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Identification of Damaged Building Regions From
High- Resolution Images Using Superpixel-Based

Gradient and Autocorrelation Analysis
Chaoxian Liu , Haigang Sui, and Lihong Huang

Abstract—An efficient and accurate identification of damaged
buildings after earthquakes is critical for ensuring a quick re-
sponse and efficient rescue operations. Considering the time pres-
sure during disaster emergency response and the convenience of
practical application, a new approach for identifying areas with
damaged buildings is proposed in this study. The approach is
validated on high–resolution images from areas impacted by the
Haiti earthquake. The approach consists of the following steps. (i),
the simple linear iterative clustering method is improved to segment
the images into high-quality superpixels by combining both color
and texture information; (ii) the characteristics of the damage in
the area within the cluster and the difference between pre- and
post-earthquake images are obtained at superpixel level using the
Sobel gradient; and (iii) local indicators from the spatial association
analysis are used to extract the result of the gradient clustering
using the synthetic- damage index calculated by an improved relief
algorithm; and (iv) vegetation and shadows are masked out to iden-
tify the damaged buildings. This framework achieved an overall
accuracy of ∼90% in terms of visual interpretation, with precision
and recall of ∼85% and ∼90%, respectively. Inaccuracies mainly
occur around the boundaries of the damaged building regions.
It is evaluated that the proposed framework is more convenient
compared to other supervised and unsupervised methods. The
successful application in different scenes demonstrates that the
proposed framework has the ability to rapidly and accurately
identify regions with damaged buildings, which is beneficial for
post-disaster emergency assessment.

Index Terms—Earthquake, building damage, simple linear
Iterative clustering, synthetic damage index, improved-relief, local
indicators of spatial association analysis.

I. INTRODUCTION

A SSESSING building damage is crucial in the coordination
of fast responses after earthquakes. A rapid and accurate

assessment of damage provides a reliable reference not only
for rescue and emergency responses, but also for the subse-
quent reconstruction. Remote sensing (RS) technologies, which
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have rapidly developed and nowadays permit multi-platform,
multi-sensor, multi-scale, multi-angle, all-weather, and all-day
Earth observations, provide efficient tools for obtaining timely
building damage information [1], [2].

In the past decades, studies on building damage extraction
have mainly focused on localizing and quantifying the damaged
buildings, evaluating the proportion of collapsed buildings, and
assessing the type of damage suffered by each building [3]–[5].
The detailed assessment of building damage using multi-sensor
data has recently become a popular research topic. With the
development of very high resolution (VHR) and multi-source
RS technologies, VHR optical, synthetic aperture radar (SAR),
and light detection and ranging (LiDAR) data – which pro-
vide more detailed damage characteristics compared with RS
images– have been used to discriminate specific damage types
[6], [7]. Moreover, spaceborne, airborne, and ground-based
data acquisition platforms have significantly contributed to the
extensive use of VHR imagery in precise damage extraction
[8], [9]. However, considering the possible limitations in terms
of data availability and computing resources, a general method
for accurate and rapid building damage assessment over a large
area is still required. This method would contribute to obtaining
first-time disaster information, thereby facilitating post-disaster
emergency operations. In summary, the approaches for building
damage extraction can be categorized into three groups: (1)
mono-temporal methods, (2) change detection methods, and (3)
multi-data fusion methods [10]–[13].

1) Mono-temporal methods: By extracting various damage-
related features, such as spectral features, texture features,
and structural features, damaged regions can be identified
in post-disaster images, which are commonly used for
disaster emergency applications [14]. Concluded from
recent research, supervised classification methods have
gradually become the most important technique in damage
detection [15]. Based on user-defined or automatically de-
fined features, appropriate classification models are used
to train and predict the areas possibly suffering damages on
the basis of VHR images. However, the adoption of such
methods in practice remains challenging, mainly owing
to the poor generalization capability of the features. In
addition, these methods rely on a priori feature selections,
and therefore depend on expert knowledge and on the
specificity of the available imagery. Apparently, a general
feature representation technique needs to be developed.
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2) Change detection methods: Visual interpretation is com-
monly used to detect changes between pairs of images.
By identifying significant changes between pre- and post-
disaster VHR images, the damaged regions can be deter-
mined. These changes are identified according to typical
features that depend on the image source (coherence fea-
tures in SAR images, height features in Lidar data, and
spectral/texture changes in optical images) [16], [17]. This
method, however, requires strong expertise in damage dis-
crimination. Image enhancement is another widely used
method for damage detection. Images acquired before and
after an earthquake are co-registered and subtracted to
highlight differences. However, the stringent requirements
in terms of data type, image resolution, and quality reduce
the applicability of this method. Moreover, changes do
not necessarily imply damages: a time-consuming post-
processing remains necessary. Another strategy entails the
comparison between the classification results of pre- and
post-event data. The main advantage of this strategy is
that it minimizes the effect of the radiometric difference
between the two data sets. However, the accuracy is com-
pletely dependent on the initial classification results. In
contrast, combining this change-detection method with
other methods can alleviate this drawback.

3) Multi-data fusion methods: By combining data from di-
verse sources, such as SAR, LiDAR, optical cameras,
and geographical information system (GIS) data, some
complex and detailed information on building damage
can be accurately extracted [18]. Although these fusion
methods have brought some improvements to the ex-
traction of building damage information, several issues
need to be resolved. Data acquisition, registration, and
fusion accuracy limit the applicability to actual disaster
responses. For some regions, special pre-event data or
building vector boundaries cannot be obtained, thereby
reducing the possibility of damage detection. Considering
the processing and time complexity, these methods remain
mostly suitable only for fine and accurate post-event dam-
age assessments.

With the development of artificial intelligence and computer
vision, deep learning (one of the state-of-the-art techniques in
machine learning and visual recognition) has become a pop-
ular method for extracting discriminative and representative
high-level features. An advantage of deep learning is that it
learns high-level features directly from the original data, show-
ing greater flexibility and capability compared to traditional
classification methods. Recently, convolutional neural networks
(CNNs) have been widely used for identifying damaged build-
ings, demonstrating their effectiveness in damage extraction
[19], [20]. However, deep learning requires a large training set
and a long training time owing to its complex structure. The re-
cently developed weakly supervised learning (WSL) technique
can provide binary labels for each training image and reduce
the cost in terms of human labor. This technique can improve
the efficiency of data processing and accelerate the damage
detection to some extent [21]–[23]. However, typical damage
characteristics may vary across regions and depending on the

spatial resolution of the input images. In this respect, the poor
generalization ability of a trained CNN model still limits its
further application.

Existing studies mainly focused on specific features in the
feature selection process (such as post-disaster image features
or image change features), while they rarely combined multiple
features together. In addition, most studies performed image
extraction at the pixel level. This remained true even in routing
applications of CNN methods in recent research. Pixel-based
methods suffer from poor boundary identification and object
localization, as well as from the so-called “salt-and-pepper”
effect. Furthermore, recent studies focused on the target recog-
nition accuracy, while they ignored the roles of convenience
and efficiency, which directly affect the practical application in
emergency responses. It is thus apparent that a more general
method for building damage extraction – conveniently appli-
cable to different damaged areas and image resolutions while
ensuring accuracy and efficiency – needs to be developed.

To address this research gap, this study proposes a SGDL
(superpixel segmentation – gradient extraction – damage index
calculation – local Moran’s index analysis) approach for rapid
damage extraction based on VHR images. An improved simple
linear iterative clustering (SLIC) segmentation was used to
restrict the boundary of the feature and reconstruct the analysis
objects. The Sobel operator was used to detect the gradient
characteristics. Based on gradient features and superpixel-level
results, the building damage characteristics – Including the
gradient cluster index (GCI) and gradient difference index (GDI)
– were obtained at the object level. The synthetic damage index
(SDI) based on an improved relief algorithm was also employed
to complement the extracted information. Then, the local indi-
cators of spatial association (LISA) approach was utilized for
the cluster analysis based on the SDI. Finally, the areas with
high SDI values were identified as containing damaged buildings
after masking out shadows and vegetation. The accuracy of the
proposed method was evaluated through an error matrix using
visual comparison. To generate a damage classification product,
it is important to rely on a damage scale that is recognized as
a standard. Here, the EMS-98 scale was used to discriminate
between heavy/moderately damaged buildings (damage grade≥
3 in the EMS-98 scale) and less damaged/undamaged buildings
(damage grade < 3 in the EMS-98 scale) [24]. Considering the
actual image resolution and the available roof damage character-
istics, the former was termed “damaged regions,” and the latter
“undamaged regions”.

The proposed approach provides the following novel con-
tributions. 1) The SLIC algorithm was improved by combining
color and texture features, which can well reflect the boundary of
the image area or the outline of the damaged object. In addition,
the proposed distance measure can dynamically balance the
relative importance between color/feature proximity and spatial
proximity in each iteration to generate good-quality superpixels.
2) Different from traditional single-image features at the pixel
level, the combined use of gradient clustering features and
gradient difference features at the superpixel level from pre- and
post-disaster VHR images contributes to improving the final ac-
curacy, both in terms of object classification accuracy and spatial
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Fig. 1. Location map of the study area.

location accuracy. 3) The autocorrelation analysis (commonly
used in spatial statistical research), was used for building damage
extraction for the first time. Based on the resulting damage
index and potential spatial relations, the damaged regions can
be extracted while ensuring both accuracy and efficiency.

II. STUDY AREA AND DATA SET

The study area (Fig. 1) is located in Port-au-Prince, the
capital city of Haiti. An earthquake with a 7.0 Mw magnitude
occurred on January 12th, 2010 about 25 km west of the city.
As Port-au-Prince features highly complex and heterogeneous
residential areas, the earthquake caused extensive damage to
buildings, facilities, and more than 200 thousand victims. Many
buildings were destroyed, including government offices, public
buildings, and hospitals.

To illustrate the effectiveness of the proposed approach, two
representative regions (one town subarea and one village sub-
area) were investigated (Fig. 2). For the urban region, pre-
and post-earthquake multispectral images (4060×3022 pixels)
with blue, green, red, and near-infrared bands acquired by the
Geo-Eye satellite on October 1st, 2009 and January 13th, 2010
were used. After the fusing the multispectral and panchromatic
images, the spatial resolution reached 0.5 m. For the rural region,
pre- and post-earthquake images (4060×3022 pixels, 0.3 m
resolution) with blue, green, and red bands were obtained from
Google Earth, and were acquired on August 26th, 2009 and
January 24th, 2010. The pre- and post-earthquake images were
co-registered using conjugate tie points. Twenty tie points were
manually extracted with a sub-pixel root mean square error of
less than 0.5 pixels. Each image was geometrically corrected
and rectified to the WGS_1984 (UTM Zone 50N) coordinate
system using ArcGIS software.

III. METHODOLOGY

The methodology (Fig. 3) comprises the following steps: (1)
image processing, including image registration and gradient
calculation; (2) image segmentation using an improved SLIC
algorithm; (3) calculation of the damage feature index at the

superpixel level, including the evaluation of GCI, GDI, and
SDI; (4) rapid extraction of damaged regions, including LISA
clustering and post-processing; and (5) accuracy evaluation and
validation.

A. Improved SLIC Superpixel Segmentation

The segmentation quality determines the target recognition
accuracy. The SLIC algorithm, which can output good quality
superpixels that are compact and roughly equally sized, is widely
used to conduct the superpixel segmentation [25]. However, this
algorithm only uses the CIELAB color space to measure the
color similarity between seed points and pixels within clusters.
Although this algorithm can account for spatio-temporal com-
plexity, the resulting segmented boundary does not accurately
reflect the actual one, especially for damaged building regions
with significant color features and abundant texture features.
Consequently, the CIELAB color space measurement cannot be
used for the segmentation of post-earthquake VHR images fea-
turing complex objects. This work proposes an improved SLIC
(ISLIC) algorithm, which enhances the similarity measurement
by analyzing the color and texture features comprehensively.
This combined feature measurement cluster replaces the color
feature of the original algorithm. As a result, the ISLIC can
generate higher quality superpixels from the VHR images. The
specific steps of this algorithm are as follows.

1) Seed Point Initialization: To obtain evenly-distributed
seed points over an image with n pixels and t superpixel seed
points, the area of each superpixel should be A = (n/t), and the
distance between adjacent seed points should be DS =

√
(n/t) .

To avoid the identification of a seed point as a noise pixel, as
well as to avoid the occurrence of seed points on the edge of
the image, problematic seed points were moved to the location
having the smallest gradient in a 3 × 3 window, and were then
given independent labels.

2) Color and Texture Feature Selection: Damaged building
regions usually exhibit bright colors with low intensity and high
saturation. The color space transformation to the hue, saturation,
intensity (HSI) color model was performed, and incorporated in
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Fig. 2. Pre- (a) (c) and post-event (b) (d) maps of the study area in Port-au-Prince, Haiti.

the improved superpixel delineation method. On the contrary,
the texture of intact building regions is uniform and rather
homogeneous compared with the broken and disordered texture
of damaged building regions. Considering the requirements of
high retrieval efficiency and real-time performance, the texture
features in the image were measured by a histogram. The local
binary pattern (LBP) operator – a rotation- and gray-invariant
operator - was used to extract the texture information. The result
was then transformed into a histogram and regarded as the image
feature.

3) Distance Measure Design: A weighted distance measure
combining color, texture, and spatial proximity was used to
perform the superpixel segmentation. Each pixel in the image
was compared with the closest neighboring seed points to eval-
uate feature and spatial similarities, and the label of the most
similar seed point was assigned to the pixel. The color similarity
measure between the ith pixel and the jth seed point is defined
in (1), where DC denotes the similarity measure for color, and
H, S, and I represent the hue, saturation, and intensity values,
respectively.

DC =

√
(Hi −Hj)

2 + (Si − Sj)
2 + (Ii − Ij)

2 (1)

The texture similarity measure between the ith pixel and the
jth seed point is defined in (2), where DT is the texture similarity
measurement, k is the texture value for each pixel, hj(k) is the
texture histogram of the seed pixel, and hi(k) is the texture
histogram of adjacent pixels between the window and the seed
point. A small χ2(hi, hj) indicates a high similarity between
pixels and seed points.

DT = χ2(hi, hj) =
1

2

∑
k

[hi(k)− hj(k)]
2

hi(k) + hj(k)
(2)

The spatial proximity between the ith pixel and the jth seed
point is defined in (3), where DS is the similarity measure
for spatial distance, xj and yj are the abscissa and ordinate
components of the seed point, respectively, and xi and yi are the
horizontal and vertical components of the pixel points adjacent
to the seed points, respectively.

DS =

√
(xi − xj)

2 + (yi − yj)
2 (3)

Finally, the total similarity measure between seed points and
pixels is defined in (4):

DS = DC +DT +
m

D
DS (4)
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Fig. 3. Flowchart of the rapid damage extraction.

where m is a constant parameter and D is the distance between
adjacent seed points. The parameter m, usually ranging between
1 and 20, is used to control the relative importance between
feature similarity and spatial proximity. Generally, a higher value
of m indicates that the spatial distance is more important than the
feature proximity, and the last generated superpixels are more
compact. After repeated trials,αwas set to 16. As for the param-
eter D, in the SLIC algorithm it usually has a constant value. For
the ISLIC in this study, D is changed with iterative clustering
and used for adjusting the impact of the spatial distance DS on
pixel clustering when searching for the nearest distance center.
When the compared cluster center belongs to a large cluster
region, D can weaken the influence of DS, which can ensure
that the pixel far from its cluster center is segmented into the
correct cluster and avoids small superpixels in large homoge-
nous regions (over-segmentation). Conversely, when the cluster
center belongs to a small cluster region, the influence of DS

is enhanced, thus reducing the probability of large superpixels
occurring in complex texture regions (under-segmentation).

4) Clustering of Global Regions: Pixels with the same seed
point labels are clustered into one superpixel. However, to ensure
sufficient computational speed, the entire image cannot be taken
as the search window. Instead, a 2S × 2S window (S is the area
of the superpixel) centered on the seed point is chosen to search
pixels with similar clustering.

B. Damage Feature Extraction at the Superpixel Level

In VHR images, various spectral characteristics can be ex-
tracted, and more local details can be found. The Sobel operator

Fig. 4. Damaged buildings in the pre- and post- images and corresponding
gradient feature using Sobel operator. (Images (a) and (c) are the same building,
which was acquired before and after the disaster respectively. Images (b) and
(e) are the corresponding gradient images at pixel level. Images (c) and (f) are
the corresponding gradient images at superpixel level.)

Fig. 5. Example of generated brightness map and VDVI map.

is widely used to obtain first-order image gradient information
and detect edges. Although many algorithms have been used for
edge detection (such as algorithms focusing on morphological
characteristics), the Sobel operator was used in this study as it
offers the best compromise among convenience, efficiency, and
flexibility [25]. In Fig. 4, the gradients derived from the pre-
and post-disaster images are illustrated. In both cases, struc-
tural features were successfully extracted based on grey-level
intensity. Regions in which high-value grey levels distribute
randomly tend to contain damaged buildings. Based on the
boundaries of the superpixel segments, the mean gradient within
each superpixel was calculated, and was used as the basic unit
to detect the damaged buildings.

1) GCI of the Post-Disaster Image: As seen in Fig. 4, the
patterns of the gradient clustering feature of damaged and un-
damaged regions are obviously different. At the pixel level, the
gradient distribution within intact buildings is homogeneous,
while it is not homogeneous within damaged buildings. At
the object level, the spatial correlation in damaged regions is
high notwithstanding the random distribution at the pixel level.
Regions with high correlation values tend to exhibit a cluster
distribution pattern. In this study, a gradient cluster index (GCI;
5) was proposed to calculate the correlation of adjacent objects
and represent the cluster characteristics [27]. This index con-
tributes to the detection of potential damage hotspots. Generally,
the higher the GCI is, the greater will be the probability of the
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region being damaged.

GCI =

∑n
j=1 wij(d)xj∑n

j=1 xj
(5)

where d is the lag, wij is the spatial weight (1 or 0) representing
the impact between superpixels i and j, xj is the gradient value
of superpixel j, and n is the total number of superpixels. d was
set to 1 and the adjacent superpixels in the up, down, left, and
right directions were used to calculate the spatial weight.

2) GDI Between Pre- and Post-Disaster Images: The vari-
ation of the gradient between pre- and post-disaster images is
also a significant feature that can be used for damage extrac-
tion [28]. The GDI contributed to finding all gradient changes
and detecting all the probably damaged regions. However, it
should be noted that not all regions with gradient changes were
damaged. Although some large gradient variations are found
around the building boundaries because of registration errors,
this phenomenon can be reduced or even eliminated by averag-
ing over the superpixel segments. Considering the influence of
different bands on the Sobel calculation, three bands were taken
into account. The final formula was defined as follows (6):

GDI =

√∑n

i=1
(sai − sbi )

2
(6)

where n = 3 is the number of bands, and sa and sb represent the
Sobel gradient values of the super-pixel segments.

3) SDI Based on the Improved-Relief Algorithm: The GCI
and GDI proposed in this study were sufficiently representative
to perform the damage extraction. However, they only provided
the approximate location of damaged building regions based
on a single image feature, for which the extraction ability was
relatively low. To address this issue, a novel approach based
on an improved relief algorithm was proposed to evaluate the
feature weights.

The relief algorithm aims to achieve a binary classification.
It evaluates the features according to its ability to distinguish
between near samples, and assigns higher weights to features
with good classification ability [29]. Final weight approach in the
traditional relief algorithm is affected by the number of samples.
Conversely, the improved relief (IR) algorithm proposed herein
considers the same number of samples from each type of target.
The basic process is shown in Algorithm 1.

Based on the feature weight, the SDI was calculated using
(7), where wc represents the feature weight of GCI and WD

represents the feature weight of GDI.

SDI = Wc ×GCI +Wd ×GDI (7)

C. Rapid Extraction of Damaged Regions Based on LISA

As explained above, the gradient feature of damaged building
regions exhibits a certain spatial correlation. In addition, these
regions usually present high gradient variation and gradient
clustering features. These distinctive characteristics can be an-
alyzed using tools of spatial statistical analysis [30]. In partic-
ular, the spatial autocorrelation analysis has been widely used
to statistically analyze spatial distribution patterns. The local
autocorrelation reflects the degree of correlation of one attribute

Algorithm 1 Improved Relief Algorithm
Input: Labeled samples with class 1 and class 2; building

damage features of GCI and GDI
1. Set the initial feature weight.
2. Calculate the center point Xc for samples of same class.
3. Calculate the Euclidean distance between the selected

sample and the center sample.
for class = 1 to class = T do
for sample = 1 to sample = M do
Dist(X,Xc) = sqrt(

∑n
i=1 (si − sci)

2)
end for
end for

4. Select the middle samples. Based on Xc, samples of each
class are divided into f groups. Then, the interval
Euclidean distance Δd for each group is calculated using
the formula below. Finally, the middle sample can be
used in the following calculation.

Δd = (max(Dist)−min(Dist))/f
5. Conduct the relief analysis using the selected middle

samples from each class.
For different samples do

Select the nearest neighboring samples of same
class for each sample

For different classes do
Select the nearest neighboring samples of different
class for each sample

Calculate the weight for each feature.
Output: Final weight of GCI and GDI.

with adjacent areas in a small region. In this study, the local
Moran’s index was used to visualize and analyze the local cluster
characteristics of the gradient index, as shown in (8). Compared
with the proposed GCI for gradient clustering analysis, the local
Moran’s index is more sensitive to slight differences, and can
identify statistically significant spatial outliers.

Local Moran’s I =

(
xi − x̄

m

) n∑
i=1

Wij(xj − x̄) (8)

m =

⎛
⎝ n∑

j=1,j �=1

x2
j

⎞
⎠ /(n− 1)− x̄2 (9)

where n is the total number of superpixels, xi and xj are the gra-
dient values of superpixels i and j, respectively, x̄ is the average
gradient value for the entire study area, and Wij is the spatial
weight matrix, which represents the degree of impact between
superpixels i and j. The LISA analysis not only calculates the
local Moran’s index, but also performs the clustering of the index
values. Based on the clustering results, four spatial distribution
patterns of SDI can be identified:

1) HH type, in which the SDI within the area is high, the
SDI around the area is high, and the spatial correlation is
also high; this pattern identifies the spatial distribution of
building damage features with large areas.
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2) HL type, in which the SDI within the area is high, but
the SDI around the area is low; this pattern identifies the
spatial distribution of building damage features with a
small area.

3) LL type, in which the SDI within the area is low, and
the SDI around the area is also low; this pattern identifies
the spatial distribution of relatively undamaged and large
homogeneous regions.

4) LH type, in which the SDI within the area is low, but
the SDI around the area is high; this pattern identifies the
spatial distribution of undamaged regions with small areas.

In summary, the HH- and HL-type regions are consistent with
the distribution of typical damage features. Therefore, they were
used to represent the damaged regions in this study.

D. Post-Processing And Accuracy Assessment

1) Masking Out Vegetation and Shadows: Vegetation and
shadows need to be removed from the final extraction results
as they may interfere with the damage assessment. Vegetation
and shadows were first extracted at the pixel level, and an
image superpixel was then identified as a specific class using
majority rules for image objects. To enhance the applicability of
the proposed method to different types of images, the Visible-
band Difference Vegetation Index (VDVI) was used, which was
calculated by (10) [30]. In the formula, R/G/B represents the
red/green/blue channel information of the VHR image. A pixel
with a VDVI value higher than the selected VDVI threshold
was classified as vegetation; otherwise, it was classified as
non-vegetation.

V DV I = (2G−R−B) / (2G+R+B) (10)

The brightness, that is the average of pixel values in the red,
green, and blue bands, can effectively be used to discriminate
between shadows and non-shadows. Because of the significant
difference between shadow and non-shadow brightness values,
a thresholding method was adopted for shadow extraction, and
the optimum threshold was easily identified.

In this study, to conduct the threshold segmentation of the
gray images of VDVI and brightness, the OTSU method was
used, which is based on an adaptive threshold selection and
maximization of interclass variance. By performing a statistical
analysis of the histogram features of the entire image, the optimal
global threshold can be easily determined. After the masking
process based on the selected threshold, two land cover types
were extracted at the pixel level. Then, a majority rule was used
to produce extraction results at the object level. Specifically, if
the majority of pixels within the object belonged to a specific
class, the entire image segment was identified as belonging to
that class. Finally, the extracted shadows and vegetation were
masked out from the final cluster result to optimize the extraction
result.

2) Accuracy Assessment: To evaluate the accuracy in terms
of image classification and damage extraction, the results were
compared to manually-labeled reference data based on visual
interpretation. Precision (Pre.), Recall (Rec.), Overall Accuracy
(OA), and F1-score were used to evaluate the segmentation and

extraction performance, as shown in (11)–(14). Although the OA
can be used to evaluate the overall accuracy of the classification
results, it can easily fail if the positive and negative samples are
uneven. Thus, Pre. was used to evaluate the false detection ratio,
Rec. was used to evaluate the missed detection ratio, and the
F1-score was computed to evaluate Pre. and Rec. comprehen-
sively. In the equations, TP computes the true positives, i.e., the
positive samples correctly classified as positive, FP computes the
false positives, i.e., the negative samples incorrectly classified
as positive, FN computes the false negatives, i.e., the positive
samples incorrectly classified as negative, and TN computes the
true negatives, i.e., the negative samples correctly classified as
negative.

Pre. = TP/ (TP + FP ) (11)

Rec. = TP/ (TP + FN) (12)

OA = (TP + TN) / (TP + FN + FP + FN) (13)

F1 − score = (2× Pre.×Rec.) / (Pre.+Rec.) (14)

IV. RESULTS AND DISCUSSION

The proposed framework was implemented in Microsoft Vi-
sual C++ (embedding PCL1.8.1) and PyCharm 2019. All the
experiments were carried out on a PC with a 40 GB memory and
an Intel Xeon E5 CPU working at 2.7 GHz.

A. Effectiveness of the Improved Superpixel Method

The segments are the basic units in the building damage
extraction process. To evaluate the effectiveness of the ISLIC
algorithm, its performance was compared with that of some
segmentation algorithms, namely the Fractal Net Evolution
Approach (FNEA), graph-based segmentation (GS), mean-shift
segmentation (MSS), and traditional SLIC algorithms.

1) Qualitative Evaluation: As shown in Fig. 6, the FNEA,
GS, and MSS methods consider different object scales, thus
the resulting segments are very sensitive to the boundaries.
Specifically, the FNEA method seems to be more focused on the
local boundary information, which leads to some pedestrians and
cars also being segmented. With the GS and SLIC methods, some
large segments were identified in regions with complex textures,
and some segments were found in boundary regions. Compared
with traditional segmentation methods, the ISLIC method can
obtain more compact and regular superpixels, which match with
the boundaries of the damaged buildings very well. The proposed
distance measure can dynamically adjust the relative importance
between color/texture proximity and spatial proximity in each
iteration, and thus optimize the search of the nearest cluster
center within the entire image. As such, it can avoid small
superpixels in large homogenous regions (over-segmentation),
and reduce the probability of large superpixels in complex tex-
ture regions (under-segmentation). The final result demonstrates
that the proposed method is visually superior to the traditional
method and yields satisfactory segmentation results.

2) Quantitative Evaluation: To assess the object shape and
computational time to obtain the final segmentation results, five
statistical indices were utilized, namely the average area (AA),
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Fig. 6. Examples of image segmentation using FNEA (b) (h), GS (c) (i), MSS (d) (j), SLIC (e) (k) and ISLIC (f) (l).

TABLE I
STATISTICS FOR SEGMENTATION RESULTS USING DIFFERENT METHODS

standard deviation of area (SDA), average length-width ratio
(ALWR), standard deviation of length-width ratio (SDLWR),
and cost time (Time), to evaluate the performance of different
segmentation methods. As shown in Table I, the SDA and
SDLWR of segments computed using the ISLIC method were
lower than those obtained using other methods. Thus, it is
concluded that the method proposed in this study can produce
segments with a more uniform grain size. Despite the increased
time required to segment the image (about twice), the improve-
ment in segmentation accuracy is significant.

B. Gradient Feature Analysis of Superpixels

In this study, the average gradient within each segment de-
lineated on post-earthquake image was employed to calculate
the GCI and GDI using (5) and (6). Conversely, if segment
boundaries from pre-earthquake images were used to obtain
the damage feature, one segment would correspond to several
damaged and undamaged regions in the post-earthquake images.
This would result in the segment not having a typical feature
representation for damage extraction. As shown in Fig. 7, the
calculated GCI and GDI present different spatial distribution
features. The distribution of GDI values is relatively more
dispersed, while ‘hot’ regions of GCI are more spatially con-
centrated. The GCI focuses on the local gradient correlation and
consistency, which are effective for the identification of large
regions containing damaged buildings. In contrast, for small
or discontinuous regions, discriminating between damaged and
undamaged regions only on the basis of the GCI can be difficult.
The GDI is effective in overcoming the limitations of a GCI-
based approach. This gradient feature helps to find all regions

Fig. 7. The calculated GCI (a) (b) and GDI (c) (d) of study area.

with gradient variations, so that all the potential damaged regions
can be considered. However, not all regions with gradient vari-
ation contain damaged buildings. In conclusion, the combined
use of GCI and GDI is meaningful.

To illustrate the boundary effect arising in other methods, the
feature representation results of the FNEA and ISLIC methods
were compared. As shown in Fig. 8, the size and shape of the
objects segmented by the ISLIC algorithm are more regular. In
contrast, the FNEA method focuses on the boundary effects of
ground objects, making the size and shape of the segmented
objects discontinuous and variable. The gradient difference is
more obvious in the boundary area, as seen from the blue
rectangle in Fig. 8(b) (d). The boundary effects will cause some
boundary areas with high GCI and GDI to be misclassified as
damaged regions, thus influencing the overall representation
of the characteristics of the damaged buildings. Although the
superpixel segmentation results for these damaged regions were
still discontinuous, clearly high GCI values were computed, and
a tendency of clustering for the damaged regions was observed.
Moreover, the superpixel segmentation algorithm effectively
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Fig. 8. Example of GCI GDI at object level using ISLIC (a) (c) and FNEA (b)
(d) methods.

Fig. 9. Calculated SDI (a) (b) and cluster map using LISA (c) (d).

avoided the boundary effect by calculating the average gradient
across each superpixel, so that the gradient difference between
damaged and undamaged regions was sufficiently large.

C. Damage Extraction and Post-Processing

1) Damage Extraction Based on SDI Using LISA: In this
study, the weights of GCI and GDI were obtained by an improved
relief algorithm. Based on visual inspection, 4000 damaged
samples and 4000 undamaged samples, were used to evaluate
the feature weights. After weight calculation and normalization,
the average weights of GCI and GDI resulted equal to 0.55
and 0.45, respectively. Then, the SDI was calculated using (7).
Based on the computed SDI and (8), the damaged buildings were
conveniently and rapidly extracted using the LISA method. The
SDI and clustering results are shown in Fig. 9.

Compared with the GCI map in Fig. 7 (a) and (b), the spatial
distribution feature is no longer spatially consistent across large

TABLE II
CLASSIFICATION ACCURACY OF DIFFERENT LAND OBJECTS

areas. Compared with the GDI map in Fig. 7 (c) and (d), not all
regions with gradient variation had a high damage index. It can
be concluded that the SDI can effectively balance GCI and GDI
and maximize their advantages. Based on the optimized dam-
age index, the regions with damaged buildings can be rapidly
extracted using the LISA approach. As shown in Fig. 9 (c) and
(d), HH and LL are significantly clustered, while few HL and
LH clusters are identified. This indicates a significant hotspot
clustering effect, and confirms the effectiveness of the SDI in
representing the distribution of damaged buildings. In addition,
large HH regions exhibited a high degree of compactness and
almost covered the damaged building regions. The small HH
regions only cover limited areas. Nonetheless, the LISA ap-
proach was able to extract both large and small damaged regions
effectively.

2) Post-Processing and Accuracy Assessment: Shadow and
vegetation changes can influence the identification of damaged
regions. Therefore, they must be removed from the final cluster-
ing results. Following the histogram analysis using the OSTU
method at the pixel level, the optimal segmentation thresholds
for vegetation and shadows were set to 0.03 and 60, respectively.
Regarding the threshold for the object-level majority rule, an
optimal value of 75% was found after several trials, which will
be discussed in the following section.

The classification accuracy for three land objects on pre- and
post-earthquake VHR images is shown in Table II. The stratified
sampling scheme, which guaranteed that the selected points were
uniformly distributed and derived from different objects, was
used for the selection of the validation points. The table shows
that both the precision and recall reached 0.93, and the overall
accuracy for all three types was very high (> 0.95), indicating
that the extraction results are acceptable.

After masking out the vegetation and shadows the final results
are shown in Fig. 10. In terms of spatial distribution, the extracted
results covered the severely damaged large regions, as shown in
Fig. 10 (a) and (c), as well as the moderately damaged small
regions, as shown in Fig. 11 (a) and (c). Moreover, the final
extraction result preserved the rich and complete boundary infor-
mation of the damaged regions. This result is hardly achievable
with traditional methods.

The final extraction result contained some false positive and
false negatives. For example, some cars and pedestrians located
on roads near building debris were misclassified as damaged
regions owing to a gradient similarity (Fig. 10 (c)). However,
these regions are small and are mainly located around the cor-
rectly classified damaged regions. Therefore, it can be concluded
that the SDI not only made full use of the advantages offered by
the GCI and GDI, but also reduced the adverse effects arising
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Fig. 10. Extracted damaged building regions after post-processing for urban region.

Fig. 11. Extracted damaged building regions after post-processing for rural region.

from their use. In fact, the proposed method can localize and
extract damaged regions of different sizes satisfactorily while
ensuring the integrity of the extracted damaged regions.

To evaluate the damage extraction accuracy, the extraction
results after masking were compared with the results prior to
masking. In practice, 6 929 damaged regions and 10 000 undam-
aged regions were manually classified at the superpixel level for
each study region by visual interpretation. As seen in Table III,
the comparison showed that the overall accuracy was higher
than 0.84 in both cases, but the precision and recall increased
by over 5% after masking. This indicates that the masking
algorithm is a valuable and important post-processing tool in the

TABLE III
DAMAGE EXTRACTION ACCURACY ON CITY AND TOWN SUBAREAS

proposed approach. The final precision and recall after masking
were over 0.81 and 0.90, respectively, demonstrating that the
false negatives were controlled better than the false positives. In
addition, similar extraction accuracy in town and city presented
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TABLE IV
DAMAGE EXTRACTION ACCURACY BASED ON DIFFERENT SEGMENTS

Fig. 12. Extraction results of building damage based on different segmentation
results. (a) GS. (b) MSS. (c) FNEA. (d) SLIC.

the good generalization ability in different disaster scenes. In
summary, the results demonstrated that the LISA method can be
useful and practical for damage extraction based on combined
damaged characteristics.

D. Comparative Analysis

In this section, the different extraction effects are first an-
alyzed based on different segmentation results. Then, the ex-
traction difference are analyzed based on the GCI or GDI.
Finally, representative unsupervised and supervised methods for
building damage detection are implemented for comparison. To
exemplify the differences, two representative damaged regions
(Fig. 10 (a) and (c)) are chosen. The final values of accuracy
are compared, with reference to 6 929 damaged and 10 000
undamaged regions. The computation times also are compared,
so as to evaluate the computational efficiency.

1) Damage Extraction Based on Different Segmentation Re-
sults: The spatial and structural characteristics of the segments
(the basic units for damage extraction) have a direct influence
on the final extraction accuracy. Within the proposed extraction
framework, different segmentation methods are explored, as
discussed in Section III, and the results in terms of final average
extraction accuracy are shown in Table IV. In Fig. 12, the results
are compared with reference to a typical damaged area.

Fig. 13. Extraction results of building damage based on GCI in (a) (b) and
GDI in (c) (d).

TABLE V
EXTRACTION PERFORMANCE BASED ON DIFFERENT FEATURES USING LISA

Owing to the boundary effect using the Sobel operator, some
undamaged segments around building boundaries identified by
the GS, FNEA, and MSS methods were misclassified as dam-
aged regions. This issue is effectively avoided in the SLIC
method. In fact, the final model output seems to capture the
damaged regions accurately, with relatively few false negatives.
However, some issues remain both in terms of false negatives
and false positives owing to the over-segmentation and under-
segmentation of regions with complex textures. Compared with
the aforementioned methods, the ISLIC method is more accu-
rate, as shown in Fig. 11(a) and Table IV.

2) Damage Extraction Based on GCI and GDI Using LISA:
The GCI and GDI possess certain desirable characteristics for
damage detection, yet they also present some limitations in terms
of applicability. To illustrate the superior performance of the
proposed SDI approach, a LISA analysis is first conducted based
on the GCI or GDI alone. Then, the damaged building regions
are obtained after masking out the vegetation and shadows, as
shown in Fig. 13. The final extraction accuracy for the study area
is listed in Table V.

The GCI aims to cluster regions with similar gradients, thus it
is sufficiently effective for the identification of badly damaged
large regions with similar gradients, i.e., in cases in which
a clear spatial clustering exists. However, the boundaries of
the extraction results are not sufficiently accurate and suffer
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Fig. 14. Extraction results of building damage based on k-means method in
(a) (b) and change detection method in (c) (d).

from false positives, as shown in Fig. 13. Conversely, the GDI
correctly identifies some regions with large gradient variations,
but some undamaged regions are also misclassified as damaged
owing to an excessive sensitivity. The spatial integrity of the
GCI-based extraction is superior compared to that of the GDI-
based extraction owing to the superior clustering ability of the
GCI. In terms of computational burden, they perform similarly
as they are both based on the LISA approach.

3) Comparison With Other Unsupervised Extraction Meth-
ods: This study proposed an unsupervised building damage
extraction method. To demonstrate its advantages and potential
for application, the proposed method was compared with two
other unsupervised methods, namely the k-means clustering
method for SDI and the change detection method [32], [33].
The k-means method (not LISA), in particular, was chosen to
conduct a clustering analysis and demonstrate the superiority of
the LISA approach. The change detection method was chosen
as it widely used for damage detection, and can be easily
implemented. In this article, building objects change is analyzed
based on an object-oriented classification [34]. Building change
information pre-and post-earthquake is extracted as a basis for
damage assessment. For this method, pre-event image time, the
classification accuracy for and post-processing directly affected
the final damage extraction accuracy.

As shown in Fig. 14 (a) and (b), the final extraction results of
the k-means method possess good spatial integrity, which indi-
cates that the generated SDI can identify the damaged regions
reasonably well. In contrast, Table VI highlights that the accu-
racy of this method is relatively lower owing to the larger number
of false positives compared with the LISA method. As seen from
Fig. 14 (c) and (d), the change detection method also can identify
the damaged regions to some extent, but missed extractions are
also present, and the final boundary is not sufficiently consistent.

TABLE VI
EXTRACTION PERFORMANCE USING K-MEANS AND CHANGE DETECTION

METHODS

Fig. 15. Extraction results of building damage based on MFF in (a) (b) and
CNN in (c) (d).

TABLE VII
EXTRACTION PERFORMANCE USING MFF AND CNN METHODS

In terms of computational burden, the k-means method is less
demanding as it relies on a simpler algorithm, while the change
detection method is more time consuming, possibly owing to
the time required for the computation of the characteristic for
each land cover type.

4) Comparison With Other Supervised Extraction Methods:
Two supervised methods, namely the multi-feature fusion (MFF)
and the CNN methods were implemented, and their results were
compared with those of the proposed approach [35], [36]. Half of
the samples were chosen as the training set. For the MFF method,
the spectral, texture, and geometric shape features extracted
from the post-earthquake VHR images were used to identify
the damaged regions. For the CNN method, an experiment
was conducted with the commonly used AlexNet model, which
demonstrated high performance in object detection. The results
of the comparison for selected extraction targets and the average
model accuracy are shown in Fig. 15 and Table VII.
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Fig. 16. The effect of superpixel number on the extraction performance.

In terms of spatial distribution, some evident noise was pro-
duced by both models in the final extraction results, which may
be attributed to the limited number of samples. In addition, the
boundaries of some true positives were not correctly defined,
substantiating the concerns expressed in Section I. In terms
of extraction accuracy, the supervised methods perform worse
than the proposed unsupervised method owing to the extraction
noise. In terms of computational burden, on the other hand, the
AlexNet model approach seems less time- consuming. However,
an objective evaluation is difficult owing to possible subjective
impacts. The comparison was thus carried out between the
trained AlexNet model and the proposed method, including the
time required for clustering and post-processing. The results
show that, overall, the computational efficiency of the proposed
method is higher and a balance between accuracy and efficiency
can still be achieved even if damaged samples are lacking.

E. Parameter Sensitivity Analysis

1) Number of Superpixels: In the SLIC algorithm, the num-
ber of superpixels must be specified prior to performing the
image segmentation. This choice has a direct influence on the
segment size, which affects the classification accuracy. There-
fore, the sensitivity to the number of superpixels need to be inves-
tigated. Considering the actual minimum size of the damaged
regions, values from 20 000 to 80 000 (at intervals of 10 000)
have been investigated. The histogram in Fig. 16 illustrates how
the F1-score over damaged and undamaged regions changes as
the superpixel number increases, while the line graph shows the
effect of the number of superpixel on the damage extraction
accuracy. By specifying 50 000 as the number of superpixels,
the extraction performance was maximized. The F1-score of
the damaged regions ranged from 0.6692 to 0.8624, and the
overall accuracy ranged from 0.7440 to 0.8931, indicating that
the number of superpixels influenced the damage extraction
performance.

2) Feature Weights of GCI and GDI: In this study, two
optimized weights were assigned to the GCI and GDI using
the improved relief algorithm to derive the SDI and extract the
damaged building regions. The histogram in Fig. 17 shows how
the F1-score over damaged and undamaged varies depending
on the weights assigned to the GCI and GDI, while the line

TABLE VIII
ACCURACY OF EXTRACTION RESULT USING LISA

Fig. 17. The effect of weight for GCI and GDI on the extraction accuracy.

Fig. 18. The effect of majority percent on image classification and damage
extraction accuracy.

graph shows how the superpixels control the damage extraction
accuracy. It can be seen that the damage extraction based on the
customized weights (0.55/0.45) performs well if the improved
relief algorithm is used. In addition, the F1-score for the damaged
regions ranges from 0.7134 to 0.8624, and the overall accuracy
ranges from 0.7831 to 0.8931, which indicates that the choice of
weights significantly affects the damage extraction performance,
and confirms the need to calculate the feature weights using the
improved relief algorithm.

3) Majority Rule at the Superpixel Level For Different Ob-
jects: In the post-processing stage, the initial classification re-
sults were optimized based on a majority rule at the superpixel
level. To analyze the impact of different majority rules on the
post-processing results, different thresholds from 55% to 90%
(at intervals of 5%) were explored. As shown in Fig. 18, the
variation in terms of damage extraction accuracy was similar
to that in terms of image classification accuracy, indicating
that the majority rule actually affects the image classification
and damage extraction. Nevertheless, the influence is limited



LIU et al.: IDENTIFICATION OF DAMAGED BUILDING REGIONS FROM HIGH -RESOLUTION IMAGES 1023

Fig. 19. Some damage extraction results in Ishinomaki, Japan. (a) is the calculated SDI and (b) is last extracted damaged building region.

(within 2%), possibly depending on the fact that the superpixels
delineated by the ISLIC algorithm are relatively homogeneous
and each superpixel contains only one object class. Referring to
Fig. 18 an optimal threshold of 75% was identified.

F. Analysis of Transferability to Other Areas

To validate the proposed approach, a damage extraction was
performed based on pre- and post-earthquake VHR images from
a major earthquake and tsunami in Japan (occurred on March
11th, 2011). The VHR images comprised blue, green, and red
bands and were acquired from Google Earth on June 25th, 2010
and March 19th, 2011. The spatial resolution reached 0.48 m
and was sufficient to delineate the object details. The SDI and
LISA results are shown in Fig. 19. It can be seen that, overall, the
damaged buildings were correctly identified, thereby confirming
the transferability of the proposed approach to other study areas.
Despite some false positives and false negatives, the general
location and extent of the damaged buildings were captured
correctly. In addition, the high accuracy achieved (Table VII)
confirms the strong potential of the proposed approach for
practical application.

V. CONCLUSION

Efficient damage extraction contributes to emergency man-
agement and policy-making. Existing approaches have usu-
ally focused on improving either the extraction accuracy or
the extraction speed, struggling to offer a necessary balance
between the two. Here, an SGDL approach using pre- and
post-earthquake VHR images has been proposed to identify
damaged buildings. To ensure the accurate recognition of build-
ing boundaries and accelerate the extraction efficiency, the post-
earthquake image was first segmented into superpixels using
an improved SLIC method. The improvement was achieved by
combining color/texture features and designing a dynamic dis-
tance measure, which can delineate accurate cloud boundaries.
The post-earthquake image was combined with the bi-temporal

image difference to obtain the damage index. Considering the
advantages and disadvantages of using a single GCI or GDI,
an improved relief algorithm was used to evaluate the optimal
weights in the SDI calculation. The LISA approach, which was
used in damage extraction for the first time, performed reason-
ably well and achieved the desired balance between accuracy
and efficiency. By performing a comparison and transferability
analysis, it was judged that the proposed approach provides
satisfactory and more accurate results than a number of methods
available in the literature. In addition, the implementation of
the extraction process resulted easier and more convenient,
requiring a relatively smaller computational burden and a shorter
calculation time. Moreover, the proposed approach provided a
good localization of building damage, with accurate extraction
of their spatial boundaries. It is concluded that the proposed
approach is sufficiently efficient and accurate to be utilized in
rapid post-earthquake damage assessments.
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