
b

wv
π̃D
a
,v

π̃D
b

. (17)

Note that p(π̃D
i , π̃D

j ) ≥ 0 and
∑

π̃D
i ,π̃D

j
p(π̃D

i , π̃D
j ) = 1, so p

is a probability function.

Thus, series with uniform amplitudes have edges with the
probability of occurrence well distributed along with the graph,
while those with large peaks have edges with the probability of
occurrence much higher than the others.

Fig. 7(b) shows the weighted graph produced by the urban
area shown in Fig. 6(d) (as image) and (i) (as signal) using this
approach. Notice the difference in weights when compared with
Fig. 7(b), which was obtained with WPE.

F. Information-Theoretic Descriptors

We chose two information theory descriptors: Shannon en-
tropy and statistical complexity. Computing these quantities is
the last step of the algorithm, i.e., obtaining the point in the
H × C plane.

Entropy measures the disorder or unpredictability of a
system characterized by a probability measure P . Let P =
{p(π̃D

1 ,π̃D
1 ), p(π̃D

1 ,π̃D
2 ), . . . , p(π̃D

D!,π̃
D
D!)
} = {p1, . . . , pD!2} be the

probability function obtained from the 1-D signal weighted
amplitude transition graph X. Its normalized Shannon entropy
is given by

H(P ) = − 1

2 logD!

D!2∑
�=1

p� log p�. (18)

The entropy’s ability to capture system properties is limited,
so it is necessary to use it in conjunction with other descriptors
to obtain a complete analysis. Other interesting measures are the
distances between P and a probability measure that describes a
noninformative process, typically the uniform distribution.

The Jensen–Shannon distance to the uniform distribution
U = ( 1

D!2 , . . . ,
1

D!2 ) is a measure of how similar the underlying
dynamics is to a noninformative process. It is calculated as

Q′(P ,U) =
D!2∑
�=1

(
p� log

p�
u�

+ u� log
u�

p�

)
. (19)

This quantity is also called “disequilibrium.” The normalized
disequilibrium is Q = Q′/max{Q′}.

Conversely to entropy, the statistical complexity seeks to find
interaction and dependence structures among the elements of a
given series, being an extremely important factor in the study of
dynamic systems. The statistical complexity is defined as [42]

C(P ,U) = H(P )Q(P ,U). (20)

In our analysis, each time series can, then, be described by a
point (H(P ), C(P ,U)). The set of all pairs (H(P ), C(P ,U))
for any time series described by patterns of length D lies in a
compact subset of R2: the entropy-complexity plane. Martín et
al. [43] obtained explicit expressions for the boundaries of this
closed manifold, which depend only on the dimension of the
probability space considered, i.e., D! for the traditional Bandt–
Pompe method, D!×D! in our case. Through such a tool it is
possible to discover the nature of the series, determining if it
corresponds to a chaotic (or other deterministic dynamics) or
stochastic sequences.

Algorithm 1 outlines our methodology. Line 1 transforms the
input texture patch P in a 1-D signal with a Hilbert–Peano
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Fig. 7. Difference of edges weights between the transition graph and the weighted graph of ordinal patterns transitions; urban area, with dimension 3 and delay
1. (a) Transition Graph. (b) WATG.

Algorithm 1: H × C Point from a Patch Using WATG.
Input: Patch of texture P , dimension D and time delay τ
Output: H × C feature
1: signal.1-D← hilbertCurve(P )
2: Probs← WATG(signal.1-D, D, τ )
3: H← ShannonEntropy(Probs)
4: C← StatisticalComplexity(Probs)
6: return H× C

7: function WATGsignal.1-D, D, τ
8: patterns← BPSymbolization(signal.1-D, D, τ )
9: transitions← transitions(patterns)

10: graph← weigthGraph(signal.1-D, transitions)
11: Probs← as.vector(graph)
12:
13: returnProbs
14: end Function

sequence. With this, the spatial information is encoded into a
1-D signal. Line 2 computes the probability distribution of the
weighted transition graph induced by the 1-D signal. The WATG
function is detailed in Lines 7–10. Lines 3 and 4 compute the
two descriptors of the patch.

The WATG function consists of three steps as follows.
1) Each subsequence of size (dimension) D of observations

at delay τ is transformed into an ordinal pattern using the
Bandt–Pompe symbolization (function BPSymboliza-
tion, Line 7).

2) Function transitions (Line 8) calculates the se-
quence of alternations of the ordinal patterns.

3) Function weigthGraph (Line 9) generates the inci-
dence matrix of the graph using the as weights the am-
plitude differences between the time series elements.

Finally, the probability distribution is obtained by turning the
transition matrix into a vector (Line 10). These steps are also
depicted in Fig. 3.

G. Properties

We conducted two experiments to analyze the response of
WATG to different noise levels and image rotations. Our truth
is the deterministic image generated by the function

z(x, y) = sin(4x+ 0.5y)

wherex, y ∈ [−2π, 2π]. Fig. 4(a) shows this function as a 128×
128-pixel patch.

The speckle noise was modeled as outcomes of inde-
pendent, identically distributed unitary-mean Gamma random
variables with shape parameter L (the number of looks,
which controls the signal-to-noise ratio)W (L) ∼ Γ(L,L), with
L ∈ {1, 5, 10, 15, . . . , 45, 50}. The observed images I(L) are
the pixelwise product of z and w(L). Fig. 4(b) shows the
product I(1).

Fig. 5 shows how the point in the H × C plane varies
according to the level of noise introduced. The ground truth
(identified as “0”) has relatively low entropy and is close to the
maximum complexity (the continuous line is the upper bound).
This behavior is typical of deterministic sequences. Observe
that when we inject single-look speckle (L = 1), the entropy
increases along with the complexity. Thus, the technique is
able to identify the deterministic component even when it is
embedded in the strongest possible speckle noise. The point
“1” shifts towards “0” when the signal-to-noise progressively
increases.

We also verified that the points in the H × C plane are almost
insensitive to rotations. Fig. 4(c) shows the transpose of I(1). In
all cases, the coordinates (h, c) of the transposed noisy images
were equal, up to the fourth decimal place, to those of the original
version.

These experiments provide evidence that the WATG mapping
is little sensitive to rotations (thanks to the use of Hilbert–Peano
curves), and that it can identify the presence of underlying struc-
tural information in the presence of varying levels of speckle.
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H. Image Datasets

We used the HH backscatter magnitudes of three quad-
polarimetric L-band SAR images from the NASA Jet Propulsion
Laboratory’s uninhabited aerial vehicle synthetic aperture radar
(UAVSAR) sensor with L = 36 nominal looks as follows.

1) Forest and pasture region of Sierra del Lacandn National
Park, Guatemala, (acquired on April 10, 2015)1. The im-
age has 8917× 3300 pixels with 10 × 2 m resolution.

2) Ocean regions from Cape Canaveral Ocean (acquired on
September 22, 2016). The image has 7038× 3300 pixels
with 10 × 2 m resolution.

3) Urban area of the city of Munich, Germany (acquired on
June 5, 2015)2. The image has 5773× 3300 pixels with
10 × 3 m resolution.

We manually selected 200 samples of size 128× 128 to
compose the dataset used in the experiments. It is organized as
follows: 40 samples from Guatemalan forest regions; 40 samples
from Guatemalan pasture regions; 80 samples from the oceanic
regions of Cape Canaveral, divided into two types with different
contrast; and 40 samples of urban regions of the city of Munich.
Fig. 6 shows examples of each. We applied equalization to the
patches to improve their visualization. On the one hand, the
Bandt–Pompe representation does not change with it because it
is a monotonic transformation. On the other hand, WATG does
change as the result of altering the observed values. Notice that
the subsequent texture analysis employs the unprocessed data.
In our analysis, both types of ocean images are grouped.

We randomly split the samples in training (85%) and test
(15%) sets. We used the first set to train a k-nearest neighbor
classifier algorithm with tenfold cross validation.

III. RESULTS

In this section, we describe the classification process, and
the results of applying WATG. To assess the performance of the
technique here proposed, we analyze the impact of its parameters
and compare its results in the classification with other methods.

A. Analysis of Ordinal Patterns Methods

Fig. 6 shows examples of the ocean, forest, urban, and pas-
ture both as image patches and as 1-D sequences after the
linearization process: the first row shows the equalized patches,
the second row presents the original data as a signal, and the
third row shows the histograms of the original data after scaling
with (13).

The variation in the magnitude of the targets’ backscatter
and, consequently, in the intensity of the image pixels, depends
on the intrinsic properties of the region under analysis. Urban
targets usually exhibit the strongest variation, followed by forest,
pasture, forests, and finally, water bodies. By adding such infor-
mation related to the amplitude, the proposed method is able

1Online. [Available]: https://uavsar.jpl.nasa.gov/cgi-bin/product.
pl?jobName=Lacand_30202_15043_006_150410_L090_CX_01#dados

2Online. [Available]: https://uavsar.jpl.nasa.gov/cgi-bin/product.
pl?jobName=munich_19417_15088_002_150605_L090_CX_01#data

to increase, compared to traditional methods, the granularity of
information captured by ordinal patterns.

As already described in Section II-E, our proposal weights
the edges in terms of the difference of amplitudes. As expected,
the greatest impact is observed on the transition graphs obtained
from urban areas. The urban area 1-D signal shown in Fig. 6 has
the largest dynamic range. Fig. 7 shows how this information
alters the weights of the transition graph. Notice, in particu-
lar, that (vπ̃3

123
, vπ̃3

123
) almost doubled, while (vπ̃3

312
, vπ̃3

231
) and

(vπ̃3
213

, vπ̃3
132

) became negligible. We highlight the impact of
the weighting on the probability distribution in the two extreme
cases observed as follows.

1) If the 1-D signal presents a low amplitude variation and
intensity peaks between, then the transitions of ordinal
patterns that represent the latter have larger weights. This
contributes so that the probability distribution becomes
less uniform among the symbols since it will be more
concentrated in these edges. This will also cause a drop in
entropy when compared to the traditional method.

2) In 1-D signal that shows a uniform amplitude variation,
the weights are well distributed between their edges, giv-
ing rise to a more random probability distribution, thus
obtaining larger entropy.

Fig. 8 shows the impact of using the data amplitude informa-
tion on the weights of the transition graphs.

The Bandt–Pompe symbolization was the first method based
on ordinal patterns proposed in the literature. As shown in Fig. 8
left, it provides a limited separation of the textures. Transition
graphs (see Fig. 8 center) improve the spread of the features,
but with some amount of confusion. Our proposal, shown in
Fig. 8 right, produces well-separated features. In this way, we
were able to obtain, for this experiment, a perfect character-
ization and, consequently, the high descriptive power of the
regions.

B. Experiments on Sliding Window Selection

In this section, we analyze the parameters of the proposed
method and its impact on textures classification. McCullough
et al. [34] reported that inadequate values may hinder important
characteristics of the phenomenon under analysis. The two
parameters of the transition graph are the dimension D, and
the delay τ . In the experiments below, we present the results in
the classification using different values of these parameters.

The classification method’s performance based on ordinal
patterns is sensitive to window size, the embedding dimension,
and the delay. In techniques based in Bandt–Pompe symboliza-
tion, for a fixed signal, as the size of the embedding dimension
decreases, more ordinal patterns are produced. Therefore, we
acquire a higher granularity of information about the dynam-
ics of the system and, consequently, we capture more spatial
dependencies between the elements.

Fig. 9 shows the ROC plane for different values of D ∈
{3, 4, 5, 6} and τ ∈ {1, 2, 3, 4, 5} to select the best configura-
tion. The configurations that extracted most information from
the 1-D signal and, thus, that presented the best results in
the experiments, are (D = 3, τ = 1) and (D = 4, τ = 1). The

https://uavsar.jpl.nasa.gov/cgi-bin/product.pl{?}jobName$=$Lacand_30202_15043_006_150410_L090_CX_01#dados
https://uavsar.jpl.nasa.gov/cgi-bin/product.pl{?}jobName$=$munich_19417_15088_002_150605_L090_CX_01#data
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Fig. 8. Location of Guatemala (forest), Cape Canaveral (ocean), and Munich (urban) in the H ×C plane for dimension 3 and delay 1. The continuous curves
correspond to the maximum and minimum values of C as a function of H .

Fig. 9. Evaluation of the sliding window parameters using ROC curve

technique, thus, shows its best performance choosing the param-
eters with the lowest computational cost.

Fig. 10 shows the points in the H × C produced by the
same samples with all the parameters mentioned previously. The
spatial distribution of the points changes with the parameters and
specific configurations promote better separation. This figure
shows that the discrimination ability decreases with increasing
τ . Larger values of delay dilute the spatial dependence, as
neighboring points in the sample tend to be more distant in
the image. For this reason, we use τ = 1. Fig. 10 suggests
that only one feature (H or C) is sufficient to discriminate
the classes studied. Although this is true for the experiments
herein conducted, we opt to preserve the most common ordinal
pattern analysis, which uses both features. As we studied only
homogeneous patches, we still do not know how this approach
performs with heterogeneous patches. For this last situation, we
may need both features.

Considering τ = 1 (see first column of Fig. 10), we also
notice that D = 3 produces the best separation among classes.
Increasing D also increases the statistical complexity; this is
noticeable for the forest class. The other effect of considering
larger values of D is an increased entropy of ocean and an
undesirable overlap with urban samples.

C. Quantitative Evaluation

We present a comparison between our proposal and other
methods for texture characterization and classification. We use
the following ten methods: Gabor filters [44], Histogram of
oriented gradients (HOG) [45], GLCM [46], speeded-up robust
features (SURF) [47], short time Fourier transform (STFT) [48]
with SURF, Bandt–Pompe probability distribution [32], Ordinal
patterns transition graphs [33], WPE [38], FGPE [39] with
α = 0.5, and AAPE [40] withA = 0.5. As in [49], we computed
four statistics from co-occurrence matrices: contrast, correla-
tion, energy, and homogeneity. Likewise, we implemented the
Gabor filters in five scales and eight orientations; using the
energy, we obtained an 80-D feature vector for each patch. For
the HOG technique, we used image pixels divided into equal
cells of 3× 3 pixels, and for each cell, we computed 6-bin
histograms ranging from 0◦ to 180◦ or 0◦ to 360◦.

We classified the features using the k-nearest neighbor algo-
rithm with Euclidean distance, selecting the value of k with the
automatic grid search method of the Caret R package [50]. For
validation, we used 10-fold cross validation. More details about
the classifier and the sampling can be seen in [51].

Table I presents the number of features each method produces,
as well as its performance at classifying the 200 samples. We
assessed the effectiveness of each approach using the following
metrics. We used the first two metrics (recall and precision)
to evaluate classifiers’ per class performance and the last three
metrics (average accuracy, micro F1-score, and macro F1-score)
to evaluate the overall performance of the multiclass classifiers.
We denote TPi, TNi, FPi, and FNi as the true positives, true
negatives, false positives, and false negatives counts of a given
class i, among a set of K classes, respectively.

1) Recall or true positive rate of the class i (TPRi)

TPRi =
TPi

TPi + FNi
.

2) Precision or positive predictive value of the class i (PPVi)

PPVi =
TPi

TPi + FPi
.
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Fig. 10. Characterization resulting in H ×C plane from the application of the Hilbert–Peano curve in WATG on textures of different regions: Guatemala (forest),
Cape Canaveral (ocean) and Munich (urban). The continuous curves correspond to the maximum and minimum values of C as a function of H .

TABLE I
EXPERIMENTAL RESULTS USING k-NN

3) Average accuracy (AA)

AA =

K∑
i=1

{
TPi + TNi

TPi + TNi + FPi + FNi

}
.

4) Micro F1-score

PPVμ =

∑K
i=1 TPi∑K

i=1 TPi +
∑K

i=1 FPi

TPRμ =

∑K
i=1 TPi∑K

i=1 TPi +
∑K

i=1 FNi

F1-scoreμ = 2
PPVμ × TPRμ

PPVμ + TPRμ
.

5) Macro F1-score

PPVM =
1

K

K∑
i=1

TPi

TPi + FPi

TPRM =
1

K

K∑
i=1

TPi

TPi + FNi

F1-scoreM = 2
PPVM × TPRM

PPVM + TPRM
.

Table I shows that, among the methods of weighting ordi-
nal patterns, FGPE produced the worst results: AA = 76.7%,
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F1-scoreμ = 86.8%, and F1-scoreM = 71.1%. WPE also pro-
duced a low F1-score, but it produced consistently better results
in the other metrics, presenting AA = 93.3%. AAPE achieved
one of the best F1-score results: AA = 83.3%, F1-scoreμ =
94.7%, and F1-scoreM = 89.6%. WATG, considering the tran-
sition graph of ordinal patterns, can better describe the textures
presented, as it achieves the best performance achievable in all
metrics 100%.

STFT + SURF produced the worst results: AA = 30.0%,
F1-scoreμ = 46.2%, and F1-scoreM = 29.2%. SURF alone
provided a better performance: AA = 46.7%, F1-scoreμ =
66.6%, and F1-scoreM = 57.2%. HOG and Gabor filters
achieved the highest success rates among all the handcrafted
methods here considered: AA = 100%, F1-scoreμ = 100%, and
F1-scoreM = 100%. However, WATG achieves that same per-
formance using only 2 features. This reduction implies less
computational power requirement and avoids the curse of di-
mensionality [52]. Moreover, the features it is based upon are
fully interpretable.

IV. CONCLUSION

We presented and assessed a new method of analysis and
classification of SAR image textures. This method consists of
three steps: 1) linearization, 2) computing the weighted ordinal
pattern transition graph, and 3) obtaining information theory
descriptors. A simple k-NN algorithm applied to the pairs
entropy-statistical complexity classifies the data with 100% per-
formance. In addition to such perfect separation among urban,
pasture, ocean, and forest areas, the proposed descriptors are
interpretable in terms of the degree and structure of the spatial
dependence among observations.

Experiments using patches from UAVSAR images showed
that the proposal performs better than GLCM, Bandt–Pompe,
transition graphs, SURF, STFT + SURF, and other techniques,
which also employ amplitude information in the analysis of
ordinal patterns. Our approach provides the same quality of
results obtained with Gabor filters and HOG. However, while
Gabor filters employ 80 features and HOG uses 54 features, our
proposal requires only two. This such reduced dimensionality
consists of a huge advantage over the other techniques, with
added values: First, by reducing the dimension of the features
to 2-D, we can visualize the differences between the classes
of regions analyzed. Second, for machine learning algorithms,
the smaller the number of dimensions, the faster the training
process is, and the less storage space is required. Third, we
managed to avoid overfitting, a recurring problem in data with
high dimensionality.

We also observed that only one feature (H or C) is enough
to discriminate the classes with the same reported performance.
We opted to preserve both features because we consider that
this study shed light on a novel way of SAR image analysis.
Thus, we preferred to stick to the most common ordinal pattern
analysis using the H × C plane. As future work, we consider
investigating the discriminative power of these features in more
complex situations.

Our approach is robust to rotations and the presence of speckle
noise. The behavior showed in Fig. 5 shows that our approach
can capture the speckle contamination adequately.

Since the application of this work is limited to texture patches
from homogeneous regions, we aim to study the possible impacts
of heterogeneous areas, such as mixed culture and urban regions.

V. REPRODUCIBILITY AND REPLICABILITY

Following the guidelines presented in [53], the text,
source code, and data used in this study are available at
the SAR-WATG repository https://github.com/EduardaChagas/
SAR-WATG. The information includes a link to download the
200 labeled samples we employed in the analysis.
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