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Abstract—Total variation-sparse (TV-sparse)-based multicon-
straint devonvolution method has been used to realize superres-
olution imaging and preserve target contour information simul-
taneously of radar forward-looking imaging. However, due to the
existence of matrix inversion, it suffers from high computational
complexity, which restricts the ability of radar real-time imaging.
In this article, an Gohberg–Semencul (GS) decomposition-based
fast TV-sparse (FTV-sparse) method is proposed to reduce the
computational complexity of TV-sparse method. The acceleration
strategy utilizes the low displacement rank features of Toeplitz ma-
trix, realizing fast matrix inversion by using a GS representation.
It reduces the computational complexity of traditional TV-sparse
method from O(N3) to O(N2), benefiting for improvement of
the computing efficiency. The simulation and experimental data
processing results show that the proposed FTV-sparse method has
almost no resolution loss compared with the traditional TV sparse
method. Hardware test results show that the proposed FTV-sparse
method significantly improves the computational efficiency of TV-
sparse method.

Index Terms—Gohberg–Semencul (GS) representation, radar
imaging, superresolution, sparse, total variation.

I. INTRODUCTION

R EAL-aperture radar can obtain the target information of
forward-looking area through antenna scanning, benefit-

ing for autonomous landing, autopilot, and topographic mapping
and many other applications [1]–[4]. The range resolution can
be improved by transmitting linear frequency modulated signal
and making pulse compression. However, due to the limitation
of antenna size, the azimuth resolution is limited. In practice,
the azimuth resolution needs to be improved to match range
resolution.

According to Rayleigh criterion, targets with a distance
smaller than the Rayleigh distance (RD) are located at the same
resolution cell and cannot be distinguished separately, where
RD is the space between the peak of the antenna pattern and the
first zero-crossing [5]–[7]. This shows that the resolution of real
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aperture imaging cannot beyond one beam width. Therefore,
in order to obtain high azimuth resolution radar image, it is
necessary to transmit narrow antenna beam in azimuth, which
requires large antenna aperture. However, due to the limitation
of the platform in practical application, the antenna cannot be
infinitely enlarged usually.

Superresolution technology provides the possibility to im-
prove the resolution breaking Rayleigh limit without changing
the hardware conditions [8]–[10]. Previous researchers have
proposed many superresolution methods to improve azimuth
resolution in forward-looking imaging [11]. In [12], the Wiener
filtering method was proposed to realize superresolution; how-
ever, the resolution improvement is limited especially in the
condition of low signal-to-noise ratio (SNR). The truncated
singular value decomposition (TSVD) method can suppress
noise amplification by truncating the smaller singular value, but
the resolution improvement is very limited [13]. Spectrum esti-
mation based methods, such as Capon [14], [15], multiple signal
classification [16], [17], and so on, can improve the resolution,
but they need multiple snapshots, and their performance is poor
in the case of single snapshot. Iterative adaptive approach needs
only one snapshot, but suffers from high computational com-
plexity [18], [19]. Sparse regularization method can efficiently
improve the resolution, but it only considers the improvement
of the resolution, not the preservation of the target contour
information [20]–[22]. The total variation (TV) method can
preserve the contour of the target, but it is sensitive to noise
and has limited resolution improvement [23], [24].

Considering simultaneously improving resolution and pre-
serving target contour, a TV-sparse based multiconstraint decon-
volution method was proposed in our previous literature [25].
This method simultaneously introduces sparse and TV con-
straints in the framework of regularization, enhancing both the
resolution and target contour. However, due to the need of
matrix inversion, this method suffers from high computational
complexity, which is the order of O(N3). In radar imaging,
the dimension of echo is usually large, and the real-time per-
formance of TV-sparse method will be greatly restricted by
inversion operation. Therefore, the acceleration method needs
to be studied to improve the real-time superresolution ability of
TV-sparse method.

In order to solve the problem of high computation cost caused
by matrix inversion, researchers typically wish to realize fast
inversion by utilizing special structures of coefficient matrix to
avoid the inversion operation, such as Toeplitz structure, Hankel
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structure, and so on [26], [27]. In previous research, we found
that the coefficient matrix, which needs to be inversed has an
approximate Toeplitz structure, which provides the possibility
for fast inversion. Kailath [28] proposed the concepts of dis-
placement structure and displacement rank, as well as revealing
that the operation can be compressed by using a Toeplitz matrix.
It has been proven that the displacement rank of a Toeplitz matrix
is very small and, so, its inverse matrix also has a displacement
structure, which laid the theoretical foundation for the fast
solution of Toeplitz equations [29], [30]. Recently, utilizing the
low displacement rank features of Toeplitz matrices, along with
the Gohberg–Semencul (GS) representation, the fast inversion
of Toeplitz matrices has been studied [31].

In this article, a GS representation based fast TV-sparse (FTV-
sparse) method is proposed to achieve real-time superresolution
imaging and preserve the contour of targets. First, the azimuth
signal of radar forward-looking imaging is analyzed, and the
azimuth echo is modeled as a convolution of antenna pattern
and targets distribution. Second, considering both the resolution
improvement and contour preservation of targets, the sparse and
TV combination constraints are introduced in the framework
of regularization, converting the superresolution problem into
a convex optimization problem. Third, based on the low dis-
placement rank features of Toeplitz matrices, along with the GS
representation, an accelerate strategy is utilized to realize fast in-
version of matrix. After acceleration, the computation complex-
ity is greatly reduced. Finally, the performance of the proposed
method is verified by simulation and measured data processing.

The remainder of this article is organized as follows. In
Section II, the imaging mechanism of radar forward-looking
imaging is analyzed, and the convolution model of azimuth echo
is obtained. In Section III, the proposed method is deduced in
detail. In Section IV, simulation and measured data are pro-
cessed to verified the performance of the proposed method. The
conclusion is discussed in Section V.

II. PROBLEM FORMULATION

A. Resolution of Radar

In radar imaging, resolution refers to the ability of radar to
distinguish adjacent targets. Usually the radar echo is a two-
dimensional image in range and azimuth dimensions. In range
dimension, the resolution can be improved by pulse compres-
sion. The resolution after pulse compression is determined by the
bandwidth of the transmitted signal, which can be expressed as

ρr =
c

2B
(1)

where ρr is the range resolution, c is the light speed, and B is
the bandwidth of the transmitted signal. High range resolution
image can be obtained by transmitting wide bandwidth signal.

In azimuth dimension, resolution mainly depends on antenna
aperture, expressing as

ρa ∝ R
λ

D
(2)

where R is the range, λ is the wavelength of the transmitted
signal, and D is the aperture size of the antenna, which refers

to the effective area of the antenna receiving target scattering. A
large antenna aperture can generate a narrow beam. According
to the Rayleigh criterion, the higher the resolution.

Obviously the high azimuth resolution requires large antenna
aperture. However, in practical applications, the antenna aper-
ture is often limited by platforms, such as helicopters and mis-
siles. Usually, azimuth resolution of radar cannot be improved
by increasing real antenna aperture.

For synthetic aperture radar (SAR) imaging, the cross-range
signal can be modeled as a convolution of transmitted signal
and target distribution [32], [33]. Since the convolution matrix
contains gradient information, its resolution can be improved
by matched filtering. After matched filtering, the cross-range
resolution up to

ρasar =
D

2
(3)

where ρasar is the cross-range resolution of SAR.
For real-aperture radar, although its azimuth resolution can

also be modeled as a convolution of antenna pattern and target
distribution. However, because the convolution matrix does not
contain gradient information and there is a phase matrix effect,
matched filtering cannot be performed. Therefore, deconvolu-
tion methods are often used for improving its azimuth resolution.

B. Signal Model of Radar Forward-Looking Imaging

Radar realizes forward-looking imaging through antenna
scanning. The radar actively emits electromagnetic waves and
scans the imaging area with the motion of the platform. The
resolution of the received echo is usually very low, so it is
difficult to distinguish the interested target in range and azimuth.
For the low-resolution echo, we first compress the pulse in the
range direction and correct the range walk to realize the range
high-resolution imaging.

In the previous study, we have obtained that the azimuth
echo after pulse compression and range walk correction can
be modeled as the convolution of target scattering and antenna
pattern [25], that is

s = h⊗ f (4)

where s and f are the azimuth echo and target distribution,
respectively; h is the antenna pattern and ⊗ is the convolu-
tion operator. In practical application, the echo is inevitably
disturbed by noise. Considering the influence of additive white
Gaussian noise and the convenience of signal processing, the
convolution model shown in (4) can be discretized, i.e.,

s̃ = Af + n (5)

where s̃ = [ s̃1 s̃2 · · · s̃M ]T is the noise-polluted echo, s̃i =
[ s̃i1 s̃i2 · · · s̃iN ], i ∈ [1,M ], M and N denote the sampling
numbers in range and azimuth, respectively,

A =

⎡
⎢⎢⎢⎢⎣
H 0 · · · 0

0 H
. . .

...
...

. . .
. . . 0

0 0 · · · H

⎤
⎥⎥⎥⎥⎦
MN×MN
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Fig. 1. Process of radar forward-looking imaging.

and

H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h1 0 · · · 0

h2 h1
. . .

...
... h2

. . . 0

hL

...
. . . h1

0 hL

... h2

...
. . .

. . .
...

0 · · · 0 hL

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6)

The abovementioned modeling process of azimuth echo of
radar forward-looking imaging can be directly shown in Fig. 1,
where V is the platform speed and ω is the antenna scanning
speed. It can be seen that the effect of noise makes the echo full
of burrs, so the echo s̃ received by the radar receiver will deviate
from the true convolution result s.

Recovering real targets f from the noise-polluted echo s̃
is extremely ill-posed. Some typical methods, such as inverse
filtering and least squares, can make the estimated target deviate
greatly from the real value.

III. REVIEW OF TV-SPARSE METHOD

In this section, the TV-sparse method is reviewed to recover
target distribution f from the noise-polluted echo s̃, and the
computational complexity is analyzed.

A. TV-Sparse Method

To simultaneously consider resolution improvement and con-
tour preservation, the TV-sparse method requires solving fol-
lowing optimization problem,

f̂ = min
f

μ

2
‖Af − s̃‖22 + ‖∇f‖1 + ‖f‖1 (7)

where ‖∇f‖1 denotes the TV term, which is used to preserve
the contour information of the target, ‖f‖1 is a sparse term to
improve resolution, and

∇ =

⎡
⎢⎢⎢⎢⎢⎣

−1 1
−1 1

. . .
. . .
−1 1

−1

⎤
⎥⎥⎥⎥⎥⎦

Thus, the superresolution problem of radar forward-looking
imaging is transformed into a multiconstraint problem in the
regularization framework. The solution to the multiconstraint
problem is the image of the radar forward-looking region that
we need. It can be seen that (7) consists ofL2 norm andL1 norm.
Since both L2 norm and L1 norm are convex functions, we use
convex optimization method to solve (7). In previous work, it
has been solved by three subproblems [25]

Subproblem 1: Solving the f problem

fk+1 = F−1gk (8)

where

F =
(
μATA+ γ1Δ+ γ2I

)

gk =
(
μAT s̃+ γ1D

(
dk
1 − bk1

)
+ γ2

(
dk
2 − bk2

))

Δ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−1 1

1 −2
. . .

1
. . . 1
. . . −2 1

1 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

I denotes identity matrix and D = −∇∗.
Subproblem 2: Solving the d problem

dk+1
1 = shrink

(∇ (
fk+1

)
+ bk1 , 1/γ1

)
dk+1
2 = shrink

(∇ (
fk+1

)
+ bk2 , 1/γ2

) (9)

where shrink(x, κ) = sign(x)max(|x| − κ, 0).
Subproblem 3: Solving the b problem

bk+1
1 = bk1 +∇ (

fk+1
)− dk+1

1

bk+1
2 = bk2 +∇ (

fk+1
)− dk+1

2

(10)

where d and b are two variables.

B. Analysis of Computational Complexity

The TV-sparse method requires iterating three subproblems
to estimate the target distribution f from the noise-polluted echo
s̃, i.e., iterating (8)∼(10). However, the main computational
complexity comes from (8) because it includes matrix multi-
plication and inversion. As for solving (9) and (10), they only
involve some simple addition and subtraction operations and,
so, the computational complexity is very low. Compared with
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(8), their computational complexity is negligible. Therefore, we
mainly analyze the computational complexity of (8).

For (8), we assume the number of iterations is K. First,
we need to calculate one ATA and AT s̃, for which the
computational complexities are O(N logN +N3) and
O(N logN), respectively; where ATs can be calculated
by an N -point fast Fourier transform (FFT) as AT is a circular
matrix. Second, for each iteration, the computational complexity
of F−1 is O(N3 + 5N2). The computational complexity of
gk is O(N(2N − 1) + 7N). Finally, the computational
complexity of F−1g is O(N(2N − 1)). Accordingly, the
main computational complexity of TV-sparse method is
O((K + 1)N3 + 9KN2 + 5KN + 2N logN).

IV. PROPOSED METHOD

Although problem (7) can be solved by iterating (8) to (10);
however, the computational complexity is very large as shown
in Section III-B. In this section, an accelerate strategy is studied
to reduce the computational complexity of TV-sparse method.

A. Acceleration of TV-Sparse Method

It can be seen from the structure of A that ATA has Toeplitz
structure. After removing the first and last columns, Δ also has
Toeplitz structure. For fast computation, we rewrite (8) as

f̃
k+1

= F̃
−1
gk (11)

where f̃
k+1

is a approximation of fk+1

F̃ =
(
μATA+ γ1Δ̃ + γ2I

)
and Δ̃ is a Toeplitz matrix approximated by Δ, i.e.,

Δ̃ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−2 1

1 −2
. . .

1
. . . 1
. . . −2 1

1 −2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

As a result, F̃ is a Toeplitz matrix, and F̃
−1

then can be
effectively solved by using suitable GS representations. The
computation of (8) can be implemented more efficiently by using
fast Toeplitz vector multiplication methods.

The acceleration strategy adopted in this article realizes the
fast inversion of coefficient matrix through GS decomposi-
tion, which reduces the computational complexity of matrix
inversion. First, the autoregressive coefficients c and prediction
error e are obtained by Levinson–Durbin algorithm from Yule–
Walker AR equations [34] i.e.

r1 + c2r
∗
2 + · · ·+ cXr∗L = e (12)⎡

⎢⎢⎢⎢⎣
r1 r∗2 · · · r∗X−1

r2 r1 · · · ...
...

...
. . . r∗2

rL−1 rL−2 · · · r1

⎤
⎥⎥⎥⎥⎦
⎡
⎢⎢⎢⎣
c2
c3
...
cL

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
−r2
−r3

...
−rL

⎤
⎥⎥⎥⎦ (13)

Then, we define

q =

[
1
q

]
1√
e

Δ
=

(
q1 q2 · · · qN

)T
(14)

w =

[
1
c̃∗

]
1√
e

Δ
=

(
w1 w2 · · · wN

)T
(15)

Based on the GS representation, the inversion of a Toeplitz
matrix can be expressed as [35], [36]

F−1 = QQH −WWH (16)

with

Q =

⎡
⎢⎢⎢⎢⎣
q1 0 · · · 0

q2 q1
. . .

...
...

...
. . . 0

qN qN−1 · · · q1

⎤
⎥⎥⎥⎥⎦ (17)

W =

⎡
⎢⎢⎢⎢⎣
w1 0 · · · 0

w2 w1
. . .

...
...

...
. . . 0

wN wN−1 · · · w1

⎤
⎥⎥⎥⎥⎦ (18)

Then, (8) can be solved quickly by using the GS representa-
tion; that is,

f̃
k+1

=
(
QQH −WWH

)
gk = QQHgk −WWHgk

(19)
It seems that the calculation of QQHgk and WWHgk

involves matrix multiplication and requires high computational
complexity. However, based on the special structure of Q and
W , the calculation of them can be realized by FFT and trunca-
tion.

To achieve this, we first construct the matrices with the vector
q, i.e.

Q1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q1
q2 q1
... q2

. . .

qN
...

. . . q1
qN q2

. . .
...
qN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(20)

Q2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q∗N
...

. . .

q∗2
. . .

q∗1 q∗2 q∗N

q∗1
. . .

...
. . . q∗2

q∗1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(21)

According to the special structure of Q1 and Q2, it can be
seen that Q can be obtained by intercepting the first N rows
of Q1 and the QH can be obtained by intercepting rows N to
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Fig. 2. Approximation error with dimension N .

2N − 1 of Q2. Therefore, the multiplication of Q and a vector
can be obtained by intercepting the 1 to N elements of the FFT
of q and the vector. As for the multiplication ofQH and a vector,
it can be obtained by the N to 2N − 1 elements of the FFT of q̃
and the vector, where q̃ = [ q∗N q∗N−1 · · · q∗1 ]T . In the same way,
WWHgk also can be obtained by two FFTs and truncations.

B. Analysis of Error

The proposed FTV-sparse method uses GS representation to
realize fast computation. However, in order to realize the acceler-
ation, we make some approximation, that is, Δ is approximated
by Δ̃. This approximation makes F become F̃ , which affects
the estimation of f . Here, we define approximation error to
measure the effect of this approximation. The approximation
error is defined as

r =
1

N ×N

∥∥∥F − F̃
∥∥∥
2

(22)

where r is the approximation error.
The approximation error curve with dimension N is shown in

Fig. 2. This shows that the error caused by the approximation is
quite small. Even whenN = 100, the error is only 2× 10−4, and
the error decreases with the increase of the dimension. In radar
imaging, the dimension of echo is usually large, so the above-
mentioned approximation has little effect on the superresolution
performance and can be ignored.

C. Analysis of Computational Complexity

The computational complexity analysis of the proposed
method is as follows. First, we also need to calculate AT s̃
once, and the computational complexity is O(N logN).
Second, For each iteration, using the Levinson–Durbin
algorithm to calculate the autoregressive coefficients c
and prediction error e, the computational complexity is
O((N − 1)2). Then, the solution of (19) can be achieved by
four Toeplitz vector operations, for which the computational
complexity is O(14N log(2N) +N(2N − 1) + 7N) [31].
Hence, the computational complexity of the proposed method

Fig. 3. CCR of the proposed method and TV-sparse method.

is O(K((N − 1)2 + 14N log(2N) +N(2N − 1) + 7N))
+O(N logN).

Therefore, after acceleration, the computational complexity
of the algorithm is reduced from the third order to the second
order of N . For visually finding the difference of computational
complexity before and after acceleration, we empirically assume
that K = 30 and plot the computational cost ratio (CCR) of the
proposed method and TV-sparse method, as shown in Fig. 3.
The CCR is defined as

CCR =
CFTV−s

CTV−s
× 100% (23)

where CFTV−s is the computational complexity of the proposed
FTV-sparse method and CTV−s is the computational complexity
of the TV-sparse method.

From Fig. 3, we can find that the calculation cost of the
proposed method is much less than that of the TV-sparse method,
and the computational advantage of the proposed method in-
creases with the increase of dimensionN , which greatly reduces
the computational complexity and improves the real-time imag-
ing ability, in practice.

D. Selection of Parameters

For the proposed method, we can see that there are three
parameters which need to be identified, i.e., μ, γ1, and γ2. In our
work, the parameters are selected by the L-curve method [37],
[38].

For the parameter μ, we defined that pk
1 = dk

1 − bk1 , pk
2 =

dk
2 − bk2 , r1 = ∇f − pk

1 and r2 = ∇f − pk
2 . TheL-curve con-

sists of plotting log(
γ1
2
‖r1‖22 +

γ2
2
‖r2‖22) as a function of

log(
1

2
‖Af − s̃‖22). Then, the parameter μ is found at the corner

of the L-curve.
Using the L-curve method, the optimal γ1 and γ2 are found as

the corners of the L-curve constructed by plotting log(‖d1‖1)
as a function of log(

1

2
‖d1 −∇(fk+1)− bk1‖22) and log(‖d2‖1)

as a function of log(
1

2
‖d2 −∇(fk+1)− bk2‖22), respectively.

In particular, at the first iteration, the parameters γ1 and γ2
are first selected by experience, then the parameter μ can be
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Fig. 4. Simulation results with the SNR of 20 dB.

determined by L-curve. In the rest of the iteration, γ1 and γ2 are
automatically updated according to L-curve.

V. VERIFICATION OF PERFORMANCE

In this section, experiments are conducted to verify the perfor-
mance of the proposed method. We first design a simulation of
two adjacent targets, to demonstrate the performance resolution
improvement and contour preservation of the proposed method.
Then, two measured data are processed to verify the performance
of the proposed method in practice. Finally, we build a hardware
platform based on field programmable gate array (FPGA), and
test the computing time of the proposed FTV-sparse method
and the traditional TV-sparse method in practice. Meanwhile,
the result is compared with TSVD, sparse, TV and TV-sparse
methods.

A. Simulation

A simulation of point targets is first utilized to demonstrate
the performance of the proposed method. For the simulation, a
sinc2 function is employed as the antenna pattern, and its beam
width is 3◦. The real scene includes two adjacent point targets
whose center is at −1◦ and 1◦, respectively. The width of each
target is 0.6◦. The scanning region is ±6◦. It can be seen that
the minimum interval of adjacent targets is 1.4◦. According to
Rayleigh criterion, they will not be distinguished by real aperture
imaging.

The simulation is carried out under the condition that the SNR
is 20 dB, where SNR is defined as

SNR = 20log10
‖f‖22

‖Af − s̃‖22
(24)

The simulation results are shown in Fig. 4. We can see that
the adjacent targets cannot be distinguished in real-beam echo.
TSVD can distinguish the targets to a certain degree, but the
sidelobes are raised, and the contour of targets is missing. Sparse
method can distinguish adjacent targets and suppress noise, but
it cannot preserve the contour of the target. TV method can

Fig. 5. Iterative error with SNR of 20 dB.

preserve the contour of the target, but the resolution is low
and the noise amplification is serious. TV-sparse and proposed
methods can distinguish the adjacent targets and preserve the
target contour, and have better noise suppression ability than
TV method. In addition, the results of TV-sparse and proposed
are almost overlapped, which shows that the performance of the
algorithm will not be degenerated after acceleration.

The iterative error curves of different algorithm are plotted in
Fig. 5, where the iterative error is defined as

error = 10log10

∥∥∥f̃k+1 − f̃
k
∥∥∥2
2

(25)

These curves shows that with the increase of the iterations,
the iterative errors of TV-sparse method and proposed method
are much smaller than those of TV and sparse method, and
the iterative errors of TV-sparse method and proposed method
are almost the same, which shows that TV sparse method and
proposed method have better convergence ability. So their results
are closer to the original scene.

For further verification, we calculate the mean square error
(MSE) of the results of different methods. The MSE is defined
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Fig. 6. Simulation results with the SNR of 10 dB.

TABLE I
MSES WITH SNR OF 20 dB

as

MSE =
1

Nc

Nc∑
i=1

1

N

∥∥∥f̂ i − f
∥∥∥
2

(26)

where Nc is the number of Monte-Carlo experiments. The
smaller the MSE indicates that the superresolution result is
closer to the real scene. In this simulation, we let Nc = 100,
then the MSEs are shown in Table I. MSEs also shows that the
superresolution results of TV-sparse and proposed methods are
almost the same, and they are closer to the real scene.

In radar imaging, sometimes it suffers from strong noise.
Therefore, the performance of the proposed method is demon-
strated at the condition of low SNR. We repeat abovementioned
simulation and let SNR = 10 dB, and the simulation results are
illustrated in Fig. 6. It can be seen that with the decrease of
SNR, the performance of all algorithms has degenerated. TSVD
method is unable to distinguish adjacent targets completely.
Sparse and TV method can distinguish adjacent targets, but
affected by strong noise, false targets appear. The TV-sparse
and the proposed methods cannot only distinguish adjacent
targets, but also preserve the contour of the targets. Although the
noise is amplified partly, the noise amplitude is almost below
−15 dB, which hardly affected target recognition in practice.
The iterative error curves are shown in Fig. 7. At low SNR
condition, the TV-sparse and the proposed methods still have
good convergence performance, and the iterative error after
convergence is much smaller than other methods. In addition,
the superresolution results and iteration error curves of the
TV-sparse and proposed methods almost overlap, which shows

Fig. 7. Iterative error with SNR of 10 dB.

TABLE II
MSE WITH SNR OF 10 dB

that the acceleration strategy used in this article will hardly cause
performance degradation.

The MSEs of different superresolution are also shown in
Table II, and the results are consistent with the abovementioned
conclusion.

B. Measured Data Verification

The simulation has demonstrated the effectiveness of the
proposed method. However, it should be pointed out that the
abovementioned simulation is performed under the condition of
ideal noise, that is, Gaussian white noise. Conditions in practice
are usually more complex than ideal. Therefore, the measured
data are processed to verify the performance of the proposed
method in practice.
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Fig. 8. Superresolution results of measured data. (a) Optical scenario. (b) Real-beam echo. (c) TSVD. (d) Sparse. (e) TV. (f) TV-sparse. (g) Proposed.

TABLE III
SYSTEM PARAMETERS OF MEASURED DATA

1) Ground Data: A ground data are first processed. The data
were collected at the Luodai town, Chengdu, China. The system
parameters are shown in Table III. The optical scene intercepted
from Google Earth is shown in Fig. 8(a). We can see that the
red dotted rectangle on the upper part of the optical scene marks
a lake. There are two obvious islands in the lake, which are
marked with white solid rectangle. In addition, the red solid line
rectangle in the lower part of the optical scene marks a school,
and the roads around the school are clear.

The real-beam echo is shown in Fig. 8(b). It can be seen that
the resolution of real-beam echo is low and the picture is fuzzy.
Fig. 8(c) to (g) shows the superresolution results processed
by TSVD, sparse, TV, TV-sparse and proposed methods. In
this experiment, TSVD, sparse, and TV methods only achieve
limited improvement in resolution, resulting in unclear contours
of lake and roads. However, TV-sparse the proposed method
still have good superresolution ability. In their superresolution
results, the contour of lake and road is clear. Besides, the entropy
is utilized to quantificationally evaluate the performance of
different methods. According to minimum entropy principle, the
smaller the image entropy, the clearer the image [39]. As shown
in Table IV, the entropies of superresolution results of TV-sparse
and proposed methods is the same and less than that of other
methods, which also shows that TV-sparse and the proposed
TV-sparse method has better superresolution effect than other

TABLE IV
ENTROPIES OF GROUND DATA PROCESSING

TABLE V
SYSTEM PARAMETERS OF MEASURED DATA

methods. Therefore, their superresolution results are clearer than
that of other methods.

Fig. 9 and Fig. 10 show the partially enlarged pictures of the
lake and school. The results further prove that the superreso-
lution result of TV-sparse and the proposed TV-sparse method
better preserves the contour of the scene, so the lake and the roads
around school are more clear and distinguishable than those of
other methods.

By comparing the results of TV-sparse and the proposed meth-
ods, it can be found that their superresolution results are almost
identical. This confirms again that the acceleration strategy used
in this article will hardly cause performance degradation in
practice.

2) Sea Surface Data: Another measured data were collected
on a sea surface. The system parameters of radar are listed in
Table V.

The imaging area of this experiment contains land and ocean.
The processed results are shown in Fig. 11, where Fig. 11(a)
is the real beam echo with low resolution. It can be seen that
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Fig. 9. Partial enlarged drawings for lake in Fig. 8. (a) Real-beam echo. (b) TSVD. (c) Sparse. (d) TV. (e) TV-sparse. (f) Proposed.

Fig. 10. Partial enlarged drawings for school in Fig. 8. (a) Real-beam echo. (b) TSVD. (c) Sparse. (d) TV. (e) TV-sparse. (f) Proposed.

Fig. 11. Superresolution results of sea surface data. (a) Real-beam echo. (b) TSVD. (c) Sparse. (d) TV. (e) TV-sparse. (f) Proposed.

the contour of the land is blurred and accompanied by strong
noise. Fig. 11(b) to (d) is the superresolution results of TSVD,
sparse, and TV methods. These results show that although
TSVD, sparse, and TV methods improve the resolution, the
improvement in resolution is limited and the contour of the land
is not clear. In particular, because of the low SNR of the measured
data, the TV method does not recover the land contour very well.
Fig. 11(e) and (f) shows the superresolution results of TV-sparse
and FTV-sparse methods. It can be seen that these two methods
can effectively improve the resolution and suppress noise. Their
superresolution results show clear land contours and distinct
land-sea divisions.

The entropies of different results are shown in Table VI. It
also shows that the superresolution results of TV-sparse and
FTV-sparse methods are clearer than that of other methods, and

TABLE VI
ENTROPIES OF SEA SURFACE DATA PROCESSING

the TV-sparse and FTV-sparse methods have almost the same
performance.

C. Assessment of Computing Time

In Section IV-C, the CCR curves have shown the computa-
tional advantage of the proposed method. In practice, the data
are usually processed by a FPGA or digital signal processing
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TABLE VII
COMPUTING TIME OF DIFFERENT ALGORITHMS

chip. Here, we used an eight-core TMS320c6678 chip produced
by Texas Instruments (TI) as an example to build a hardware
platform, and tested the computing time of different algorithms.
The main frequency is 1GHz and the memory is 4GB.

For abovementioned measured data, their echo dimensions are
1600 × 500 and 1301 × 2855, where a× b represents a samples
in range and b samples in azimuth. Based on the hardware
platform, the computing times (CTs) of the different algorithms
are listed in Table VII. The results show that the computing time
of proposed method is greatly reduced after acceleration. The
computational efficiency is increased by about 191 times for the
ground data and 312 times for the sea surface data.

VI. CONCLUSION

In this article, we proposed a FTV-sparse method to reduce
the computational complexity of traditional TV-sparse method
in radar forward-looking imaging. According to the Toeplitz
property of the measurement matrix in traditional TV-sparse
method, we use GS representation to solve the linear equations
quickly, skillfully avoiding the matrix inversion operation.

Through both simulation and measured data processing ex-
periments, we demonstrated that the proposed method almost
does not cause performance degradation compared with the
traditional TV-sparse method. The hardware test shows that
for the echo with dimension of 1600 × 500 and 1301 × 2855,
the computational efficiency of the proposed method is about
191 and 312 times that of the traditional TV-sparse method,
respectively.
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