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Sea-Surface Floating Small Target Detection by
Multifeature Detector Based on Isolation Forest
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Abstract—In this article, a multifeature detector based on isola-
tion forest (iForest) algorithm is developed to detect floating small
targets in sea clutter. The conventional multifeature detector can
only process three features or less. The proposed detector aims to
break the limitation of feature dimensions’ number of the existed
feature-based detectors and to improve the detection performance.
It transforms the detection of floating small target into an anomaly
detection problem in a high-dimensional feature space, breaking
the limitation of the number of features. First, a modified isolation
forest is constructed from multiple features extracted from sea
clutter. Meanwhile, the relative Doppler coefficient of variation
is proposed and added into the feature library. Then, taking the
average path length as detection statistic, the detection threshold
is obtained by Monte-Carlo technique at the given false alarm
probability. Finally, the final decision is made by comparing the
path length calculated from the cell under test of radar returns
with the detection threshold. Detection performances are evaluated
based on twenty measured IPIX radar datasets. The experiment
results show that the multifeature detector based on isolation forest
can obtain a significant performance improvement and has lower
computation cost compared with the existed detectors.

Index Terms—Feature detection, floating small target detection,
isolation forest algorithm, sea clutter.

I. INTRODUCTION

THE detection of sea-surface floating small targets, such as
floating ice, victims of aircraft crashes at sea, vent pipes,

periscopes of the submarine, etc., has always been a difficult
problem in the field of radar target detection. The difficulties
of detecting floating small targets in sea clutter arise from the
complex and varying characteristics of sea clutter, wider Doppler
bandwidth, and smaller radar cross section (RCS) of weak target
[1], [2]. However, the effective detection of such targets is of
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great significance for navigation safety, sea-surface rescue, and
national defense security.

High resolution sea clutter, with large fluctuations and heavy
tail, usually shows the non-Gaussian characteristics, which de-
viates from the Gaussian clutter. In recent years, the compound
Gaussian model is used to characterize heavy-tailed sea clutter
successfully. The K distribution with Gamma texture [3], the
generalized Pareto distribution with inverse Gamma texture
[4], [5] and the compound Gaussian distribution with inverse
Gaussian texture (CG-IG) [6] have been used to model sea clutter
under different environment and radar parameters. All sea clutter
models have their optimal detectors or near-optimal detectors,
such as the optimum K detector (OKD) for the K-distribution
clutter [7], the generalized likelihood ratio test linear-threshold
detector (GLRT-LTD) for generalized Pareto clutter [5] and the
generalized likelihood ratio test with IG texture (GLRT-IG)
detector for CG-IG clutter [6], and they all distinguish target
from sea clutter by energy difference. However, weaker energy
of target and lower radial velocity between target and radar of
floating small target make the energy-based detectors unable
to fully exert their advantages. In order to accumulate more
energy in different frequency subbands, the modified adaptive
coherent detectors [8], [9] have been applied to solve this prob-
lem. Nevertheless, these detectors require that potential targets
must keep a constant radial velocity during the integration time
and the relatively high signal-to-clutter ratio (SCR). Naturally,
these rigorous requirements limit their scalability of the practical
application seriously, especially for the detection of floating
small target.

For floating small targets, traditional detection methods, such
as the constant false alarm rate (CFAR) class detectors or the
adaptive class detectors, exhibit an unacceptable performance
loss. In recent years, many detectors employed in target detection
in sea clutter have been proposed, which are almost applicable
for large warship targets, but not suitable for floating small
targets. There are a few detectors designed for floating small
target detection. First, some modified adaptive detectors were
proposed, such as the block-adaptive clutter suppression and
subband adaptive detectors [8], [9], which have been introduced
above. Second, the nonlinear detectors based on fractal char-
acters [10] change the approach of establishing the sea clutter
model, but the single detection feature fails to make full use
of the return information and has not obtained satisfactory
detection performance. In addition, the neural-network-based
detector [11], [12] is not suitable for practical application due
to higher computational complexity, the lack of target training
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samples and the difficulty of controlling the false alarm prob-
ability (PFA). Third, the detectors based on multiple features
are a class of novel and effective methods to detect floating
small targets. Via the long autoregressive model, the parameters
of Doppler power spectra (DPS) of time series are mapped
into Riemannian manifold [13], and then the detection is ac-
complished by Riemannian geometry method. Trifeature-based
detectors, including amplitude and Doppler three features [14],
polarization information three features [15], and three time-
frequency (TF) features [16], achieve fairly good detection
performance for floating small targets detection. However, the
fast convexhull learning algorithm can only use three detection
features at most, because PFA of convexhull is hard to control
precisely in high-dimensional space (feature dimension is larger
than 3). In addition, the detection must be processed as fast as
possible to get the result in practical application. Since the high
computational complexity of convexhull-class detectors makes
it difficult to adapt to the fast-changing sea scene, it is also a
disadvantage of the abovementioned trifeature-based detectors.
Moreover, although the support vector machine (SVM)-based
detector [17] obtains good detection performance, applying the
measured data to model training and testing is a typical two-class
classification strategy. Two-class classification model, such as
the SVM or other models requiring target samples for training,
is one-sided and unavailable in practical detection for the lack
of target samples and the variety of targets. Thus, the two-class
classification model is not suitable for radar target detection up to
now. In addition, the principal component analysis (PCA)-based
detector [18] makes the training samples and testing samples
with different detection models, so it has a great deviation from
radar target detection and cannot be well used.

Data anomaly detection, as one of the important tasks of data
mining [19], is the process of finding instances in a dataset
which are different from the majority of the data. Anomaly
detection has been applied in a variety of application fields, such
as fraud detection in finance, fault diagnosis in mechanics, and
intrusion detection in network security. For floating small target
detection in sea-surface, anomaly detection algorithms only
need easily-obtained sea clutter samples for training detection
models, which is more suitable for the problem. Local outlier
factor (LOF)[20], [21], one-class SVM (OCSVM) [22], [23],
robust covariance [24], and isolation forest (iForest) algorithm
[25], [26] are the representative anomaly detection algorithms.
Inspired by the convexhull-class detector, this article proposes a
multifeature detector based on iForest algorithm. It overcomes
the shortcomings that convexhull cannot make full use of multi-
ple features and the defects of local effective detection algorithm
guided by target samples. This detector can arbitrarily utilize a
variety of detection features and effectively detect small targets
in high-dimensional space. In addition, the relative Doppler
coefficient of variance (RCV) is introduced and utilized in our
proposed detector. Because of the advantage of the isolation
forest algorithm with linear computational complexity, the pro-
posed detector has a much lower computational complexity
compared with the convexhull-class detectors.

The remainder of this article is organized as follows. In
Section II, the detection problem of floating small targets in sea

clutter and the measured datasets are described. Seven detection
features are briefly introduced in Section III and an additional
detection feature in the Doppler domain is proposed, together
with multifeature detector based on isolation forest algorithm.
Section IV gives the experimental results of the proposed detec-
tor and presents a comparison with several existing detectors.
Finally, Section V concludes the article.

II. DETECTION PROBLEM DESCRIPTION AND THE

MEASURED IPIX DATA

A. Formulation of Detection Problem

Assuming that marine surveillance radar transmits a train
of coherent pulses at a beam position to search floating small
targets. Here, we can formulate the detection problem of sea-
surface floating small targets as the following binary hypothesis
test:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
H0 :

{
x(n) = c(n), n = 1, 2, . . . , N

xk(n) = ck(n), k = 1, 2, . . . ,K

H1 :

{
x(n) = s(n) + c(n), n = 1, 2, . . . , N

xk(n) = ck(n), k = 1, 2, . . . ,K

(1)

where the null hypothesis H0 denotes the absence of target in the
cell under test (CUT), and the alternative hypothesis H1 denotes
the presentation of target in the CUT. x(n) is the received time
series in the CUT and xk(n) is the reference cells (RCs), which
are a number of range cells selected around the CUT to estimate
the sea clutter characteristics of the CUT. s(n) is the returns of
floating small target, c(n) and ck(n) are sea clutter plus noise
at the CUT and the RCs, respectively. N is the length of time
series and K is the number of the RCs.

The RCs are several range units selected in the range dimen-
sion to estimate the sea clutter characteristics.

B. Measured Datasets

Twenty IPIX datasets [27] listed in Table I are always used to
evaluate the performance of floating small target detectors. The
range cell where the target is located is labeled as the primary
cell. Around the primary cell, several range cells affected by
the target are labeled as guard cells, which aren’t used in the
detection procedure. The IPIX radar operates on X-band, and
works at dwell mode and at a low grazing angle (about 0.33◦).
Its pulse repetition frequency (PRF) is 1 kHz and radar returns
include the echoes from HH, HV, VH, and VV polarizations.
The top ten groups in Table I were collected in Nova, Scotia,
the east coast of Canada, in 1993. Each group consists of 217

pulses (dwell time is about 131 s) and 14 range cells. Radar was
mounted on a 30-m high cliff and illuminated on the surface of
the Atlantic Ocean. The cooperative target is a floating plastic
ball wrapped by aluminum wire and the radius of which is ap-
proximately 0.5 m. The last ten groups in Table I were collected
in Grimsby, Ontario, Canada, in 1998. Each group consists of
6× 104 pulses (dwell time is 60 s) and 28 range cells. Radar
erection height is 20 m and the cooperative target is a floating
boat. The range resolution of the 18th and 19th dataset are 15 and
9 m, respectively. And the remaining datasets’ range resolution
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TABLE I
DESCRIPTION OF 20 DATASETS OF IPIX DATABASE

Fig. 1. Average SCRs of 20 datasets in the primary cells at four polarizations.

is 30 m. The numbers of CUT and guard cells are illustrated in
Table I and the remaining cells are RCs.

The average SCRs (ASCR) at CUT are analyzed in four
polarizations. The returns between CUT and RCs are assumed to
be statistically independent and P̄c is the clutter power estimated
from RCs. The ASCR of each dataset can be calculated by

ASCR = 10 log10

1
N

∑N
n=1 |x(n)|2 − P̄c

P̄c
. (2)

Fig. 1 has plotted ASCRs of the twenty datasets. It is found that
ASCRs vary with the dataset and polarization, which are also
influenced by sea state and characteristic of test targets. The
twenty datasets could well measure the detection performance
of floating small target detector.

III. FEATURE EXTRACTION AND THE MULTIFEATURE

DETECTOR BASED ON IFOREST

The single feature detector, such as the normalized Hurst
exponent (NHE) [10], usually cannot obtain a satisfactory detec-
tion result because the returns’ information is not well utilized.
It is a feasible approach to employ multiple features to improve
detection performance [16]. In radar target detection, the separa-
tion capacity differences of each feature between the target and
sea clutter are very difficult to evaluate, because this depends on
many factors, such as the target type and sea clutter condition,
etc. The target is unknown, and there are many kinds of targets in
the practical application. What’s more, the characteristics of the
target vary with the angle of the radar line of sight. Therefore,
robust detection can only be achieved by quickly combining
multiple features that have the ability to distinguish target and sea
clutter. Multiple features can reflect the differences between sea
clutter and target from different perspectives as much as possible.
In this section, seven existing detection features for floating
small target detection are reviewed briefly and the RCV feature
is proposed and described in detail. Then, a multifeature detector
based on isolation forest (iForest) algorithm is proposed.

A. Description of Multiple Features

In this section, we introduce the eight features used in the pro-
posed detector. These features can be divided into four groups.

1) Time Domain Feature [the Relative Average Amplitude
(RAA)]

It is the most common method of the energy-based detector for
radar target detection. Most of the recent radar systems employ
the first-order and second-order statistics of radar returns. For
specific target and clutter models, statistics according to the
GLRT are designed. Here we use an easily available energy
information as a detection feature. First of all, we assume that
x = {x(n)|n = 1, 2, . . . , N} is an N -length time series and
comes from a range cell, and its average amplitude of every
range cell is readily available by taking a mean operation on the
x. To reduce the impact caused by inhomogeneous sea clutter, a
usual method is to take the ratio of the CUT’s statistic to the RCs’
statistic as the final detection feature. So the RAA is defined as

RAA(x) ≡ Ā(x)
1
K

∑K
k=1 Ā(xk)

(3)

where Ā(x) is the average amplitude of CUT, Ā(xk) denotes
the kth average amplitude of RC, and K is the number of RC.

2) Doppler Domain Feature [the Relative Doppler Peak High
(RPH), the Relative Vector Entropy (RVE), and the RCV]

Owing to the micro motion of plenty of sea-surface scatters,
the Doppler amplitude spectrum of sea clutter shows a wide
Doppler width. The lower radial velocity of small targets causes
their Doppler spectrum peak to be overlapped by sea clutter’s
clutter region, which gives rise to a great performance loss of the
Doppler-based detector. However, during long observation, the
differences of Doppler domain will emerge between sea clutter
and returns from targets. The Doppler amplitude spectrum of
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x is acquired by

X(fd) =
1√
N
|

N∑
n=1

x(n)exp(−j2πfdnTr)|

− 1

2Tr
≤ fd ≤ 1

2Tr
(4)

where fd denotes the Doppler frequency and Tr is the pulse
repetition interval (PRI).

Like the moving target detection, the maximum amplitude
value (peak high PH(x), see [14] for details) of Doppler spec-
trum’s clutter bin shows the slow change of velocity of the target
compared with sea clutter. The RPH is defined as

RPH(x) ≡ PH(x)
1
K

∑K
k=1 PH(xk)

. (5)

Furthermore, it is found that the Doppler amplitude spectrum
of sea clutter only is more dispersed than that of target plus
sea clutter. Thus, Shannon entropy could be applied to detect
floating small target in sea clutter [28] and shown as follows
[14]:

VE(x) ≡ −
∑
fd

X̃(fd) log X̃(fd), X̃(fd) =
X(fd)

ΣfdX(fd)
(6)

where VE(·) denotes the vector entropy of the item and X̃(fd) is
the normalized Doppler amplitude spectrum. Taking the VE(x)
of reference cells into consideration, The RVE is defined as

RVE(x) ≡ VE(x)
1
K

∑K
k=1 VE(xk)

. (7)

RCV, a new feature, can be employed to measure the sharpness
of the Doppler amplitude spectrum. The coefficient of variation
has been already applied to image focusing of synthetic aperture
radar (SAR) and measure the sharpness of the high resolution
range profile (HRRP) peak for range spread target (RST) detec-
tion [29]. When small targets are located in a range cell, there
are several peaks in the Doppler amplitude spectrum. Therefore,
the RCV can distinguish the target from sea clutter from the
sharpness of Doppler spectrum peak. The coefficient of variation
(CV) of the Doppler amplitude spectrum is calculated by

CV(x) =

√
1
N

∑
fd

(
X(fd)− 1

N

∑
fd

X(fd)
)2

1
N

∑
fd

X(fd)
. (8)

Therefore, the RCV of the Doppler spectrum is defined as

RCV(x) ≡ CV(x)
1
K

∑K
k=1 CV(xk)

(9)

where CV(x) and CV(xk) are the CV of radar returns at the
CUT and RCs, respectively. By comparing the three Doppler
detection features in Fig. 2(b)–(d), it can be found that the
proposed detection feature RCV has a smaller overlap region of
sea clutter and returns with target, which means better potential
detection performance.

3) Fractal Dimension Domain [the Normalized Hurst Expo-
nent of Fractal Feature]

Fig. 2. Histogram contrast of (a) RAA, (b) RPH, (c) RVE, (d) RCV, (e) NHE,
(f) RI, (g) NR, and (h) MS features between sea clutter’s returns and target’s
returns on the 10th group dataset at HV polarization.

The fractal feature of sea clutter amplitude time series shows
sea surface’s self-similarity, which could reflect its roughness.
In 1993, the fractal was first applied to the detection of float-
ing small target [10]. Verified by measured IPIX datasets, the
normalized Hurst exponent (NHE) of the fractal-based detector
[10] gets a marked improvement for the problem.

The amplitude time series of sea clutter x = {x(n)|n =
1, 2, . . . , N} is modeled as a random walk process [10]

F (m) =

(
N−m∑
n=1

|x(n+m)− x(n)|2
)1/2

. (10)

The region is from m = 24 to m = 212, (10) approximately
satisfies the following equation:

F (m) ∼ mH (11)
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where H is the Hurst exponent of x. The advantage of CUT’s
Hurst exponent normalized by mean and standard variance of
RCs’ Hurst exponent has been verified in [10]. We assume
that Hk, k = 1, 2, . . . ,K is the Hurst exponent of RCs. After
acquiring the mean μ̄ and standard deviation σ of Hk, the
normalized Hurst exponent (NHE) is defined as

NHE(x) ≡ Hc − μ̄

σ
(12)

where Hc is the Hurst exponent calculating from CUT.
4) TF Domain Features [the Ridge Integration (RI), the Num-

ber of Connected Regions (NR), and the Maximum Size (MS) of
Connected Regions]

In a long observation time, the detection of floating small
targets on the sea-surface can be considered as a problem of
detecting nonlinear frequency modulation (FM) signals in sea
clutter. Therefore, it is an effective way to include the detection
features by TF analysis of the received radar returns and to ex-
tract the effective features from the TF images that are conducive
to the detection of floating small targets. Here, we only give
a brief overview of the TF features that have been derived in
detail in [16] and apply these TF features to the subsequent
multifeature detectors.

The complex time series received by the radar in a certain
range cell is x = {x(n)|n = 1, 2, . . . , N}. The TF transforma-
tion of the series is carried out by using the smooth pseudo
Wigner–Ville distribution (SPWVD)

SPWVD(n, l|x) =
M∑

m=−M
g(m)

K∑
k=−K

h(k)

x(n+m+ k)x∗(n+m− k)exp(−j4πklΔfd). (13)

In (13), g(m) andh(k) are time and frequency smoothing win-
dows, respectively. The superscript “*” indicates the conjugation
of x, and Δfd is sampling interval of the normalized Doppler
frequency. Every TF image is normalized by the mean function
and standard deviation function of the RCs, and then the ridge
integration (RI) feature [30] is extracted from the normalized
SPWVD

RI(x) ≡
N∑

n=1

�(n,Ridge(n|x)). (14)

The � is the normalized SPWVD TF image of returns,
and the ridge of TF image is defined as Ridge(n|x) =
argmaxl{�(n, l|x)}.

In the binary image of SPWVD, the connected region is
defined as a set of pixels with a value of 1. According to the
4-connected criterion, a connected region set{Ω1,Ω2, . . . ,ΩW }
can be obtained from the binary image. The number of regions
(NR) and the maximum size (MS) of connected regions features
are extracted from the normalized SPWVD binary image

NR(x) ≡W (15)

MS(x) ≡ max
k=1,2,...,W

{#Ωk}. (16)

Here, the histogram contrast of sea clutter and returns with
target of eight features are shown in Fig. 2. As is shown,

Fig. 3. Distribution of clutter samples and target samples on RAA and RPH
plane.

the eight detection features are different in the separation and
distribution of the target and sea clutter, which roughly de-
scribes the detection ability of each detection feature. Moreover,
the abovementioned eight detection features could reflect the
differences between sea clutter and small target returns from
different perspectives. Although the contribution provided by
the correlated features is relatively small, it also has a benefit
for the improvements in detection performance. Moreover, the
isolation forest algorithm works well with a large number of
uncorrelated features [25]. Therefore, we use the isolation forest
algorithm to design a multifeature detector in this article.

B. Introduction of iForest Algorithm for Floating
Small Target Detection

The binary hypothesis test for target detection can be regarded
as a classification problem. Because of the difficulty of obtaining
target returns and the diversity of targets, radar target detection
is a typical one-class classification rather than a two-class clas-
sification problem. Therefore, a large number of classification
methods need to get two kinds of samples to train the classifier
[12], [17], but in the problem we need to solve, this condition
is obviously not satisfied. But anomaly detection algorithms of
machine learning can be utilized [20], [25], especially for the
feature-based detection methods. In this way, sea clutter feature
extracted from prereceived radar returns are regarded as normal
samples and used to build anomaly detection model. On the
contrary, the target feature samples are regarded as abnormal
samples. Because the 2-D plane is more intuitive, we take the
feature samples from RPH and RAA as an example. Fig. 3 illus-
trates the distribution of sea clutter samples and target samples
on an RPH and RAA features 2-D plane. Fig. 4 illustrates the
random partitioning of a target sample X0 versus a sea-clutter
sample X1. The process is generated by randomly selecting a
detection feature and randomly selecting a value between the
minimum and maximum values of the selected feature. The sea
clutter feature samples are recursively divided until all samples
occupy a subspace by itself. Fig. 5 shows that sample X0 far
from other samples needs a small number of partitions, and it
corresponds to the high SCR situation. However, the sample
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Fig. 4. Random partitioning of sea clutter samples.

Fig. 5. Relationship between average path length and the number of iTree. (a)
SCR is 8.252dB. (b) SCR is -0.219dB.

Fig. 6. Schematic diagram of iForest with the eight features.

X1 near the center of the clutter samples requires much more
partitions to isolate, which corresponds to the low SCR situation.
Recursive partitioning of the feature space can be described
by a proper binary tree, which is named as isolation Tree
(iTree). Each leaf node of the binary tree corresponds to a
feature subspace. Because of the random selection of features
and feature values, a lot of binary trees can be created to improve
the stability of detection. An iForest for floating small target
detection is constructed and its sketch is shown in Fig. 6. Since
the features of each node are randomly selected, Fig. 6 is a
schematic diagram that is only a possible situation. Each node
in Fig. 6 represents that the leaf node occupies a feature subspace
alone. And it should be noted that features can be selected
repeatedly in the same iTree.

C. Multifeature Detector Based on iForest and Its
PFA’s Adjustment

Based on iForest algorithm, the average path length of feature
sample is used as the detection statistics instead of the calculation
of anomaly score in the iForest. Moreover, the multifeature

detector with adjustable PFA is realized. Since the target-plus-
clutter samples are far away from the sea clutter samples com-
pared with the other sea clutter samples, these samples are closer
to the root node in every iTree, while most of the sea clutter
samples are located at the deeper leaf nodes. Usually, the path
lengths of sea clutter samples are greater than that of target
samples. Thus the average path length of feature samples in an
iForest can be used as the test statistic. Next, we will discuss the
PFA adjustment for the iForest-based detector in the following
part.

For the practical available detectors, a requisite property
is that the PFA of the detectors is controllable. The multiple
features of sea clutter obey the unknown parameter conditional
probability density function (PDF), corresponding to a region
in high-dimensional feature space. However, the complex mul-
tiple dimension conditional distribution and the limitation of
target samples make the accurate probability model description
infeasible. So the anomaly detection algorithm is an effective
substitution for the joint PDF of clutter features. In our problem,
the modified iForest algorithm is used to illustrate the conditional
distribution of clutter features. We could acquire a region that
only contains clutter features with the iForest algorithm. It takes
the normal samples in a small region capturing most samples
and anomaly samples elsewhere, which are corresponding to
sea clutter samples and all kinds of target samples, respectively.

Another problem is that the detection decision region
could be zoomed to adjust the PFA. We assume that the
two conditional PDFs (f(ζ|H0) and f(ζ|H1), where ζ =
{ξ1, ξ2, . . . , ξi, . . . , ξn} is the feature sets, and ξi is a feature
sample) are known. Under the guidance of Neyman–Person
criterion, the decision region Ω could be obtained at the given
PFA

max
Ω
{Pd = 1−

∫
· · ·
∫
Ω

f(ζ|H1) dζ}

s.t.
∫
· · ·
∫
Ω

f(ζ|H0) dζ = 1− Pf (17)

where Pd is the probability of detection and Pf is the PFA.
However, it is unavailable to get the detection statistic because
of the complexity of f(ζ|H0) and the diversity of f(ζ|H1).
According to the geometric probability model, the probability
can be approximated as the ratio of the number of feature
samples in an area to the whole sample number. So the problem
could be briefly described as

max
Ω

{
Pd =

#{Ξ− Ω}
#{Ξ} , under H1

}

s.t. 1− #{Ω}
#{Ξ} � Pf , under H0 (18)

whereΞ is a detection region formed by the range of all features,
and #{·} indicates the number of the feature samples located
in the region {·}. So #{Ω}

#{Ξ} is the probability that the feature
samples are inside the detection decision region under H0 and
#{Ξ−Ω}
#{Ξ} is the Pd that feature samples are outside the detection

region under H1.
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Fig. 7. Flowchart of the proposed iForest-based detector.

For the iForest-based detectors, the short average path length
of target means that the PDF of signal features deviates from the
PDF of clutter features, indicating that it is easy to be isolated. So
under the H0, the iForest-based detector can adjust the size of the
detection decision region Ω by discarding some samples which
are greatly deviated from the PDF of clutter to meet the PFA
requirement. The procedure means that the detection region of
the proposed detector is suitable for all targets while the SVM-
based detector[17] is only optimal to the training target samples.

The iForest-based detector for floating small target detection
controls the PFA by sorting all samples’ average path length
in ascending order and selecting a specific average path length
as the detection threshold. It consists of two stages and the
flowchart of the proposed iForest-based detector is shown in
Fig. 7.

1) Training stage: In this stage, an iForest is built
and the detection threshold is obtained via the widely
used Monte-Carlo method. Constructing a sea clutter
feature set ζ = {ξ1, ξ2, . . . , ξi, . . . , ξn}, which is ex-
tracted from prereceiving sea clutter returns and ξi =
[NHE(ci), RAA(ci),RPH(ci),RVE(ci),RI(ci),MS(ci),NR
(ci),RCV(ci)]

T denotes the ith sea clutter feature sample.
Then, an iForest using the clutter feature set is built. Finally, the
detection threshold is obtained according to Algorithm 1, which
gives a detailed description of the process of the Monte-Carlo
method to estimate the detection threshold. Average path length
set is denoted as L = {l1, l2, . . . , li, . . . , lN}, of which every
average path length is acquired by iForest model as the sea
clutter feature sample input. And it should be noted that the
average path length set is sorted in ascending order. Therefore,
the final detection threshold can be obtained by the number of
false alarm. As a rule of thumb, the minimum value of N used
in a detection radar signal simulation should be 10/PFA.

2) Detection Stage: In this stage, the eight features from the
CUT returns are extracted and its average path length LCUT

is calculated by the iForest. After obtaining the average path
length of CUT returns, the detection decision can be made
by comparing the average path length of CUT LCUT with the
detection threshold T , which is shown as

LCUT

H0

≷
H1

T. (19)

It should be noted that the H0 is selected when the LCUT is
greater than the decision threshold, and H1 is selected when the
LCUT is less than the decision threshold.

Algorithm 1: Calculating Threshold Based on Monte-Carlo
Method.
Inputs: ζ - sea clutter feature set, iForest - iForest

Model,
Pf - PFA.

Output: T - detection threshold.
1: Initialize Set N = size(ζ)
2: Set the number of false alarm k = ceil(N × Pf )
3: Set average path length set L = NULL
4: for i = 1 to N do
5: li ← iForest(ξi), ξi ∈ ζ
6: L← L ∪ li
7: end for
8: L′ = sort(L) in ascending order
9: Obtain the detection threshold T = L′k
10: return T

IV. EXPERIMENTAL RESULT AND PERFORMANCE COMPARISON

In this section, the twenty measured IPIX datasets shown
in Table I are used to evaluate detection performance of the
proposed detector. Here, we compare the iForest-based detec-
tor with some classical anomaly detection algorithms. Frankly
speaking, there are only a few detectors that can obtain fair
detection performance on IPIX datasets at present. Therefore,
the proposed detector is compared with some existing detectors
that have been successfully employed in floating small target
detection.

In our experiments, the measured IPIX datasets are divided
into two groups. One group extracted from RCs is used for
training the detection model and the other extracted from CUT
is used for detection performance validation. For every dataset,
the length of observation vectors are set as 512 and 1024,
corresponding to 0.512 and 1.024 s observation time length.
In our experiments, the lowest PFA is set as 0.001. To acquire
the stable detection decision threshold or region, short vectors
are generated by a sliding window of length 512 or 1024 on
every range cell with sliding interval 128. Therefore, more than
10 000 clutter feature samples and 1000 target feature samples
for a dataset can be obtained.

First, we analyze the influence of the number of trials on the
stability of the detection threshold estimation. Here the number
of trials is equivalent to the number of feature samples from
pure clutter. The result of binary hypothesis test of radar target
detection can be expressed by binomial distribution [31]. Ac-
cording to the famous De Moivre–Laplace theorem, the binomial
distribution can be approximated by the Gaussian distribution
when the number of trials is large enough. In the experiment
shown in Fig. 8, the error of detection threshold is quantitatively
analyzed by Gaussian distribution. Fig. 8 shows the confidence
interval of PFA versus the number of trials when PFA is 0.01
and 0.001, respectively. And the confidence level is 90%. The
dotted line is the upper limits of the confidence interval, the
solid line is the lower limits of the confidence interval, and
the number of trials on the abscissa is normalized by the PFA.
It can be seen from the figure that as the number of trials
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Fig. 8. Confidence limits (90 percent) on estimated PFA versus the number of
trials. (a) PFA = 0.01. (b) PFA = 0.001.

increases, the confidence interval gradually decreases. In [31],
the author stated that the minimum value of trials’ number used
in a detection radar signal simulation should be 10/PFA, and a
value closer to 100/PFA is preferable. Therefore, in following
experiments, 10 000 trials are used to estimate the detection
threshold corresponding to PFA = 0.001 or a higher PFA.

The multifeature detector based on iForest has two parame-
ters, the number of iTree N and the subsampling size K, which
should be determined in advance. Here, we select a appropriate
number of iTree by measuring the fluctuation of the average
path length of clutter samples. Under different SCR cases, the
fluctuation degree of the average path length in the range of
different number of iTree is different, corresponding to different
sea surface environmental conditions. So, the number of iTree
could adapt to the sea clutter. Due to the lack of target samples
in the detection, the appropriate number of iTree can only be
determined according to the fluctuation degree of the average
path length of sea clutter samples. From Fig. 5, we can see that
the fluctuation trend of the average path length of the target
sample is roughly similar to that of the sea clutter sample. In
the experiment, the number of iTrees ranges from 1 to 500. The
curve of the average path length of sea clutter with the number of
iTree is shown in Fig. 5. Standard deviation is used to measure
the fluctuation of the average path length in a certain range of
the number of iTree. The average path length of sea clutter with
different number of iTree is denoted as a1, a2, · · · , aM ,M is the
number of iTree. The window length is set as W = 10 and the
sliding length of step is step = 2, the index set I of the average
path length in data window i is expressed as

I = i× step− 1 : i× step+W − 2. (20)

So we can get the standard deviation of the average path length
in each window.

Fig. 9 shows the standard deviation versus the index of
window for the clutter sample in Fig. 5(a). When the index
of window is greater than 100, the fluctuations of standard
deviation tend to stabilize. When the standard deviation in a
window is less than the mean of the standard deviation in all
windows, the number of iTrees corresponding to the median
in the window is taken as the size of iForest. Therefore, each
dataset will adaptively select the number of iTree based on the
fluctuation of the average path length of sea clutter samples.

As for the subsampling size, Fig. 10 has plotted the rela-
tionship between average path length, probability of detection

Fig. 9. Standard deviation versus the index of window for the clutter sample
in Fig. 5(a).

Fig. 10. Relationship between average path length, Pd and subsampling size,
where average path length corresponds to left y-axis andPd corresponds to right
y-axis.

and subsampling size when the PFA is 0.001. As the subsam-
pling size increases, the difference of the average path length
between target samples and clutter samples becomes larger and
larger. The detection probability fluctuates heavily when the
subsampling size is less than about 100 while the probability
of detection always fluctuates slightly around 0.55 when the
interval is larger than 100. Moreover, the paper [25] has given
an elaborate illustration that enough information for anomaly
detection is provided when subsampling size K = 256. There-
fore, considering the stability of detection, the subsampling size
is set as 256, which is used as the default value in the following
experiments.

A. Comparison Between iForest-Based Detector and Other
Anomaly Detectors

There are lots of anomaly detection algorithms in machine
learning, however, some of them lose effectiveness when they
are employed in radar target detection because of the rigorous
steerable PFA requirement under the Neyman–Pearson criterion.
For example, robust covariance cannot acquire a proper test
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Fig. 11. Detection probability histogram of the OCSVM-based detector, the LOF detector and the iForest-based detector when observation time is 0.512 s and
the PFA is 0.001. (a) HH. (b) HV. (c) VH. (d) VV polarizations.

statistic, let alone the PFA. Here, we compare the iForest-based
detector with the LOF-based detector and the OCSVM-based
detector. The LOF-based algorithm could measure the local
density of feature distribution, and the reciprocal transformation
of local density is defined as an outlier factor. So the LOF can be
used as the test statistic straightly. The OCSVM-based detector
constructs the decision region in high-dimensional feature space
under the guidance of the PFA to distinguish target and clutter.
In this experiment, the PFA is set as 0.001 and the observation
time is set as 0.512 s. Fig. 11 shows the detection probability
of the LOF-based detector, the OCSVM-based detector, and the
iForest-based detector. There are two conclusions that be drawn
from Fig. 11.

1) The detection performance of the three anomaly de-
tectors under cross-polarization is better than that under the
like-polarization. It is mainly caused by the difference of sea-
surface’s scattering mechanism at the different polarizations,
and data collecting with cross-polarizations have higher ASCR
than that with like-polarizations.

2) Figs. 1 and 11 indicate that the iForest-based detector
is superior to the LOF-based detector and the OCSVM-based

detector in the datasets with low ASCR and all of the three
detectors have excellent detection performances in the datasets
with high ASCR.

The three detectors have employed all eight features, and
they could construct different detection regions according to
their anomaly detection criterion. From Fig. 11, we can see that
the three anomaly detectors have good detection performances
in the case of high ASCR. But in the case of low ASCR, the
multifeature detector based on iForest has an absolutely better
detection performance. This is mainly due to the difference of
the detection decision regions created by different detection
algorithms according to PFA. Fig. 12 is a schematic diagram
of the 2-D detection decision regions of the three anomaly
detectors when the PFA is 0.1. The number of training samples
is 240, where 216 samples obey the Gaussian distribution with
mean value of 0, variance of 0.1, and correlation coefficient of
0. Then, 24 abnormal samples obey the uniform distribution
in [−6, 6]. Fig. 12 indicates that the iForest algorithm can
form a nonconvex detection region and reduce the detection
region in a specific direction, which is the key to improving the
detection performance. In general, the detection performance of
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Fig. 12. Decision region schematic diagram. (a) LOF-based detector. (b) OCSVM-based detector. (c) iForest-based detector.

TABLE II
AVERAGE DETECTION PROBABILITIES OF THE FOUR DETECTORS ON THE TWENTY DATASETS AT EACH POLARIZATION

the iForest-based detector is better and the detection stability is
higher especially for floating small target detection.

B. Comparison Between iForest-Based Detector and
Classical Detectors

In the second experiment, the iForest-based detector is com-
pared with the normalized Hurst exponent (NHE) detector [10],
the trifeature-based detector [14], and the TF features detector
[16]. For the observation time 0.512 and 1.024 s, Table II has
listed the four detectors’ average probability of detection on
twenty datasets when PFA is 0.001. In Table II, the best detection
probabilities for each polarization in two different observation
times are denoted by the bold entities. According to Table II,
the proposed detector acquires the best detection performance
among the four detectors on average, except for HH polarization
with the observation time is 1.024 s. The multifeature detector
based on iForest could catch much more differences between
target and sea clutter because it consists of all the other detectors’
features. As for HH polarization, the TF features play a predomi-
nant role in the iFoest-based detector and the description of iFor-
est’s decision region is not finer than convexhull-class detector.
So the iForest-based detector shows some performance loss in
the case of some features with poor separating capacity. It is
worth nothing that the computational complexity of convexhull-
class detector is O(LN2log(K)), where L is the number of
abandoned samples to guarantee the PFA requirement and K is
the number of convexhull’s vertexes. Benefiting from the advan-
tages of the iForest algorithm, the iForest-based detector has the
linear time complexity, whereO(NKlogK) is for training stage
and O(SN logK) is for detection stage, where N is the number
of iTree, K is the subsampling for constructing every iTree and

TABLE III
ELAPSED TIME FOR BUILDING DETECTION MODELS

S is the detection data size. For the complex and changeable sea-
surface background, the key to realizing the real-time detection is
the fast extraction of detection features and the fast construction
of detection model. Owing to the amount of data needed for each
detection is relatively small, it is easy to achieve the fast extrac-
tion of detection features. In order to adapt to the change of sea-
surface background, the rapid construction of detection model
is the key factor that restricts the application. Table III shows the
elapsed time of building a detection model under a given PFA.
The elapsed time of building a convexhull-class model is related
to the sample size and PFA. When the number of samples is
fixed (it is 10 000 here), the elapsed time of the convexhull-class
detector increases with the increase of PFA. However, when the
amount of training samples is large, it will take a lot of time
to create a convexhull model though the PFA is low. The linear
computational complexity of the iForest-based detector is much
lower than that of the convexhull-class detector and it is only
related to the amount of training samples when the model param-
eters are given. The determination of detection decision region is
only to select a suitable threshold from the ordered average path
length. Theoretical analysis and experimental verification show
that the computational complexity of the iForest-based detector
is much less than that of convexhull-class detector, so it relatively



714 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

Fig. 13. Comparisons of the receiver operation characteristic (ROC) curves at (a) HH, (b) HV, (c) VH, and (d) VV polarizations when the observation time for a
test is 1.024 s.

adapt to the complex and changeable sea-surface background for
fast feature extraction and detector construction.

Then, the receiver operation curves (ROC) of the proposed
detector and the other detectors at four polarizations are illus-
trated in Fig. 13. Here, the length of time series is set as 1024,
and the PFA ranges from 0.001 to 0.1. The proposed detector
obtains the best detection performance. The normalized Hurst
exponent has a great detection performance loss. Compared with
the LOF-based detector and the OCSVM-based detector, the
iForest-based detector shows good robustness. Although the TF
detector holds an acceptable performance loss compared with
the proposed detector, its computational complexity is too high.
In conclusion, the iForest-based detector is an effective multiple
features detector and also has a low computation cost.

V. CONCLUSION

In this article, the proposed relative Doppler coefficient of
variation detection feature and the multifeature detector based
on modified isolation forest algorithm are used to expand the
number of detection features and realize joint detection of

multiple features, respectively. Via modifying the original iFor-
est algorithm, the average path length is used as the detection
statistic that could easily control the false alarm probability.
Compared with some anomaly-detection-based detector and
several existing detectors, the multifeature detector based on
iForest shows the excellent performance especially in low ASCR
case, and with low computational complexity.

The proposed detector breaks through the limitation of the
number of features and realizes the high-performance floating
small target detection under the controllable PFA. Therefore,
our work is applicable to the detection of small targets on the
sea surface by shore-based radar. Limited by the size of avail-
able dataset, the detection threshold obtained by Monte-Carlo
method may slightly deviate from the corresponding preset
PFA. According to the analysis, when the number of trials for
Monte-Carlo experiments is large enough, the deviation can be
tolerated. Moreover, the proposed iForest-based detector focuses
on the innovation of multifeature combination algorithms in this
article. The evaluation of different features will be researched
in the future, and more features can also be explored to add into
our proposed multifeature combination detection scheme.
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