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Improved Land Cover Classification of VHR Optical
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Abstract—Development of very-high-resolution (VHR) remote
sensing imaging platforms have resulted in a requirement for de-
veloping refined land cover classification maps for various appli-
cations. Therefore, aiming at exploring the accurate boundary and
complex interior texture retrieval in VHR optical remote sensing
images, a novel detail injection network (DI-Net) is proposed in this
article, which is composed of three aspects. First, the decoupling
refinement module embedded with a multiscale representation is
designed to improve the feature extraction capabilities that precede
the encoding-to-decoding process. Second, we pay attention to
the hard examples of boundary and complex interior texture in
land cover classification and design two detail injection attention
modules to solve the feature inactivation phenomenon in gradually
convolutional encoding-to-decoding process. Third, a specific stage
grading loss is proposed to adaptively regulate the structural-level
weights of the encoding and decoding stages, which facilitates
the details retrieval and produce refined land cover classification
results. Finally, various datasets [incl. International Society for
Photogrammetry and Remote Sensing (ISPRS) and Gaofen Image
Dataset (GID)] are employed to demonstrate that the proposed
DI-Net achieves better performance than state-of-the-art methods.
DI-Net provides more accurate boundaries and more consistent
interior textures, and it achieves 86.86% PA and 68.37% mIoU on
ISPRS dataset as well as 77.04% PA and 64.38% mIoU on GID
dataset, respectively.

Index Terms—Encoding-to-decoding, land cover classification,
optical remote sensing, refinement module, unmanned aerial
vehicles (UAVs), very high resolution (VHR).

I. INTRODUCTION

LAND cover classification is an important application for
very high resolution (VHR) optical remote sensing image
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retrieval, and it could be used for environmental monitoring,
urban planning, precision agriculture, forest vegetation survey,
and disaster response [1]–[9]. With advancements in optical
remote sensing technology, a large quantity of VHR commercial
images from unmanned aerial vehicles (UAVs) and satellite
platforms have been released and could be accessed. These
VHR optical remote sensing images all contain various land
covers with clear appearance, which create a challenge for
refined land cover classification. The clear appearance could
present large intraclass differences for complex interior textures
and high requirements of accurate boundary predictions. Fac-
ing this challenge, many semantic segmentation methods are
available to generate refined land cover classification results.
Nevertheless, because of the limited-feature extraction ability of
the traditional methods, deep-learning-based convolution neu-
ral network (CNN) semantic segmentation methods [10]–[19]
are widely used for VHR optical remote sensing refined land
cover classification [20]–[24]. Wang et al. [20] used CaffeNet
to achieve better land cover classification performance than
traditional back propagation neural network. Hu et al. [21]
also proposed a deep convolutional neural network (DCNN)
for land cover mapping of Qinhuangdao in China, and their
experiments showed that DCNN could provide better mapping
results compared with previous methods using the support vector
machine and maximum likelihood classification. In relation to
[20] and [21], these works all demonstrated that the CNN-based
methods could achieve better performance than traditional land
cover classification methods.

Recently, to improve the land cover classification perfor-
mance of CNN-based methods in VHR optical remote sens-
ing images, encoding-to-decoding frameworks and skip con-
nections were widely employed in [25]–[34]. Liu et al. [27]
proposed the multiscale full convolution network (FCN) to
implement maritime semantic segmentation from optical re-
mote sensing images. They proposed a multiscale structure to
assemble global-local comprehensive features, and then, they
utilized shortcuts to connect low-level and high-level features
to generate finer results. Mou et al. [28] proposed a recur-
rent network in FCN (RiFCN) to obtain refined land cover
classification results for VHR optical remote sensing images.
They proposed a recurrent connection structure to fuse coarse
features from deep layers into appearance features from shal-
low layers. Wurm et al. [29] employed an FCN to enlarge
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Fig. 1. General framework of the proposed Detail Injection Net (DI-Net).

the receptive field (RF) by gradually stacking convolutional
structures, which facilitated feature nonlinear mapping to assist
in land cover classification. In addition, the skip connections
were also employed to assist the feature fusion. For the high
resolution UAVs aerial imagery semantic labeling, Pan et al.
[31] proposed a dense pyramid network, in which a pyramid
pooling module combined with two convolutional layers was
designed to improve the feature representation ability. In general,
these land cover classification methods mostly focused on ex-
ploring efficient encoding-to-decoding frameworks for accurate
land cover classification prediction. However, the fine-scale
detail information is gradually diminished by convolutional
structure in the encoding-to-decoding process. Previous works
mostly recovered details by fusing multistage features with
direct shortcut path appended with addition or concatenation,
which was inadequate due to the lack of weight assignment and
adaptability. In order to further improve the refined land cover
classification performance, a series of attention mechanism
based methods have been proposed. Luo et al. [32] proposed
the deep FCN with channel attention mechanism to realize
semantic segmentation from high resolution aerial images. Then,
Yuan et al. [33] also incorporated a wide-range attention unit
for feature selection into a densely connected U-Net (WRAU-
Net) to achieve the road segmentation from remote sensing
images. In our previous work of full receptive field network
(FRF-Net) [34], feature-wise attention mechanisms were pro-
posed to design a novel encoding-to-decoding process, which
captured the globally consistent information efficiently. These
abovementioned methods utilized attention mechanisms in the
channel or feature domain to select more significant features or
enhance their effectiveness, while the detail features are easy

to be ignored. Nevertheless, the accurate projection of image
details (i.e., boundary and complex interior texture pixels) is
important for improving the legibility of land cover mapping
results.

Therefore, for implementing the refined land cover classi-
fication from VHR optical remote sensing images, the detail
injection network (DI-Net) is proposed as shown in Fig. 1.
First, two types of decoupling refinement modules (DRMs) are
proposed to strengthen the feature representation ability be-
fore encoding-to-decoding process. Second, we redesign a new
encoding-to-decoding pattern based on the attention mechanism
combining with channel residual structure to model details in
the feature domain. Third, the proposed specific stage grading
(SG) loss assists DI-Net in rectifying the feature description
of detailed regions (e.g., boundaries and complex interior tex-
tures), where misclassifications frequently occur, by exploring
structural relation constraint between encoder and decoder. Fi-
nally, extensive experiments are carried out on International
Society for Photogrammetry and Remote Sensing (ISPRS) and
Gaofen Image Dataset (GID) datasets. The results show that
the proposed DI-Net provides better performances from VHR
optical remote sensing images, especially by giving more ac-
curate pixel-level prediction of boundaries and more consistent
interior textures than the state-of-the-art methods. In general,
the contributions of this article could be summarized as three
aspects:

1) A novel detail injection CNN-based network is proposed
to improve the VHR optical remote sensing land cover
classification performance, especially in producing accu-
rate pixel-level boundaries and complex interior texture
predictions.
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2) A powerful DRM refinement module and encoding-to-
decoding pattern based on attention mechanism embed-
ding with channel residual structure are proposed to gen-
erate fine-scale feature description for refined land cover
classification.

3) A novel SG loss is proposed to explore the structural
constraint between the encoding and decoding stages,
which is leveraged to retrieve detailed features.

The rest of this article is organized as follows: In Section II, the
related studies in refined land cover classification are presented.
In Section III, we elaborate on the proposed DI-Net in four
subsections. Next, extensive experiments and discussions are
presented in Section IV. Finally, the conclusion is given in
Section V.

II. RELATED WORK

Recently, CNN-based semantic segmentation methods have
been widely applied in refined land cover classification from
VHR optical remote sensing images. Powerful refinement mod-
ules, efficient encoding-to-decoding frameworks, and suitable
loss functions are proposed as the components necessary to
produce finer results. We then examine these aspects to introduce
several related works.

Refinement Module: For achieving the refined land cover
classification results from VHR optical remote sensing images,
an intractable problem is that the detail information would be
severely corrupted by gradually convolutional structure. There-
fore, to rectify the feature maps and to extract detail information,
several research projects began to emphasize the design of
the refinement module. For refining fine-scale details, global
convolution network (GCN) [15] implements a boundary re-
finement module with small convolutional kernels. Then, the
shuffle module [35] based on the principle of dimension trans-
posing overcomes the side effects brought by group convolutions
and achieves channel-wise information flows. Next, efficient
spatial pyramid (ESP) [36] refinement module combined with
point-wise convolution is proposed for preserving large RF with
fewer parameters and memory footprints for the detail feature
description. In addition, the refinement module of FRF-Net
[34] is designed for unifying channel numbers of the different
feature layers and adjusting the feature maps slightly to im-
prove classification performance. Thus, similar to depth-wise
separable convolution, a 1 × 1 convolution is used to extract the
channel-wise dependency, while 3 × 3 convolutions focused on
the spatial-wise dependency extraction. Related to abovemen-
tioned works, smaller convolution kernels are adopted to learn
the fine-scale features. Therefore, in the proposed DI-Net, we
also follow this view point and employ several small convolution
kernels to build the powerful refinement module for refining
fine-scale features.

Encoding-to-Decoding Framework: The encoding-to-
decoding framework has been extensively applied in many
semantic segmentation methods. In general, an encoding-to-
decoding pattern must contain two parts: one encoder module
capturing the higher-level semantic information, and one de-
coder module recovering detailed spatial information. MUnet

[30] utilizes the encoding-to-decoding process with skip con-
nections to implement land cover mapping. RiFCN [28] adopts
a recurrently connected encoding-to-decoding framework to
produce accurate land cover classification results. DeepLab v3+
[14] utilizes an encoding-to-decoding structure to encode abun-
dant contextual information, and a simple yet effective decoder is
adopted to recover the detailed information. In FRF-Net [34], an
encoding-to-decoding process is designed based on two types of
attention mechanism. Self-attention is set up to build the encoder
for capturing long-range dependence. In addition, a fusion atten-
tion decoder is designed to efficiently fuse low-level feature with
high-level feature. In this article, a novel encoding-to-decoding
framework is designed for reserving detail information, with
the aim of achieving powerful boundary and complex interior
texture descriptions for VHR optical remote sensing land covers.

Loss Function: Related to the semantic segmentation task,
cross-entropy loss is widely used in most research. However,
simple cross entropy loss could barely meet the requirements
of refined semantic segmentation. For encoding-to-decoding
structures, there is more auxiliary information that could be
utilized for predicting accurate detailed projections. Much re-
search focuses on exploring dynamic loss function for facilitat-
ing network to learn the sharper details. Zhang et al. [38] propose
the semantic encoding loss (SE-loss) function that predicts the
presence of the object classes in terms of the encoded semantics.
By this means, SE-loss gives equal contributions for multiscale
objects, which make up for the defects of the per-pixel loss.
Bilateral segmentation network [39] utilizes a multistage cross
entropy loss to supervise the training process, in which the
principal loss function is applied to supervise the output of
the entire network, and there are two auxiliary losses utilized
for optimizing the immature feature maps. In general, these
auxiliary losses significantly accelerate the training speed. In
contrast, our method aims at retrieving detailed information from
the encoding-to-decoding process for generating finer land cover
maps.

Focusing on these three problems, we designed DI-Net
and performed experiments on the ISPRS Vaihingen two-
dimensional semantic labeling contest and the GID datasets. The
ISPRS is a dataset composed of VHR UAVs aerial images. The
land covers in the ISPRS dataset are labeled with six classes:
Impervious Surfaces (IS), Building (B), Low Vegetation (LV),
Tree (T), Car (C), and Clutter (CL). The GID is a large-scale
land-use dataset, which has complex interior textures with large
intraclass differences and similar interclass diversities of the six
classes: Built-up (B), Farmland (Far), Forest (F), Meadow (M),
Waters (W), and Unknown (Un).

III. PROPOSED METHODOLOGY

This section elaborates on the principles of the proposed
DI-Net, as shown in Fig. 1. First, ResNet-101 is applied for
feature extraction. Then, the DRM is designed, in which the
multiscale representation and channel shuffle operations are
both applied to generate powerful feature description. Next,
the defect of feature inactivation phenomenon in the traditional
attention mechanism impeding the accurate mapping of details is
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analyzed. Then, novel attention modules are proposed to resolve
detail misclassification problem by alleviating the feature inac-
tivation phenomenon with channel residual structure. Finally,
for further optimizing DI-Net convergence and retrieving detail
feature, the SG loss is proposed based on the structural relation
constraint between the encoder and decoder to effectively refine
the land cover classification predictions on complex interior
textures and boundary areas. Consistent with the sequence of
the workflow, we describe the proposed DI-Net individually, in-
cluding the DRM in Section I-A, the encoding attention module
in Section I-B, the decoding attention module in Section I-C,
and the SG loss in Section I-D.

A. Decoupling Refinement Module

As illustrated in Fig. 1, before the encoding-to-decoding pro-
cess, the DRM in DI-Net is proposed for refining different stage
features, which are extracted from the ResNet-101 backbone.
The channel regulation modules compressing the channels are
adopted to reduce the computational load and memory con-
sumption of the following refinement module and encoding-to-
decoding process. However, method [35] proved that due to the
complexity constraints in different channels, the channel com-
pression by expensive point-wise convolutions would restrict
the accuracy of land cover classification. Therefore, before the
DRM refinement module, we take the complexity constraint into
account and utilize grouped point-wise convolutions to construct
the channel regulation modules.

After the channel regulation module applied for different scale
features, the DRM is utilized to refine detail information. As
shown in Fig. 2(a) and (b), the DRM includes two different
forms based on a uniform idea. Specially, DRM is based on
channel splitting and shuffle operation. The input feature is split
according to the channel, and then split features are calculated
in different convolutional paths, respectively. Thus, the channel
splitting operation could be considered as one kind of grouping
operation to keep different eigenmode in each path. Then, we
also consider adopting several small convolutional kernels for
learning the fine-scale information in feature maps. However,
solely adopting unique convolutional kernel would limit the
feature representation ability. Increasing cardinality (i.e., the size
of the set of paths) with multiscale kernels is more effective than
stacking layers blindly. Therefore, we utilize several 1×3, 3×1,
and 3 × 3 convolution kernels to achieve the multiscale feature
description after input split by N channels into N/m branches
as shown in Fig. 2(a) and (b). Then, each branch has an equal
number of channels m. The convolution kernels of various sizes
can capture different scale context information benefiting feature
representation in DI-Net. After the multiscale feature extraction
by parallel convolutions, the results of all branches are concate-
nated to keep the channels number invariable with the input.
The result is summarized with the input to optimize the training
process. Finally, a channel shuffle operation based on dimension
transposing is used to ensure that the information between
all branches can be communicated and combined properly. In
general, the designed DRM can enhance the fine-scale feature
extraction capability, which is demonstrated in experiments and

Fig. 2. (a) DRM1. (b) DRM2.

analysis Section IV-B (1). Then, following the architecture of
DI-Net in Fig. 1, after the DRMs, the encoding-to-decoding
process based on two types of encoding and decoding attention
modules are introduced as follows.

B. Encoding Attention Module

In general, a better land-cover classification result must have
two strong capabilities. First, the inside of the object must be pre-
dicted correctly and with great consistency. Second, the results
must present more accurate boundary predictions between mul-
tiple land covers. We hold the opinion that encoder can facilitate
the complex interior texture prediction. The RF is enlarged by
gradually convolutions or large convolution kernels in encoder,
which could extract global context semantic to facilitate the
interior classification [15].

For the encoding process, a great amount of research [22]–
[34] focuses on exploring RF and capturing long-range depen-
dency to improve pixel-level interpretation ability. The self-
attention mechanism [37] is adopted as an efficient way to
capture the long-range dependency in the feature domain as
shown in Fig. 3(a). As shown in Fig. 3(b), the self-attention
module is built on the principle of intracalculation to calculate
the statistics correlation of the features. However, the ordinary
self-attention benefits in global consistency at the expense that
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Fig. 3. Traditional self-attention mechanism. (a) Global view of the whole
process. (b) Calculation process to obtain the attention map A.

Fig. 4. Encoding attention module in DI-Net.⊗ denotes matrix multiplication.
SoftMax operation is performed on each row. And ⊕ denotes element-wise
summation process.

the weak correlation features, especially for the features of
the details (i.e., boundary and complex interior texture), suffer
from inactivation and nondiscrimination. The details of images
always be projected with weak response in the deep layer, while
ordinary attention mechanism weakens detail response further.

For avoiding the feature inactivation and generating discrimi-
native feature description, we employed the self-attention mech-
anism combined with channel residual structure to build the
encoding attention module in DI-Net as shown in Fig. 4. Here,
one part of channel group Ires is reserved from the self-attention
calculation for keeping the original feature information. Then,
1 × 1 group convolution combined with the channel shuffle
operation is embedded with self-attention mechanism to capture
the available long-term dependency and alleviate the feature
inactivation phenomenon of the detail features in the Ie channel
group. Therefore, in Fig. 4, the input I ∈ RCI×H×W is split
into two parts of Ie and Ires, which contain β and CI −β

channels separately. Ires would be directly concatenated last,
and the feature map Ie ∈ Rβ×H×W is fed into three 1 × 1
group convolutions appended with channel shuffle operation,
respectively, to generate the three feature maps fe, ge, and he
which have the same channel number β. Then, they are both
reshaped into Rβ×N , where N = H × W. Next, the attention
map Ae is calculated by a matrix multiplication between fe and
ge, and the attention map Ae = RN×N is obtained after the
SoftMax layer. Therefore, element aj,i in Ae could be expressed
as (1)

aj,i =
esij∑N
i=1 e

sij
,

where si,j = (fT
e ⊗ ge)i,j =

β∑
n=1

(fe)
T
i,n ⊗ (ge)n,j . (1)

After the attention map calculation, a matrix multiplication is
taken between feature map he and attention map Ae to produce
ye ∈ Rβ×H×W . Then, the result ye is weighted by a learnable
parameter α and added back to input Ie. At the end, Ires is
concatenated with the result of αye added with Ie to produce
Oe by (2) to generate the encoding feature in DI-Net.

Oe = concat(Ires, αye + Ie), α is initialized as 0. (2)

Following (2) as shown in Fig. 4, the encoding attention mod-
ule could produce the powerful feature description for semantic
generalization, and it further facilitates the pixel-level feature
description of details.

C. Decoding Attention Module

As mentioned at the beginning of Section III-B, to achieve
refined land cover classification, the decoding attention module
recovers fine-scale detail information into high-level feature
from encoding process. To recover fine-scale details reasonably,
an effective way is decoding the high-level feature with the
participation of the low-level feature. Based on this ideal, we
proposed the decoding attention module as shown in Fig. 5. In
Fig. 5(a), output Oe of the encoder and the low-level feature Il are
both fed into a group point-wise convolution layer appended with
the shuffle operation, respectively. Then, in decoding attention
module, the calculations of attention map Ad and multiplication
result yd are identical to the encoding attention module. Then,
an efficient feature fusion strategy is proposed to generate the
final predicted features from multiple features (e.g., Oe, Il, and
yd). First, three 1 × 1 convolutions are applied for Il, Oe, and yd
feature maps to achieve the channel compression, respectively,
as shown in Fig. 5(b). In relation to Oe, Il, and yd feature fusion,
we expect that they all make contributions to the final pixel-
level refined land cover classification prediction. Therefore, the
proportions of the channel numbers are fixed into 2:1:1 for Oe,
Il, and yd feature maps. Then, the compressed feature maps of
Il, Oe, and yd are concatenated and appended with convolution
block for refined land cover classification. In general, following
the proposed decoding attention module, DI-Net could generate
more refined land cover classification results.
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Fig. 5. Decoder attention module for recovering the fine-scale features.

D. Stage Grading Loss

Motivated by further leveraging the finer details to produce
more refined land-cover classification results, SG loss is pro-
posed for supervising the training phase. The multistage features
are graded and constructed with adaptive weights to achieve
detail information retrieval. Here, the proposed SG loss could
be roughly divided into two parts as shown in (3)

loss =

decoder∑
s=encoder

λsL
{
P (s), T

}
+ L

{
p
(encoder)
T , p

(decoder)
T

}
.

(3)
In (3), the first term is composed of the cross entropy loss for

both the encoder and decoder. P(s) means the prediction result
of stage s which indicates the encoding or decoding stage as “0”
or “1,” and T means the target label. Then, we consider that the
output P(1) of the decoder is actually the decision-making feature
layer, which directly decides the prediction accuracy of DI-Net.
Thus, the cross-entropy loss defined between the output P(1) of
the decoder and the target T is supposed to be the principal loss.
Moreover, the output feature of the encoder is considered as an
important part for optimizing training process and producing
better land-cover classification performance. Therefore, we also
employed the output P(0) of the encoder and target T as an
auxiliary loss to supervise the output of the encoder for easily
optimizing the model performance. Here, the parameter λs is
used to balance the weights of the decoder and encoder losses.
In (3), the second term is defined as a grading loss, which can

be formed as (4)

L
{
p(encoder)
T , p(decoder)

T

}

=
∥∥∥max

{
p(encoder)
T − p(decoder)

T + margin, 0
}∥∥∥

2
. (4)

In (4), pT means the prediction probability map on the correct
target label T, and the ‖(·)‖2 means the L2 norm of the given
matrix. Actually, the encoder and decoder sometimes produce
different probability distribution, which means they make the
opposite decisions for a certain pixel. The main reason for
this phenomenon is that the decoder recovers detail features
with the appearance information, which introduces extra detail
information. To be specific, appearance information of details
(i.e., boundary and complex interior texture) is introduced from
shallow layer to the encoder output by the proposed adaptive
decoding process, which causes the decision divergence with
encoder. The feature fusion process in decoder is essential for
recovering the more accurate detailed prediction. Therefore, the
grading loss of (4) is designed for utilizing the structure-level re-
lation of decoder and encoder to rectify the feature representation
in training phase. We consider the decoder more valuable for re-
constructed discriminative details into high-level features from
encoding process, and it must be endowed with more weight
than the encoder to predict land cover classification with an
accurate detail projection. Consequently, in grading loss, there
is an expected relationship p(decoder)T > p

(encoder)
T +margin set

up to retrieve detailed information in the training phase. In
addition, related to the setup relation of encoder and decoder,
λs of decoder in (3) should be relatively larger, because it can
ensure that the training process puts more emphasis on decoder
optimization for refining the details prediction.

IV. EXPERIMENTS AND ANALYSIS

To show the performance of the proposed DI-Net, exten-
sive experiments are performed on published ISPRS and GID
datasets and are compared with several state-of-the-art algo-
rithms, i.e., DeepLab v3+ [14], GCN [15], PSPNet [17], U-Net
[18], and FRF-Net [34]. The experimental results demonstrate
that the proposed DI-Net can achieve the best performance on
pixel-wise land cover classification. As follows, we first intro-
duce datasets and implementation details, and then we perform
a series of ablation experiments and comparison analyses.

A. Datasets and Implement Details

The GID dataset is composed of images with spatial resolution
of 4 m multispectral. For GID dataset, we just adopt the RGB
channels and regulate the images with a down sampling factor of
4 and clip with a size of 360 × 340. Then, 3750 images obtained
with 16 m resolution are split into 2000 training and 1750
validation. For the ISPRS dataset, there are 33 tiles available
for training. Among them, the 16 available tiles are divided
into 11 training tiles and 5 validation tiles in our experiments.
Next, the rest of this dataset is employed as a testing set for
evaluating the performances of the algorithms. In addition, only
three channels of RGB, i.e., the TOP channels, are used in
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TABLE I
COMPARISON OF REFINEMENT MODULES WITH DIFFERENT BACKBONES

all of our experiments, while the DSMs are abandoned. The
ground sampling distance of ISPRS is 9 cm. Next, all comparison
methods are implemented on PyTorch 1.0, and experiments
are performed on an NVIDIA TITAN Xp GPU. We employ
a polynomial learning rate scheduler. And we use a standard
stochastic gradient descent (SGD) optimizer with a momentum
of 0.9 and a weight decay of 5× 10−4. Some data augmentations
are applied to avoid overfitting. In addition, we empirically set
λs of the encoder and decoder in (3) to 0.5 and 1.5, respectively.
The margin in (4) is set to 0.05. The number of groups of the
group convolution used in the channel regulation module is 4. To
compare DI-Net with the state-of-the-art methods, we report the
Pixel Accuracy (PA) [34] and mean of Intersection over Union
(mIoU) [34] averaged over all classes.

B. Ablation Experiments

In this section, for the proposed DRM, encoding-to-decoding
attention modules and SG loss discussions, several ablation
experiments are carried out on ISPRS and GID datasets to
demonstrate their effect on refined land cover classification in
DI-Net.

1) Decoupling Refinement Module: In Section III-A, the pro-
posed DRM contains two variant forms, DRM1 and DRM2, for
detail feature extraction. There are several refinement modules of
GCN boundary refinement module [15], ShuffleNet refinement
module [35], MobileNet refinement module [40], Atrous Spatial
Pyramid Pooling [14], ESP [36], refinement modules in FRF-Net
[34], and two types of DRM tested, respectively. For better
comparisons, we set the baseline without any special refinement
module in DI-Net, and it just uses point-wise convolutions to
regulate the channel number. Then, as the results shown in
Table I, based on the ResNet-101 backbone, the performance
of DI-Net with DRM1 surpasses the baseline by a significant
margin of 2.16%. The models with DRM1 and DRM2 achieve

TABLE II
EXTENT ANALYZATION THAT THE SPLIT PROPORTION EFFECTS THE SCORE

higher scores than the other refinement modules as well. In addi-
tion, related to backbone ResNet-50 and ResNet-152, all results
show our proposed DRM has the better performance. Moreover,
the performance with DRM1 is evidently higher than that with
DRM2. This is because DRM1 provides more eigenmodes, and
a larger cardinality (the size of the set of paths) with multiscale
kernel, which is effective in improving model performance.
DRM leverages the rectification of different eigenmodes in each
path. The input feature of each path is obtained by a channel
splitting operation, through which the number of channels is
reduced. Compared with traditional compression strategy by
1 × 1 convolution, the calculation cost of the channel splitting
operation is lower. Compared with DRM2, DRM1 expands the
eigenmodes instead of increasing convolution depth. Due to the
splitting-convolution-shuffle pattern, the parameters and calcu-
lation loads of DRM1 not increase largely. However, the DRM1
with more eigenmodes achieves higher accuracy proving that the
increase on eigenmodes is efficient. Therefore, these comparison
results prove that the proposed DRM could effectively attain
refined feature tuning before encoding-to-decoding process with
less computation cost.

2) Encoding-to-Decoding Attention Module: As the descrip-
tion in Section III-B, we utilize the attention mechanism com-
bined with the channel residual structure to perform encoding
attention module in DI-Net. The input channels are split into
two parts which include Ires and Ie, respectively. Then, the
channel proportion of Ires and Ie can be defined as ω, whereω =
CIres/(CIe+CIres). The CIres and CIe refer to the number of
channels of Ires and Ie, respectively. Next, we discuss the split
proportion ω and how it is affecting the refined land-cover
classification, and testing results evaluated by mIoU and PA
scores are shown in Table II. In Table II, when ω is equal
to “0,” the encoding attention module degrades to an original
self-attention module. However, if ω is equal to “1,” it means
that there is no encoding attention structure in the network and
the encoder is simply constructed by the DRM. Related to these
two results in first and last lines of Table II, the mIoU of “ω= 0”
is evidently higher than that of “ω = 1,” which indicates that the
encoder with encoding attention is more efficient than encoder
without encoding attention. Thus, we can see that the attention
mechanism can capture the long-range dependence to achieve
feature generalization in the encoding process. Next, when we
endow a certain proportion of ω for Ires and Ie, the results show
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Fig. 6. Feature similarities maps to a pointed pixel, in which hotter color represents more similarities. (a) Input original images. (b) Ground-truths. (c) Results
with point 1 after the attention modules are removed. (d) Results with point 1 with attention modules. (e) Results with point 2 after the attention modules are
removed. (f) Results with point 2 with attention modules.

TABLE III
STUDY ON ATTENTION MODULES IN ENCODING-TO-DECODING FRAMEWORK

The � and × means the presence or absence of attention module, respectively.

that the reserved channels can facilitate the feature description
to resolve the detail feature inactivation in encoding process.
Then, related to the channel residual structure demonstration
and striking a balance between mIoU and PA, we observe that
the encoding attention module achieves the best performance
with the split proportion of ω = 0.25 empirically.

Next, for further discussing the attention structure effect in
proposed DI-Net, several experiments are performed on the IS-
PRS dataset shown in Table III to demonstrate the effectiveness
of the encoding and decoding attention modules. From Table III,
compared with the baselines (e.g., no attention structure) of
Res50 and Res101, complete DI-Net equipped with attention
modules surpasses 4.57% on Res-101 and 5.71% on Res-50.
Note that the decoding attention module could improve per-
formance much more than the encoding attention module, thus
we can find that performance gains of the refined land cover

Fig. 7. Extents of general PA and mIoU scores that effected by losses l1, l2,
and L.

classification from DI-Net primarily come from the decoding
process of the feature fusion. In addition, there are the sev-
eral visualized evaluation results of the attention mechanism
as illustrated in Fig. 6. In Fig. 6, the final predicted feature
layer is presented for evaluating the description ability of detail
features on the condition of with or without the attention struc-
ture in encoding-to-decoding process. The Euclidean distance is
employed for measuring pointed pixels comparing with whole
feature map pixels. Each line in Fig. 6 shows the examples of
two selected points (i.e., points 1 and 2) in three UAVs remote
sensing scenes. The feature similarities maps are individually
calculated with chosen pixels. In Fig. 6(c)–(f), the red color
indicates that the feature is similar to the selected points and
blue color represents the nonsimilar. In the second line, the two
pointed pixels (i.e., points 1 and 2) are separately chosen from
the inside of “car” and the boundary of “clutter.” If the attention
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Fig. 8. Due to the ability to recover sharp feature, DI-Net can correctly classify confusing boundaries and can enhance the legibility of land cover maps.

modules are abandoned, the feature similarities would be disper-
sive and disordered, in which case there is not enough context
information to support correct classification. Consequently, the
segmentation results in this case are easily to be misclassified
or out of shape. The first line in Fig. 6 shows the performance
that the attention modules deal with the intensive appeared small
objects. The point 2 is pointed at the “car” that is partly below the
tree. The response similarities show that the model with attention
modules could still segment the “car” successfully, in situations
where the “cars” are densely arranged. The third line in Fig. 6
denotes the attention modules’ ability of maintaining the inner
consistency in case of a large-area object. We hold the opinion
in Section III-B that sufficient contextual information is critical
for land cover classification, especially for easily confused cate-
gories and large-scale objects. As shown in Fig. 6, in the ISPRS
dataset, some land cover categories have similar appearances
(such as “Tree” and “Low-Vegetation”) and have large gaps
in scale (such as “Building”), for which extracting adequate
context information is more significant. On the contrary, limited
RF leads to indistinguishable feature prediction as shown in
Fig. 6(c) and (e), which results in pixel misclassifications. In
our work, we introduce attention mechanisms to resolve this
challenge. Similarities maps show that the existence of the
attention modules could significantly model context information
and predict more accurate results in our encoding-to-decoding
framework.

3) Stage Grading Loss: In Section III-D, the SG loss is
designed for optimizing the training process and generating ac-
curate detail retrieval maps. Here, we set up several experiments
to test the effect of the SG loss function. On the basis of decoder
entropy loss, we tried to expound the effects of the constraint
on the encoder output and the grading loss between the encoder
and decoder. There are three curves in Fig. 7 separately referring
to the training process with: only entropy loss of decoder l1, the
sum of entropy loss of decoder and encoder l2 and the proposed
SG loss function L. The tested losses l1, l2, and L could be
expressed by formulas as shown in (5)–(7). Here, l1 could be

considered as the baseline.

l1 = L
{
P (decoder), T

}
(5)

l2 =

decoder∑
s=encoder

λsL
{
P (s), T

}
(6)

L =

decoder∑
s=encoder

λsL
{
P (s), T

}
+ L

{
p
(encoder)
T , p

(decoder)
T

}
.

(7)

As shown in Fig. 7, the curve of the L loss achieves the best
performance of PA and mIoU compared with l1 and l2. Here, the
entropy loss defined on the encoder supervises the optimization
of the encoding process and accelerates the convergence of the
whole network. Then, the grading loss is designed for taking
the prediction from encoder as reference to enforce the decoder
generating more confident and stable prediction based on the
set-up relation. Furthermore, in grading loss term, a lot of details
are modeled in final predicted feature layers. Therefore, the
proposed SG loss can effectively improve the quality of the
refined land cover classification results.

In addition, for demostrating the detail projection ability of
DI-Net, our previously work FRF-Net [34] which is a powerful
land cover classification network is employed as a baseline.
Fig. 8 illustrates three examples that have the complex interior
texture and the boundary information. Then, we set FRF-Net
[34] as a baseline, and the error maps are set up according to
the baseline and DI-Net in Fig. 8(e) and (f), respectively. In the
error maps, the black areas denote the misclassified pixels, and
we can see that the misclassifications of boundaries or complex
interior textures frequently occur in the baseline module. Fuzzy
boundary predictions constrict the legibility and usability of the
results, especially for small objects (e.g., “car”) and sporadic
objects (e.g., “tree” and “clutter”). In Fig. 8(g) and (h), there are
histograms to count the error pixels of each class in ISPRS for
the selected examples. These histograms show that the proposed
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TABLE IV
PER-CLASS COMPARISON RESULTS OF DIFFERENT METHODS ON ISPRS AND GID DATASETS

The abbreviation in GID: B-Built-up; Far-Farmland; F-Forest; M-Meadow; W-Waters; Un-Unknown.
Bold numbers represent the best score for a class, italic numbers the second-best score.

Fig. 9. Pixel misclassification rate of difficult context areas in GID.

DI-Net has a lower pixel error rate than the baseline and a
more accurate performance for boundary pixels, which greatly
improves the legibility of the produced land cover mapping. In
addition, the land covers of water, background, built-up, and
farmland in the GID dataset have more complex interior tex-
tures, which are easy to be misclassified. Then, we also employ
the performances of complex objects (i.e., water, background,
built-up, and farmland) in the GID dataset to evaluate the detail
projecting ability of DI-Net as well. The results are shown in
Fig. 9, and we can see that DI-Net also has a lower pixel error
rate comparing with GCN [15], PSP-Net [17], and DeepLab
v3+ [14], respectively, for the water, background, built-up, and
farmland land cover classes.

C. Comparisons Analysis

In this section, we focus on evaluating and comparing the
DI-Net with several state-of-the-art approaches. A series of

TABLE V
COMPUTATIONAL CONSUMPTIONS OF DIFFERENT METHODS

comparison experiments are taken on GID and ISPRS datasets.
As shown in Table IV, the proposed DI-Net achieves a bet-
ter overall performance than other state-of-the-art methods,
whether in ISPRS or GID datasets. Here, the GID dataset
has more complex land-cover distributions which have a com-
plex interior texture and complicated boundaries. Therefore, it
presents a great challenge to refined land-cover classification.
Then, the ISPRS dataset includes VHR UAVs images which
contain several difficult classified land covers such as “car,” “low
vegetable,” and “clutter.” From Table IV, we can see that the
DI-Net can obtain the best performance for “build-up,” “water,”
and “farmland” on GID, and these land covers all have a varied
interior texture and irregular edges. Otherwise, related to the
ISPRS dataset, DI-Net achieves the best performance for “car”
and “low vegetable” and reached the second-best performance
for “clutter.” Furthermore, when we employed the DRM1 as
refinement module, DI-Net can produce 77.04% PA and 64.38%
mIoU on GID and 86.86% PA and 68.37% mIoU on ISPRS.
These indexes significantly demonstrate that the proposed DI-
Net has powerful refined land cover classification abilities. To
further illustrate the DI-Net performance, several visualization
results are shown in Figs. 10 and 11. From Fig. 10, we can see that
DI-Net can provide refined land-cover classification results on
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Fig. 10. Visualization results of refined land cover classification from GID and ISPRS.
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Fig. 11. Local subtle comparison on ISPRS and GID dataset. (a) Image. (b) GroundTruths. (c) DI-Net. (d) FRF-Net. (e) GCN. (f) DeepLabv3+. (g) PSPNet.

Fig. 12. Comparison on performance of boundaries classification.
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GID and ISPRS, which are more similar to the ground truth than
the other state-of-the-art methods. Next, the local detailed results
of refined land-cover classification are shown in Fig. 11. We also
come to the conclusion that the proposed DI-Net produces more
accurate pixel-level predictions. For quantifying the boundary
pixel predicted accuracy further, we defined the boundary area
as several pixels to test DI-Net and the comparisons boundary
prediction performance. In Fig. 12, the horizontal axis represents
the defined number of boundary pixels, and the vertical axis
represents the evaluation indexes of accuracy and mIoU. As
shown in Fig. 12, DI-Net produces a better boundary prediction
performance than the others with the boundary areas defined as
any number of pixels. Finally, the computational complexities
and the times are also evaluated, and the results are shown in
Table V. Here, Res101 is employed as the backbone for DI-Net
and comparisons. Based on time, frame, float-point operations
(FLOPs) and the number of parameters (Params) evaluations,
DI-Net has a lower computational consumption, which reduces
Params and FLOPs further and achieves a better performance
without a large increase in time costs as compared with the
state-of-the-art methods.

V. CONCLUSION

For exploring the more refined land cover classification results
with exquisite details (i.e., confusing boundaries and complex
interior textures) from VHR optical UAVs remote sensing im-
ages, we propose a novel detail injection CNN (DI-Net). In
our work, the DRM is proposed for achieving fine-scale fea-
ture extraction with multiscale representation. Then, a novel
encoding attention module is proposed to address the detail
misclassification caused by the feature inactivation phenomenon
and efficiently capture long-range dependence for semantic
generalization. Deep feature and shallow feature are adaptively
fused by the proposed decoding attention module to reasonably
recover detail information. Moreover, based on the designed
DI-Net structure, the specific SG loss is proposed to further
construct the relation constraints between encoder and decoder
for the retrieval of detail information in final predicted fusion
feature layers. Finally, extensive experiments are carried out
on GID and ISPRS datasets, respectively, and the results show
that the proposed DI-Net can achieve more refined land cover
classification results than the state-of-the-art methods, especially
for fine-grained details.
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