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Unsupervised Image Registration for Video SAR
Xuejun Huang , Jinshan Ding , and Qinghua Guo , Senior Member, IEEE

Abstract—Existing approaches for SAR image registration focus
on the global transformation correction between SAR images.
However, there are often local deformations between images. Due
to the time-changing viewpoint of video SAR, the images suffer
a lot from local deformations, which can result in false alarms
in moving target detection. This article presents an unsupervised
image registration approach for the use of video SAR moving target
detection, which has good registration performance and acceptable
processing efficiency. The designed unsupervised learning-based
framework is a cascade of two convolutional neural networks.
The first network directly predicts the parameters of the rigid
transformation between the reference and unregistered images,
and recovers the global transformation between them. Then, the
second network uses the reference image and the registered image
from the first network as input and then predicts a displacement
field. After that, we put a limitation on the predicted displacement
field to prevent moving target shadows from being aligned. Finally,
the displacement field with limitation is used to compensate local
deformations between the two images. Processing results of real
video SAR images have shown good performance of the proposed
approach with convincing generation ability.

Index Terms—Image registration, local deformations, moving
target detection, moving target detection, unsupervised learning,
video synthetic aperture radar (SAR).

I. INTRODUCTION

V IDEO synthetic aperture radar (SAR) has received a lot
of research attention [1]–[3] recently, which provides a

persistent view of a scene of interest by forming high frame rate
sequential images [4]. It allows for effective detection and track-
ing of moving targets [5], [6], where target shadows in sequential
radar images can be used to detect moving targets [7]. Some
methods have been developed for moving target detection in
video SAR [8], [9], which use the information contained in suc-
cessive frames. Image registration is always used to compensate
for background change between the frames [8], [9], which plays
an important role in the video SAR moving target detection.

The conventional image registration methods can be roughly
grouped into intensity-based methods [10]–[14] and feature-
based methods [15]–[18]. Intensity-based methods recover the
transformation between two images by maximizing an image
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similarity, such as cross correlation or mutual information. How-
ever, these methods are generally associated with high computa-
tional loads. Alternatively, feature-based methods show higher
precision and effectiveness, which basically consist of three
steps: feature extraction, feature matching, and transformation
parameters estimation. First, salient and distinctive features are
extracted from two images. Then, the corresponding features
are identified by a matching technique. Finally, the geometric
transformation parameters are estimated by using the correct
feature correspondences. Besides, some methods combine the
advantages of intensity-based and feature-based methods for
robust image registration [19], [20].

Most of the conventional registration methods just recover
the global transformation between SAR images by estimating
the parameters of a transformation model, such as rigid trans-
formation, similarity transformation, or affine transformation.
Unfortunately, although the global transformation is corrected,
there are often local deformations between two SAR images
from different viewpoints. Since the video SAR system often
works in the spotlight mode, its viewpoint varies with frame
continuously [21]. As a result, video SAR images suffer a lot
from local deformations, significantly adding to the difficulty in
moving target detection.

Recently, convolutional neural networks (CNNs) have been
successfully used in image registration. In [22], image regis-
tration is regarded as a regression task, and a CNN is trained
to predict a transformation matrix for the rigid registration of
synthetic images. In [23], a CNN is used to learn the mapping
from a pair of input images to an output deformation filed.
However, all these methods, which are based on supervised
learning, have to rely on ground truths that come from simulation
or the conventional registration methods. Most recently, some
unsupervised CNN-based methods have been developed for
image registration [24]–[26]. They estimate the deformation
filed between images by optimizing an image similarity often
combined with a smoothing constraint. However, these methods
focus on medical image registration.

Video SAR provides image sequences of a region of interest
at a high frame rate, indicating that the radiometric difference
between video SAR images is very small. Therefore, we can
maximize an image similarity to estimate the deformations be-
tween video SAR images via a displacement field. However, the
motion caused by different viewpoints results in a relatively large
displacement field between video SAR images, and it is difficult
to accurately estimate the displacement field by a CNN. Further-
more, when the CNN is used to estimate the displacement field
directly, moving target shadows in two images will be aligned,
which leads to missing alarms in moving target detection.
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Fig. 1. Unsupervised framework developed for video SAR image registration.

This article presents an unsupervised learning-based frame-
work for video SAR image registration, where a coarse-to-fine
strategy is adopted to register two video SAR images. Specifi-
cally, image registration consists of the global transformation
correction and the local deformation compensation, and the
designed framework is a cascade of two CNNs. We correct the
global transformation to compensate for the motion by the first
CNN, and accurately estimate the residual displacement field
for the local deformation compensation by the second CNN.
Since the remained displacement of stationary targets is smaller
than that of moving target shadows in two images, we put a
limitation on the estimated displacement field to protect moving
target shadows from being aligned.

The rest of this article is organized as follows. Section II
details the complete framework for fine image registration. Ex-
perimental results are presented in Section III, finally Section IV
concludes this article.

II. METHODOLOGY

An unsupervised learning-based framework has been devel-
oped for both global transformation correction and local de-
formation compensation, which is a cascade of a preliminary
registration network and a fine registration network, as shown
in Fig. 1. First, given a reference image Ir and an unregistered
image Iu, the preliminary registration network estimates the
transformation model parameters between the two images. Sec-
ond, according to the parameters, the image after preliminary
registration Ip can be obtained by warping the unregistered
image to the reference image. Third, the fine registration network
takes a pair of the reference image Ir and the image Ip as
input and predicts a displacement field, which represents the
displacement of the corresponding pixels in two images. Then,
we put a limitation on the predicted displacement field to prevent
moving target shadows from being aligned. Finally, based on the
displacement field, we obtain the image after fine registration If
by wrapping the image Ip to the reference image Ir.

A. Global Transformation Correction

The pixel displacement is usually large due to the global
transformation between the reference and unregistered images,

and thus, it is difficult to predict the displacement for compen-
sating local deformations directly by using a CNN. Therefore,
the global transformation between images should be corrected
before local deformation compensation.

The preliminary registration network is similar to the con-
ventional image registration. It estimates the parameters of the
transformation model between images, and then recovers the
global transformation according to these parameters. Different
from the conventional image registration methods, we use the
CNN to estimate the transformation model parameters directly.
Since the sizes of different images in video SAR image se-
quences are the same, the motion between two images can be
seen as a rigid transformation. Hence, the preliminary registra-
tion network only needs to predict the horizontal translationΔx,
vertical translationΔy and rotation angle θ between two images.
Then, the image after preliminary registration can be obtained
by bilinear interpolation, which is given as

{
x2 = x1cos θ + y1sin θ +Δx
y2 = −x1sin θ + y1cos θ +Δy

(1)

where (x1, y1) and (x2, y2) represent 2-D location in the planes
of the unregistered image and the image after preliminary regis-
tration, respectively. It should be pointed out that the bilinear
interpolation can make the preliminary registration network
fully differentiable. Finally, the preliminary registration network
is trained by minimizing the image difference between the image
after preliminary registration and the reference image.

The preliminary registration network takes a concatenated
pairs of the reference and unregistered images as input and
outputs the parameters of the transformation model between the
two images, as shown in Fig. 2. The preliminary registration
network is a fully convolutional neural network, which consists
of eight convolution layers and a global average pooling layer.
The kernel size of the first two convolution layers are 7 × 7
and 5 × 5, respectively, and all the others are 3 × 3. The filter
numbers of eight convolution layers are 32, 64, 128, 256, 256,
256, 256, and 3, respectively. The stride of the last convolution
layer is 1, and all the others are 2. Throughout the network, a
rectified linear unit (ReLU) is used for activation, except for the
final convolution layer, which has a linear output.
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Fig. 2. Structure of the preliminary registration network, where the green,
orange, and blue rectangle represents the convolution layer, the global average
pooling layer, and bilinear interpolation, respectively. The circles denote the
estimated parameters of the transformation model.

The cross correlation (CC) is frequently used to measure
image similarity. A higher CC between the reference image
Ir and the image after preliminary registration Ip indicates a
better alignment, and hence, the loss function of the preliminary
registration network can be defined as

Loss1 = 1− CC(Ir, Ip). (2)

B. Local Deformation Compensation

After global transformation correction, there are still some
local deformations remained between images. For local defor-
mation compensation, we first use the fine registration network
to learn the complex nonlinear mapping from a pair of the
reference image and the image after preliminary registration to
a displacement field D. The displacement field D consists of
two 2-D matrix Dx and Dy , which represent the horizontal and
vertical displacement of pixels corresponding to the same target
in two images, respectively. Then, according to the displacement
field D, the image after preliminary registration Ip is deformed
to match the reference image Ir by bilinear interpolation, and
the image after fine registration If is obtained, which can be
expressed as

If (x, y) = Ip(x+Dx(x, y), y +Dy(x, y)) ≈ Ir(x, y) (3)

where (x, y) represents a 2-D location in the image plane.
Finally, the fine registration network is optimized by minimizing
the image difference between the image after fine registration
and the reference images.

The fine registration network takes a concatenated pair of
the reference image and the image after preliminary registration
as input and outputs a displacement field, as shown in Fig. 4,
which consists of an encoder module and a decoder module.
The encoder extracts features from the input image. It has
the basic structure of ResNet-50 [28], which has been found
to have a good performance in feature representation. Since
the original ResNet-50 is designed for image recognition, we
slightly modify it for image registration. We remove the ending
average pooling and the full connection layer, and the filters of all
convolution layers are reduced by half, and thus the parameters
and computational cost decrease. The decoder module outputs
the predicted displacement field from features, which consists
of six deconvolution layers to enlarge the spatial feature maps
to full scale as input. The kernel size of the last deconvolution
layers is 7 × 7, and the others are 3 × 3. The filter numbers

of six deconvolution layers are 512, 256, 128, 64, 32, and 2,
respectively. To combine both high-level and low-level features,
we use skip connections between the encoder and the decoder
module at different resolutions.

The loss function of the fine registration network includes
local intensity loss Li, structural loss Ls, and smoothness loss
Lf , which can be written as

Loss2 = Li + αLs + βLd

Li = 1− LCC(Mp(Ir),Mp(If ))

Ls = ‖Sobel(Mp(Ir))− Sobel(Mp(If ))‖
Lf = ‖∂xD‖e−‖∂xMp(Ir)‖ + ‖∂yD‖e−‖∂yMp(Ir)‖ (4)

where LCC denotes local cross correlation [25] which indicates
local image similarity between the reference image Ir and
the image after fine registration If . Sobel represents the edge
detection by using Sobel operator.α andβ are hyper-parameters,
which are set to 10 and 0.1 by default. Mp denotes the mean
filter with 3 × 3 kernel size, which can mitigate the effect
of the speckle noise. ∂x and ∂y represent partial derivatives
along horizontal and vertical directions. The structural loss and
the local intensity loss encourage the fine registration image to
appear similar to the reference image. The smoothness lossLf is
generally needed to encourage the estimated displacement field
to be locally smooth. Since local deformations often occur at
the edge, there is large displacement in the image with a large
gradient. As a result, in the smoothness loss, the gradients of the
displacement field are weighted by image gradients.

To facilitate moving target detection, moving target shadows
in two images should not be aligned. After global transformation
correction, the remained displacement of stationary targets is
smaller than that of moving target shadows in two images.
Therefore, we put a limitation on the displacement field D1

predicted by the fine registration network, which makes the
displacement of dark areas small, and the final displacement
field D is given as

D(x, y) =

{
D1(x, y), Ip(x, y) > Imp or ‖D1(x, y)‖ < γ

0, others
(5)

where Imp represents the mean value of the image Ip. γ is a
threshold of displacement, which is set to 3 by default.

III. EXPERIMENTAL RESULTS

The proposed unsupervised image registration approach has
been used to process the real video SAR data released by
Sandia National Laboratory. The generalization ability of the
proposed approach is discussed, which becomes a concern on
deep learning algorithms when applied in radar applications.

A. Datasets and Training Strategy

The datasets that we built based on the released Sandia data
include a training set and two testing sets, and one of the test
sets corresponds to the same scenario as the training set and
the other is different from the training set. The two testing sets



1078 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

Fig. 3. Structure of the fine registration network.

Fig. 4. Processing results of the proposed approach on four representative image pairs from the SAR video of Eubank Gate. (a) Reference images. (b) Unregistered
images. (c) Registered images were obtained by the proposed approach. (d) Ratio images between the reference images and the registered images, which are calculated
as a pixel to pixel ratio between the two images. (e) Estimated displacement fields which are visualized using the standard optical-flow visualization [29].

are used to verify the image registration performance of the
proposed approach, under the condition that the training scenario
is consistent and inconsistent with the test scenario, respectively.

Two different SAR videos are used. The first radar video
of Eubank Gate contains 900 frames with a size of 720× 640
pixels, and the first 100 frames are for testing and the remaining

800 frames are used to build the training set. The original training
set is augmented by cutting and rotating as we usually do in
preparing the datasets for deep learning applications, provid-
ing total 80 000 images with a size of 512× 512 pixels. The
original 100 frames for testing are cut into 100 images with
a size of 512× 512 pixels. The first testing set are composed
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of the 100 cropped images. The second testing set consists of
55 consecutive frames from the second SAR video. In the 55
consecutive frames, each frame contains a SAR image and a
range-Doppler spectrum, and moving targets in the SAR image
are marked by green squares near them. Therefore, these frames
cannot be directly used for testing, and an image preprocessing
has been done to remove the green square markings in the 55
frames and the range-Doppler spectrum. All images in datasets
are resized to 512 × 512.

The proposed deep learning framework is trained in two
stages. In the first place, the preliminary registration network is
optimized by Adam optimizer with a batch size of 16. The learn-
ing rate is set to 2× 10−4 and 2× 10−5 in the first 80 000 and
the next 20 000 iterations, respectively. After that, the weights
in the preliminary registration network is fixed, and the fine
registration network is trained by Adam optimizer with a batch
size of 2. The learning rate is set to 2× 10−4 and 2× 10−5 in
the first 80 000 and the next 20 000 iterations, respectively.

B. Evaluation Metrics

We use the peak signal-to-noise ratio (PSNR) and the struc-
tural similarity index (SSIM) [27] to quantitatively assess the
performance of the proposed approach. The PSNR and the
SSIM measure the similarity between the reference image and
registered image, and higher PSNR or SSIM indicates better
performance in image registration. It should be pointed out that
the reference and registered images are first denoised by the Lee
filter [30], a common despeckling algorithm for SAR images,
to mitigate the effect of the speckle noise on the performance
assessment.

Additionally, a better method for video SAR image registra-
tion should be more helpful for moving target detection. There-
fore, we employ a moving target detection method to process the
registration results, and evaluate the detection performance via
false alarms and missing alarms. More false alarms and missing
alarms reveal worse performance in moving target detection,
namely, worse image alignment. The detection method reported
in [9] is used, which consists of image registration, constant
false alarm rate (CFAR) detection, and morphological process-
ing. More specifically, given a current image and its nearby
images in a video SAR image sequence, the nearby images are
aligned to the current frame by an image registration method.
Subsequently, the registered nearby images are used to calculate
a reference image which represents the static background. After
that, the current image is divided by the reference image to
yield a ratio image, which highlights moving target shadows
and suppresses the static scene. Then, the CFAR is performed on
the ratio image to detect moving targets. Finally, morphological
processing is employed to suppress the missing and false alarms.

C. Registration Results

We compare the proposed approach with three state-of-the-
art image registration approaches including SAR-SIFT, locally
linear transforming (LLT) [31], and locality preserving match-
ing (LPM) [32]. The SAR-SIFT is a classical and well-known
algorithm for SAR image registration. The LPM and the LLT

TABLE I
PSNR AND SSIM RESULTS ON 500 IMAGE PAIRS FORM

THE FIRST TESTING SET

TABLE II
FALSE ALARM AND MISSING ALARMS ON THE IMAGES FROM THE FIRST

TESTING SET

focus on feature matching, which remove mismatches from
given putative image feature correspondences for robust image
registration.

Two images are randomly selected from the testing set that
corresponds to the same scenario as the training set, which re-
peats 500 times to yield 500 image pairs. The proposed approach
is used to process the 500 image pairs, and the registration results
on four representative image pairs are given in Fig. 4. One of the
representative results is compared with those of the SAR-SIFT,
the LLT, and the LPM, as shown in Fig. 5. It is observable in Fig. 5
that the proposed approach has the best ability to compensate
for local deformations compared to these conventional methods.
Furthermore, Table I lists the assessment results of different
methods on these 500 image pairs. As revealed by the PSNR
and SSIM values, the SAR-SIFT and the LPM perform poorly in
video SAR image registration because they focus on correcting
the global affine transformation. Meanwhile, the LLT is not
suitable for video SAR image registration although it can esti-
mate the displacement field between images by a displacement
function. The LLT assumes that the displacement function lies
within a specific functional space. However, this assumption
cannot hold in some cases. By contrast, the proposed approach
shows the best performance in video SAR image registration.

We detect moving targets on the 100 sequential images in test-
ing set that corresponds to the same scenario as the training set.
During the detection, different registration approaches are used
to align each image and its adjacent images. The detection results
are given in Table II. It can be seen that the proposed approach
has the fewest false alarms and missing alarms. Therefore,
compared to the conventional image registration methods, the
proposed approach is more helpful for moving target detection.
However, there are still a few missing alarms and false alarms in
the detection results using the registration results of the proposed
approach, which will resort to advanced detection methods.

Additionally, we compare the proposed approach with the
conventional methods in terms of processing efficiency, as
shown in Table III. The conventional methods and the proposed
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Fig. 5. Registration results of a representative image pair from the SAR
video of Eubank Gate by using different approaches. (a) Reference image. (b)
Unregistered image. (c), (e), (g), and (i) are registered images obtained by the
SAR-SIFT, LLT, LPM, and the proposed approach, respectively. (d), (f), (h),
and (j) are ratio images between the reference image and the registered images
obtained by the SAR-SIFT, LLT, LPM, and the proposed approach, respectively.

TABLE III
RUNTIME OF DIFFERENT REGISTRATION APPROACHES APPLIED TO A 512 ×

512 RADAR IMAGE PAIR

TABLE IV
THE ASSESSMENT RESULTS ON THE FIRST TESTING SET IN TWO CASES

TABLE V
ASSESSMENT RESULTS ON THE FIRST TESTING SET BY USING DIFFERENT

REGISTRATION STRATEGIES

approach are tested in Matlab R2018a and Tensorflow 1.13.1,
respectively, on a platform with an Intel E5-2650 v4 CPU and
one Nvidia Titan Rtx GPU. When running on the CPU, the
developed CNN-based approach takes 1.2 s to register a 512
× 512 image pair. Although the efficiency of the proposed
approach is not the best, it is acceptable.

D. Ablation Study

To examine the influence of the displacement limitation, the
proposed deep learning framework is trained without this limita-
tion. We compare the performance of the developed framework
under limitation and without limitation, as shown in Table IV.
Obviously, the limitation leads to a slight decrease in image
similarity between the reference and registered images, but it
significantly improves the detection performance.

An experiment reveals the superiority of the adopted coarse-
to-fine strategy for video SAR image registration. A CNN is
used to directly estimate the displacement field between video
SAR images, which only needs one step for image registration as
many medical image registration methods. For fair comparison,
the CNN shares the same network architecture and loss function
with the developed fine registration network. The performance of
the CNN is compared with that of the proposed approach, which
is given in Table V. In addition, Fig. 6 exhibits the registration
results of the CNN and the proposed approach on a representative
image pair. Form both the quantitative assessment results and
the visual performance, the proposed approach shows a better
performance in image registration. Especially in visual results,
the CNN brings in the artifacts which make the registered images
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TABLE VI
ABLATION STUDY OF HYPER-PARAMETER SETTING

Fig. 6. Registration results of a representative image pair by using two
strategies. (a) Reference image. (b) Unregistered image. (c) Registered image
obtained by the CNN that directly estimates the displacement field between
the reference and unregistered images. (d) Registered image obtained by the
proposed approach that uses coarse-to-fine strategy.

unnatural. Actually, unlike the medical image registration, it is
unsuitable to use CNN to directly estimate the displacement
field between video SAR images due to two factors. On the one
hand, the rigid motion between images results in a relatively
large displacement field which is more difficult to be accurately
estimated. On the other hand, moving target shadows are possi-
ble to be aligned when estimating the displacement field directly.

We additionally perform an ablation study to examine the
impact of the hyper-parameter α, the hyper-parameter β, and
the threshold γ. In the experiment, when changing the value
of one parameter to examine its influence, the values of other
parameters are default. Table VI shows ablations over these
parameter values. Clearly, the performance is found to be rel-
atively stable with respect to the values of hyper-parameters α
and β. In addition, with the increase of the threshold γ, the
image similarity between the reference and registered images
increases, but moving target shadows are more possible to be
aligned and thus the detection performance decreases.

E. Generalization Ability

Deep learning has been intensively applied in quite a few
related fields, for example, target recognition in electro-optical

TABLE VII
PSNR AND SSIM RESULTS ON THE OTHER SAR VIDEO DATA THAT ARE NOT

USED IN TRAINING

TABLE VIII
FALSE ALARMS AND MISSING ALARMS RESULTS ON THE OTHER SAR VIDEO

DATA THAT ARE NOT USED IN TRAINING

images or videos. Some works have shown the potentials of
deep learning technology in radar, particularly in image-based
classification and recognition. Different from the electro-optical
images that are easily available, numerous radar images with suf-
ficient diversity cannot be relied on in most cases, which limits
the training of any designed networks. There have been some se-
rious concerns about the generalization ability of applying deep
learning in radar. We attempt to briefly discuss the generalization
ability of the proposed approach for completeness.

The proposed approach has been used to process the second
SAR video product, while the network is trained by the first
SAR video dataset. The 250 image pairs, randomly selected
from the second testing set, are fed into the proposed framework
for testing. We compare the test results with the registration
results of the SAR-SIFT, the LLT, and the LPM. Table VII
reports the PSNR and SSIM between the reference and registered
images obtained by these approaches. The registration results
by using different approach is given in Fig. 7. It is obvious that
the proposed approach has better performance in video SAR
image registration compared to the conventional methods. In
addition, based on different image registration approaches, we
perform moving target detection on the second testing set, and
the detection results are listed in Table VIII. It should be pointed
out that it is easier to detect the moving target on the second
SAR video where only a target moves, and hence, all detection
results on the second testing set are perfect. As confirmed by
the image similarity and the detection results, the proposed
approach outperforms the conventional methods when applied
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Fig. 7. Registration results of the other SAR video data that are not used
in training of the developed framework. (a) Reference image, (b) unregistered
image, (c), (e), (g), and (i) are registered images obtained by the SAR-SIFT,
LLT, LPM, and the proposed approach, respectively. (d), (f), (h), and (j) are
ratio image between the reference image and the registered image obtained by
the SAR-SIFT, LLT, LPM, and the proposed approach, respectively.

to an unknown scenario. It can be concluded that the proposed
approach has a satisfactory generalization ability, which comes
from its unsupervised training strategy.

IV. CONCLUSION

An unsupervised framework has been developed for image
registration of video SAR, which consists of a preliminary

registration network and a fine registration network. The prelim-
inary registration network predicts the parameters of the rigid
transformation model between two images, and registers the
two images accordingly. After that, the remained displacement
of stationary targets is smaller than that of moving targets in
the two images. Therefore, the fine registration network can
accurately estimate the remained displacement of stationary
targets to compensate all the differences between two video
SAR images except for moving targets shadows. Processing
results of real video SAR data have revealed that the proposed
unsupervised approach achieves good performance in terms of
the image registration. In addition, the proposed approach shows
a convincing generalization ability when applied to a different
dataset, which is appealing to radar applications.

In future work, we would like to further evaluate the gener-
ation ability of the proposed approach on video SAR datasets
with much radiometric difference. An effective target detection
method based on the proposed image registration framework is
highly desired for video SAR.
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