
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021 127

Multimodal Representation Learning and Set
Attention for LWIR In-Scene
Atmospheric Compensation

Nicholas Westing , Member, IEEE, Kevin C. Gross , Brett J. Borghetti , Christine M. Schubert Kabban,
Jacob Martin, and Joseph Meola, Member, IEEE

Abstract—A multimodal generative modeling approach com-
bined with permutation-invariant set attention is investigated in
this article to support long-wave infrared (LWIR) in-scene atmo-
spheric compensation. The generative model can produce realis-
tic atmospheric state vectors (T, H2O, O3) and their correspond-
ing transmittance, upwelling radiance, and downwelling radiance
(TUD) vectors by sampling a low-dimensional space. Variational
loss, LWIR radiative transfer loss, and atmospheric state loss
constrain the low-dimensional space, resulting in lower reconstruc-
tion error compared to standard mean-squared error approaches.
A permutation-invariant network predicts the generative model
low-dimensional components from in-scene data, allowing for si-
multaneous estimates of the atmospheric state and TUD vector.
Forward modeling the predicted atmospheric state vector results
in a second atmospheric compensation estimate. Results are re-
ported for collected LWIR data and compared against fast line-
of-sight atmospheric analysis of hypercubes-infrared (FLAASH-
IR), demonstrating commensurate performance when applied to
a target detection scenario. Additionally, an approximate eight
times reduction in detection time is realized using this neural
network-based algorithm compared to FLAASH-IR. Accelerat-
ing the target detection pipeline while providing multiple atmo-
spheric estimates is necessary for many real world, time sensitive
tasks.

Index Terms—Atmospheric compensation, generative modeling,
hyperspectral imagery, neural networks, target detection.

I. INTRODUCTION

LONG wave infrared hyperspectral sensors collect data
between 8–14 μm across hundreds of contiguous bands,
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providing detailed information about the earth’s surface and
material temperatures. Accurate characterization of surface
constituents is important for a wide range of applications such
as urban heat island analysis, search and rescue operations,
and target detection [1]–[3]. Fully leveraging thermal hyper-
spectral data for these applications requires precise atmospheric
compensation algorithms for accurate material characterization.
Additionally, these compensation methods should be efficient
and require minimal user input to operate on the large volumes
of data collected by modern sensors. This article extends previ-
ous research in efficient LWIR atmospheric compensation [4],
investigating new architectures to form a joint representation of
atmospheric measurements, and their corresponding radiometric
quantities. These radiometric quantities are atmospheric trans-
mission, τ(λ), upwelling radiance, La(λ), and downwelling
radiance, Ld(λ). The major contributions of this article are as
follows.

1) The multimodal deepSet atmospheric compensation
(MDAC) architecture is introduced, predicting both atmo-
spheric state (T,H2O,O3) and the τ(λ),La(λ), andLd(λ)
vectors to support in-scene atmospheric compensation.

2) Variational loss and weighted atmospheric state loss are
shown to reduce reconstruction error compared to mean-
squared error (mse) loss functions using a multimodal
autoencoder (MMAE) architecture.

3) Set attention pooling is investigated to understand reflec-
tive pixels’ role in the MDAC prediction. Emphasis of re-
flective pixels in the atmospheric compensation prediction
is in agreement with the LWIR radiative transfer equation.

4) Atmospheric compensation errors are compared from the
target detection perspective using collected LWIR data,
demonstrating comparable performance to FLAASH-IR
while reducing total detection time.

The remainder of this article is structured as follows: In
the next section, a review of permutation-invariant neural net-
works for LWIR atmospheric compensation is discussed, fol-
lowed by an overview of LWIR hyperspectral data processing.
Section III introduces the MMAE and MDAC architectures, the
loss functions used to fit these models, and metrics for evaluating
model performance. Section IV reports results on synthetic and
collected data using the previously defined metrics and Section V
summarizes major conclusions of this research.
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II. BACKGROUND

Given N pixels X = {x1, . . . ,xN}, extracted from a data
cube collected from an altitude as across K bands, xi ∈
RK , the DeepSet Atmospheric Compensation (DAC) network,
D(X, as), predicts a low-dimensional representation, z, of the
estimated TUD (τ̂(λ), L̂a(λ), L̂d(λ)) vector, yT [4]. A decoder
network, d(·), transforms z to yT , such that

ŷT = d(D(X, as)). (1)

The pixel set X corresponds to a single yT vector and the DAC
network should provide the sameyT prediction regardless of the
order of the pixels in X. To achieve this functionality, the DAC
network is permutation-invariant to pixel order inX, relying on a
set transformation operationφ(·) and a max pooling operation to
form a 1-D set feature vector. The low-dimensional z prediction
is made with another prediction network, ρ(·), such that the
entire DAC network can be expressed by

D(X, as) = ρ

(
max
i∈N

[φ(X)] , as

)
. (2)

Instead of max pooling the transformed set representations
created by the φ(·) network, this research leverages recent
advancements in set attention pooling to perform the set decom-
position operation [5], [6]. Attention mechanisms are loosely
based on how human vision operates: Focusing on objects of
high importance while blurring background objects. By focusing
or attending to the most salient data aspects for a particular
task, model performance can be improved while also increasing
interpretability [7]. These advantages are achieved through a
weighted average where the weights are attention scores that
highlight feature importance.

Set attention pooling is a modified attention mechanism used
in cases where multiple instances correspond to a single output
value [5], [6]. Some samples in the set will contain more infor-
mation, captured by the set attention scores, and have a stronger
influence on the set decomposition operation. Set attention
pooling is of interest to the LWIR atmospheric compensation
problem because pixels receiving higher attention scores can
be further investigated to identify unique spectral properties.
This additional interpretability is necessary for validating model
performance on a wide range of conditions.

In addition to set attention pooling, this research also ex-
tends [4] by investigating a multimodal representation. The
decoder networkd(·) in [4] utilized the TUD vector data to create
the low-dimensional data manifold z; however, this research also
utilizes the atmospheric state vector, yA, creating a MMAE to
constrain the data manifold. Evaluating the benefits of these
modifications requires a review of LWIR hyperspectral data
analysis discussed next.

The observed at-sensor radiance, L(λ), consists of two fac-
tors: Surface-leaving radiance, Ls(λ), attenuated by atmo-
spheric transmission, and atmospheric emission directly to the
sensor. Assuming a Lambertian surface and monochromatic
light, the simplified LWIR radiative transfer equation can be
described as [8]

L(λ) = τ(λ)Ls(λ) + La(λ) (3)

where Ls(λ) consists of emissive and reflective contributions

Ls(λ) = ε(λ)B(λ, T )︸ ︷︷ ︸
Emissive

+ [1− ε(λ)]Ld(λ)︸ ︷︷ ︸
Reflective

. (4)

Based on these definitions, the entire simplified at-sensor radi-
ance equation can be described by

L(λ) = τ(λ)

[
ε(λ)B(λ, T ) + [1− ε(λ)]Ld(λ)

]
+ La(λ) (5)

λ : Wavelength

T : Material temperature

τ(λ) : Atmospheric transmission

ε(λ) : Material emissivity

B(λ, T ) : Planckian distribution

Ld(λ) : Downwelling atmospheric radiance

La(λ) : Atmospheric path (upwelling) radiance.

The Planckian distribution is

B(λ, T ) =
2hc2

λ5

1

ehc/λkT − 1
(6)

where c is the speed of light, k is the Boltzmann’s constant, and
h is the Planck’s constant.

The signal of interest in LWIR target detection is the mate-
rial emissivity defined as a ratio between the radiance emitted
at temperature T and the radiance emitted by a blackbody
(ε(λ) = 1) at the same temperature [9]

ε(λ) =
L(λ, T )

B(λ, T )
. (7)

Retrieving emissivity consists of two steps: Atmospheric com-
pensation and temperature/emissivity separation (TES). Atmo-
spheric compensation methods estimate the TUD vector, such
that surface leaving radiance can be recovered. Model-based
atmospheric compensation approaches rely on radiative transfer
models such as moderate resolution atmospheric transmission
(MODTRAN) to predict TUD vectors based on known or es-
timated atmospheric state information (column water vapor,
trace gas content, air temperature) [10], [11]. By generating a
look-up table of TUD vectors from expected atmospheric condi-
tions, model-based methods can be implemented efficiently for
real-time use [12]. Specifically, methods such as FLAASH-IR
modify the surface temperature, water vapor column density, and
the ozone scaling factor to minimize the error between observed
and predicted radiance [10].

In-scene atmospheric compensation methods rely on black-
body pixels to make the compensation problem tractable. The
in-scene atmospheric compensation (ISAC) method identifies
blackbody pixels allowing at-sensor radiance, LBB(λ), to be
described by [13]

LBB(λ) = τ(λ)B(λ, T ) + La(λ). (8)

Pixel temperature is estimated through clear bands (τ(λ) ≈ 1),
such that the only remaining unknowns are τ(λ) and La(λ).
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A linear fit is performed on each spectral channel to deter-
mine these terms. The ISAC procedure does not recover the
downwelling radiance, important for accurately characterizing
reflective materials.

Next, TES is typically performed to estimate both ε̂(λ) and T̂ .
For a sensor with K spectral bands, decoupling these terms is
an underdetermined problem as there are only K measurements
but K + 1 unknowns (ε̂εε, T̂ ). A common approach to this under-
determined problem is to assume ε(λ) is a smooth function of
wavelength compared to the atmospheric features [14]. Assum-
ing downwelling radiance was estimated during the atmospheric
compensation process, emissivity can be estimated as [9]

ε̂(λ) =
L̂s(λ)− L̂d(λ)

B(λ, T̂ )− L̂d(λ)
. (9)

Unfortunately, TES methods recover material temperatures
with limited accuracy, leading to increased errors in ε̂(λ) [15].
Unique from TES procedures, researchers have investigated
methods to determine ε̂(λ) with less dependence on T̂ . The
alpha residuals approach introduced in [16] and extended in [17]
converts a target emissivity, εt(λ), to αεt(λ) by

αεt(λi) = λi ln [εt(λi)]− 1

K

K∑
j=1

λj ln [εt(λj)]. (10)

The alpha residual formulation presented in [16] and [17]
omits the reflective component in the surface leaving radiance.
In [18], the reflective component was included allowing im-
proved emissivity estimation for reflective and emissive mate-
rials. In both [17] and [18], an estimate of pixel temperature
is needed but target signal estimation is robust to temperature
estimation errors.

Both TES and alpha residual approaches rely on TUD vector
estimates derived from the atmospheric compensation process.
This study presents an efficient method for in-scene LWIR atmo-
spheric compensation and compares this method’s performance
using both TES and alpha residuals from a target detection
perspective.

III. METHODOLOGY

The MDAC model, Dm(·), predicts a low-dimensional rep-
resentation, ẑ, of both the scene atmospheric state vector, ŷA,
and the TUD vector, ŷT . A multimodal decoder, dm(·), is used
to reconstruct both outputs from ẑ, such that the atmospheric
compensation and atmospheric state estimation problem can be
described by

ŷA, ŷT = dm(Dm(X, as)). (11)

This result depends on the ability of the MDAC model to
predict the latent space components z from the set X and the
decoder model to reconstruct yA and yT from z. The decoder
model is a part of the overall MMAE (Fig. 1) that is trained prior
to fitting the MDAC network. The MMAE model architecture
and training is explained in the next section.

Fig. 1. TUD vectors are compressed by the encoder into the latent space and
then reconstructed by the decoder network. Reconstruction error is minimized
through weight updates during the training process. Additionally, a scalar altitude
input is also presented with the TUD vector allowing the model to scale to
multiple altitudes.

A. Multimodal Generative Models

To fit the MMAE model, training data consisting of atmo-
spheric state vectors and corresponding TUD vectors are needed.
This research utilizes the thermodynamic initial guess retrieval
(TIGR) database containing 2311 atmospheric measurements
selected from over 80 000 worldwide measurements [19], [20].
Each sample contains temperature, water vapor content, and
ozone content as a function of pressure level starting at the
Earth’s surface (1013 hPa) to greater than 30 km (< 1 hPa).
Additionally, the measurements are grouped by air mass cate-
gory such as polar, tropical, and midlatitude. The 2311 measure-
ments are filtered for cloud free conditions using a 96% relative
humidity threshold, resulting in 1790 cloud free measurements.

In [21], reconstruction error was reduced by augmenting the
TIGR samples using a dimension reduction approach. This
research also leverages the same augmentation approach to
increase the number of training samples. First, principal compo-
nent analysis (PCA) is applied to the concatenated atmospheric
measurements (T, H2O, O3) using 15 components for each air
mass category. Next, a ten mixture Gaussian mixture model
(GMM) is fit to the 15-D space and new atmospheric measure-
ments are created by sampling the GMM. These augmented mea-
surements must still meet the 96% relative humidity threshold
to be included in the training data. The result of this process
is shown in Fig. 2 for the polar air mass. This augmentation
process is repeated for each air mass resulting in an additional
8450 atmospheric state vectors.

These atmospheric state vectors (augmented and TIGR) were
forward modeled with MODTRAN 6.0 at 0.005μm spectral res-
olution, assuming a nadir sensor zenith angle. In Section IV-C,
this research is applied to data cubes collected from altitudes of
0.45, 0.92, and 1.22 km. To include this altitude variability in
the training data, altitudes between 0.15–3.05 km were used
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Fig. 2. Polar air mass atmospheric state vectors are shown for the TIGR
data and the augmented samples. These augmented samples were created by
performing PCA on the atmospheric state vectors and then fitting a GMM to the
low-dimensional space as outlined in [21].

to forward model the atmospheric state vectors, resulting in
143 640 TUD vectors. The high resolution TUD vectors created
by MODTRAN were downsampled to the spatially enhanced
broadband array spectrograph system (SEBASS) instrument line
shape (ILS) to create a sensor-specific TUD database [22]. This
downsampling process assumed a Gaussian lineshape across 92
spectral bands between 8.13 and 12.48 μm. Validation samples
were created from held out atmospheric state vectors at unique
altitudes from the training data.

A MMAE is used to compress both the atmospheric state
vector and the TUD vector into a joint latent space, z. MMAE
have been investigated in other domains such as audio and video,
where it is possible to generate one mode from the other [23].
In this research, both modes are always present during training
since only the MMAE decoder is used for atmospheric compen-
sation. The MMAE architecture is leveraged to improve feature
fusion compared to concatenating the TUD and atmospheric
state vectors.

Independent input and output branches combined through
joint encoder and decoder networks are used to form the MMAE.
TheyT encoder consists of two layers of 25 and 10 nodes and the
yA encoder consists of two layers of 20 and 15 nodes. The joint
encoder takes the concatenated 10 and 15 node encoder outputs
and transforms this representation to the latent space using two
layers of 16 and 10 nodes. The latent space is the bottleneck in the
representation learning problem, with six dimensions considered
in this research based on previous results from TUD vector
compression [4], [21]. This compression operation is reversed
as shown in Fig. 1 to create the decoder model.

Interpolations across the latent space should lead to seman-
tically smooth variations in both atmospheric state and TUD
outputs. This is a necessary property to support MDAC latent
space sampling and is achieved by enforcing a prior distribution
on the latent space. This research applies a Gaussian prior, such
that z ∼ p(z) = N(0, I). This constraint is used in VAE [24]
and was extended in [25] for multiple modalities to define
a joint multimodal variational autoencoder (VAE). Given the
atmospheric state vector, yA, and the TUD vector, yT , the joint
multimodal VAE generative processes for these modes are [25]

yA,yT ∼ p(yA,yT | z) = pθA(yA | z)pθT (yT | z) (12)

where the parameter θ represents the decoder network for each
mode. The encoder network, qφ, predicts distribution param-
eters μμμ ∈ R1×c, σσσ ∈ R1×c for a latent space with c compo-
nents. Using the reparameterization trick introduced in [24],
the posterior z ∼ qφ(z | yA,yT ) can be sampled according to
μμμ+ σσσ � εεε where εεε ∼ N(0, I). To enforce the prior distribution
on the latent components, the Kullback–Leibler (KL) divergence
is calculated according to [24]

LKL (qφ(z | yA,yT )p(z))

=
1

2

c∑
j=1

(
1 + log

(
σ2
j

)− μ2
j − σ2

j

)
. (13)

While LKL enforces a prior distribution on the latent com-
ponents, atmospheric state and TUD vector reconstruction error
must also be minimized to provide a useful model. Similar to
previous work [4], [26], the TUD vector reconstruction error is
minimized using

LT (ŷ,y) =
1

3K

3K∑
i=1

(ŷi − yi)
2

+
γ

MK

M∑
j=1

K∑
i=1

(Lŷ(λi, εj)− Ly(λi, εj))
2 (14)

wherey is the truth TUD vector and ŷ is the reconstructed vector.
K is the number of spectral channels, Lŷ(λi, εj) and Ly(λi, εj)
are the at-sensor radiance values for a grey-body emissivity εj .
A linear sampling of M grey-body emissivity values between 0
and 1 are used to calculate loss, improving reconstruction error
for reflective and emissive materials. The hyperparameter γ is a
regularization term controlling the relative importance between
the TUD mse and the at-sensor radiance mse within the loss
function.

Atmospheric state error is minimized using a weighted mse
loss function described by

LA(ŷ,y) =
1

3p

3p∑
i=1

wi(ŷi − yi)
2 (15)

where the weights w ∈ R1×3p are derived from the atmospheric
pressure levels leading to the largest deviation in at-sensor
radiance. To identify these pressure level dependent deviations,
a Jacobian matrix is calculated between at-sensor radiance and
each measurement vector. Each pressure level measurement is
modified by 1% of the training data mean value resulting in the
Jacobian matrix described in (16)

JL(M) =

⎡
⎢⎢⎢⎣

∂L(λ1)
∂M(a1)

. . . ∂L(λK)
∂M(a1)

...
. . .

...

∂L(λ1)
∂M(ap)

. . . ∂L(λK)
∂M(ap)

⎤
⎥⎥⎥⎦ (16)

where M represents the particular measurement (T,H2O,O3).
This calculation is performed using the SEBASS imager band-
centers, specifically 92 bands between 8.13–12.48 μm. The
mean absolute change in at-sensor radiance across all bands
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Fig. 3. Atmospheric state weighted mse loss function utilizes the concatenated
weight vectors shown. These weights allow the model to accurately predict
atmospheric measurements that have the largest impact on the generated TUD
vector. Both temperature and water vapor content must be reconstructed correctly
at low altitudes (high pressure levels), while ozone concentration has the largest
impact at high altitudes.

for a particular pressure level, p, and measurement vector M is
calculated according to

wM
p =

1

K

K∑
i=1

|JLi
(Mp)|. (17)

Next, wM is normalized between 0 and 1 across p pressure
levels to form w̃M . Each normalized measurement weight
vector is concatenated to create w in (15), such that w =
[w̃T , w̃H2O, w̃O3 ],w ∈ R1×3p. Multiple atmospheric state vec-
tors were selected from each air mass in the TIGR data to form
multiple estimates of w. The average of these estimates are
shown in Fig. 3 agreeing with typical concentration variation
of water vapor and ozone at the altitudes shown. Similarly, tem-
perature profiles can often be fit using only surface temperature
and lapse rate [13]. The weight w̃T captures this behavior by
emphasizing only the measurements closest to the surface.

The total MMAE network loss is calculated by combining
each mode loss and the latent space KL loss

L (ŷA,yA, ŷT ,yT )

= LA(ŷA,yA) + LT (ŷT ,yT )

+ βLKL (qφ(z | yA,yT )p(z)) (18)

where β is used to tradeoff reconstruction accuracy against
enforcing the prior distribution. The inclusion of β is based
on [27], where interpretable latent space components can be
recovered if the data generating processes are understood. This
research leverages this modification to create an interpretable
latent space, capturing variables such as atmospheric water vapor
content and atmospheric temperature, allowing new samples to
be generated with known properties.

Each layer in the MMAE performs a transform with the
function y = f(wx+ b), where f(·) is the activation function,
w is the layer weight matrix, and b is the layer bias vector. The
MMAE implemented here utilizes the exponential linear unit
(ELU) activation function

ELU(x) =

{
x, if x > 0

α(exp(x)− 1), if x ≤ 0.

The activation for predicting μμμ is linear and the activation for
predicting σσσ is ELU(x) + 1 to guarantee positive variances.
Additionally, each mode’s output layer utilizes a linear activation
function.

1) Generative Model Metrics: Evaluating the MMAE per-
formance on hold out samples is necessary to determine if the
model has generalized to the underlying relationships in the
data or over fit to the training samples. The hold out samples
considered here consist of TUD vectors and atmospheric state
vectors never encountered in the training data. Additionally, the
validation sensor altitudes were never observed in the training
set. To measure hold out sample performance with respect to
at-sensor radiance error, a range of grey-body emissivity values,
ε, with an assumed pixel temperature of 300 K are used to create
simulated at-sensor radiance spectra, L(λ, ε). Since this study
is focused on the LWIR domain, spectral radiance values were
converted to brightness temperature, TBB(λ, ε)

TBB(λ, ε) =
hc

λk ln
(

2hc2

λ5L(λ,ε) + 1
) . (19)

Using yT and ŷT to create L(λ, ε) and L̂(λ, ε), respectively,
the root mean square error (rmse) in degrees Kelvin can be
calculated with

E(ε) =

√
1

K

∑K

i=1

(
TBB(λi, ε)− T̂BB(λi, ε)

)2

. (20)

The grey body emissivity is varied from 0 to 1 producing an rmse
curve describing overall performance between reflective and
emissive materials. Additionally, MODTRAN [11] can be used
to convert ŷA to a TUD vector, resulting in the same error metric
for the atmospheric state prediction. When multiple models are
compared at once, the brightness temperature RMSE area under
the curve (AUC-BT) is reported to capture reflective to emissive
performance with a single scalar value

AUC-BT =

∫ 1.0

0.0

E(ε)dε. (21)

Since the AUC-BT metric measures rmse across reflective to
emissive materials, lower values represent better reconstruc-
tion performance with perfect reconstruction represented by
AUC-BT = 0.

B. Set Attention for In-Scene Atmospheric Compensation

The MDAC model utilizes the MMAE decoder model to
predict ŷA and ŷT , from a set of pixels, X. This set-input
learning has been investigated in domains such as point cloud
classification, where a set of points correspond to a single target
value or class label [6], [28], [29]. An important characteristic
of methods solving set-input learning problems is permutation-
invariant to the points in the set. Regardless of pixel selection
order, the MDAC algorithm must still provide the same TUD
and atmospheric state prediction.

Permutation-invariant predictions are made by the MDAC
network using two operations: Set transformation and set de-
composition. In this study, the set transformation operation is
a neural network consisting of an input transform and feature
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Fig. 4. MDAC network consists of a set transformation, set decomposition, and a network ρ(·) for predicting the MMAE latent components. The set transformation
converts the input set X to the set H using the input transform and feature transform shown. The set H is converted into the set representation vector u with the
attention pooling operation A(·). Sensor altitude, as, is concatenated to u before entering the ρ(·) network.

transform as shown in Fig. 4. The input transform consists of aK
node layer to transform each pixel identically, followed by a set
centering operation. The weights in the K node layer are shared
across all pixels, maintaining permutation invariance. The fea-
ture transform utilizes 4 layers each with 100 nodes, again shar-
ing weights across all pixels. The set transformation concludes
with pixel representation upsampling to create the set H

H = φ(X), H ∈ RN×M (22)

where M = 512 from the upsampling layer. The rows of H
correspond to transformed pixel representations hi which
must be pooled together by the set decomposition operation.
To understand the role each pixel plays in the overall model
prediction, this study investigates set attention pooling [5]

u =

N∑
i=1

aihi, u ∈ R1×M (23)

where u is the set representation vector and ai is the attention
score for pixel i calculated according to

ai =
exp

(
wT (tanh(VhT

i )� sigmw(UhT
i ))

)
∑N

j=1 exp
(
wT (tanh(VhT

j )� sigm(UhT
j ))

) . (24)

The trainable parameters are w ∈ R1×L, V ∈ RL×M , and
U ∈ RL×M , where L corresponds to the attention pooling
dimension. The value of L is varied as part of the overall
network hyperparameter sweep with the results in this study
using L = 512. In (24), tanh(·) corresponds to the hyperbolic
tangent function, sigm(·) is the sigmoid function and � is an
element-wise product. The set pixel representations are initially
transformed by matrix V which is learned through the training
process. The tanh(·) operation is approximately linear between
-1 and 1 and so the sigm(·) function is used as a gating function
to model more complex dependencies [5], [30]. The matrix U
controls the gating mechanism and is also learned through the
training process. The vector w converts the pixel representation
into a scalar value that is used in the overall softmax function
to create the attention weights, ai, which sum to 1.

The set representation vector u captures information neces-
sary to predict ŷA and ŷT , however, to create a multialtitude
model the sensor altitude as is concatenated to u. This concate-
nated vector forms the input to the ρ(·) network, which predicts
the low dimensional components of the MMAE model, μ̂μμ and
σ̂σσ. The ρ(·) network consists of 10 layers each with 100 nodes

utilizing skip connections to propagate the set representation
vector to deeper layers as shown in Fig. 4. Similar to the
MMAE model, the ρ(·) output layer utilizes a linear activation
for predicting μμμ and ELU(x) + 1 for predicting σσσ. The output
layer has 12 nodes because the first six outputs are for μ̂μμ and the
last six are for σ̂σσ. Denoting the attention weighted sum in (23)
as A, the MDAC network can be specified as

Dm(X, as) = ρ (A(φ(X)), as) . (25)

The network configuration shown in Fig. 4 was the result
of a hyperparameter sweep over possible set transformation
networks, ρ(·) networks and the number of attention nodes in the
set decomposition. Additionally, batch size, learning rate, and
activation functions were varied in the hyperparameter sweep.
The results presented here utilize a learning rate of 1× 10−3 and
a batch size of 512. The number of pixels in each training set
wasN = 50 and so for a single batch, 512 sets were presented to
the network (25600 pixels). The Adam optimization algorithm
was used for calculating weight updates [24]. Networks were
constructed using Python 3.6.8, Keras version 2.2.4, Tensorflow
1.15 and hyperparameter sweeps were conducted across 20 GPU
using Ray Tune version 0.7.6 [31], [32].

C. Algorithm Training

The MDAC algorithm is trained using sets of at-sensor ra-
diance data X created from an underlying TUD vector and
atmospheric state vector. The same TUD and atmospheric state
data are used to fit MMAE and MDAC models. Training the
MDAC algorithm follows the strategy outlined in [4], with
the exception that MDAC has multiple outputs requiring addi-
tional loss calculations. Emissivity profiles are sampled from
the Advanced Spaceborne Thermal Emission and Reflection
Radiometer (ASTER) database with 200 emissivity samples
held out for model validation and 978 different material profiles
used during training. Emissivity selection and pixel temperature
assignment follows the set generation algorithm outlined in [4].
During training, the at-sensor radiance set X contains N = 50
pixels resulting in

(
978
50

)
= 3× 1084 possible training emissivity

sets.
Only the MDAC weights are updated during training, leaving

the MMAE weights unchanged. The MDAC weights are updated
based on the yA and yT error using the loss functions LA and
LT , respectively. The same atmospheric weights, wi, are again
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Fig. 5. Loss configuration results are shown using the AUC-BT reconstruction error (lower is better), where the best performance is achieved when both LT

and LT are used. As β is increased beyond 0.01, reconstruction error increases because the latent space is overconstrained and no longer has adequate capacity to
capture data variability.

used to calculate the loss on yA reinforcing atmospheric state
reconstruction at pressure levels impacting the predicted TUD
vector.

D. Pixel Selection

Accurate MDAC prediction is predicated on access to a set
of diverse pixels with respect to emissivity and temperature. To
select N diverse pixels from a collected data cube, this study
follows the pixel selection strategy outlined in [4], where the
spectral angle, θi, between pixel i and the cube mean, L̄(λ), is
calculated according to

θi = cos−1
(

Li(λ) · L̄(λ)
‖Li(λ)‖‖L̄(λ)‖

)
. (26)

An iterative pixel selection strategy is employed starting with
the 90th percentile pixel with respect to sorted cube spectral
angles. A one pixel guard band is applied spatially removing all
neighboring pixels from being included in the set X. A uniform
sampling of the 10% highest spectral angles is conducted follow-
ing this procedure resulting in N diverse pixels with respect to
the cube mean. Prior to pixel selection, anomalous pixels such
as those from dead pixels, are removed from the sorting pro-
cess. These noisy pixels may not follow the simplified radiative
transfer model leveraged in this work and are eliminated from
atmospheric compensation consideration.

E. Target Detection Analysis

After sampling a collected data cube using the method pre-
sented in (26), the MDAC predictions can be used to compensate
a data cube and perform target detection. The target detection
method used in this study is the adaptive coherence/cosine
estimator (ACE) detector defined by [33]

rACE(x) =
(sT Σ̂ΣΣ

−1
x)2

(sT Σ̂ΣΣ
−1
s)(xT Σ̂ΣΣ

−1
x)

(27)

where x is a sample pixel, s is the target, and Σ̂ΣΣ is the estimated
background covariance. To estimateΣΣΣ, a Mahalanobis anomaly
detector is applied to filter background pixels from possible
targets. The Mahalanobis detector can be described by

rMD(x) = (x− μ̂μμ)T Σ̂ΣΣ
−1

(x− μ̂μμ) (28)

where μ̂μμ is the cube mean and Σ̂ΣΣ is the cube covariance. The
detection statistic, rMD(x), is sorted and pixels below the 90th
percentile are classified as background. These background pixels
are used to form Σ̂ΣΣ for the ACE detector. Target detection results
can be compared using the signal-to-clutter Ratio (SCR) defined
as

SCR =
μ(rt)− μ(rb)√
σ(rt)2 + σ(rb)2

(29)

where μ(rt) is the mean detection statistic for target pixels and
μ(rb) is the mean detection statistic for background pixels. Sim-
ilarly the standard deviations of these two classes are calculated
with σ(·). Large SCR values imply higher detection statistics on
target pixels compared to background pixels with little variance
among both classes.

IV. RESULTS

This section first presents the MMAE results and demon-
strates the model’s ability to generate new atmospheric states
and TUD vectors. Next, the MMAE is used as part of the
overall MDAC algorithm to perform in-scene atmospheric com-
pensation and atmospheric state estimation. Results are pre-
sented for synthetic data to demonstrate model characteristics
followed by analysis on SEBASS collected data cubes spanning
multiple days and sensor altitudes. Atmospheric compensation
results are compared to FLAASH-IR through a target detection
study.
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Fig. 6. Making small changes to latent components and measuring the change
in the ŷT is plotted on the left axis. The model validation performance is
shown on the right axis, also shown in Fig. 5 for the (LT ,LA) configuration.
Increasingβ results in a more continuous latent space as shown by the decreasing
ΔAUC-BT values. However, increasing β beyond 10−2 over-constrains the
latent space resulting in poor validation performance (right axis). By selecting
β = 10−2, the MMAE has both a continuous latent space and low reconstruction
error.

Fig. 7. At-sensor radiance sets were created with an increasing percentage
of blackbody pixels. The attention scores for reflective scenes (low blackbody
pixel %) are small and clustered together while scenes containing only a few
reflective pixels have larger attention scores to emphasize the importance of the
reflective pixels. The violin plots show the attention score density for the 50
points displayed at each blackbody pixel percentage.

A. Multimodal Generative Model Results

Models utilizing LKL, LA, LT are first compared against
models using mse to demonstrate the benefit of these loss
functions in minimizing model reconstruction error. The pair-
wise model comparisons considered for the MMAE network
outputs (yA,yT ), respectively are: (MSE, MSE), (MSE,LA),
(LT ,MSE), (LT ,LA). Additionally, for each model config-
uration, LKL is investigated by varying β from 0.0 to 1.0.
Each loss and β configuration result is based on ten ran-
domly initialized models to provide estimates of model mean
performance.

The AUC-BT results are shown in Fig. 5 for all loss con-
figurations and considered β values. Reconstruction errors on
yT are reduced by using either LA or LT compared to mse
with the lowest reconstruction error observed when both LA

and LT are used. The yA error is not reduced for the (LT ,
mse) case compared to the baseline mse model. This is driven
by the observation that similar TUD vectors can be created
from significantly different atmospheric state vectors. While

TABLE I
ALTITUDE, COLLECTION TIME, WEATHER, AND COLLECTION DAY ARE

REPORTED FOR THE THREE DATA CUBES INVESTIGATED

Fig. 8. Panel configuration for the five considered materials is shown. The
tilted panel section was not considered in this study to evaluate the downwelling
radiance accuracy. The unlabeled panels are other materials not considered in
this work.

atmospheric state to TUD vectors is a one-to-one function, TUD
vectors to atmospheric state is not.

Fig. 5 also highlights the role KL divergence plays in recon-
struction accuracy. Increased reconstruction error is observed
when β > 10−2 because the latent components are overcon-
strained reducing modeling capacity. From Fig. 5, it is not clear
which β value should be selected or if KL divergence should
even be used since β = 0 has comparable reconstruction error.
Next, latent space continuity is evaluated, an important attribute
for latent space sampling.

The process to measure latent space continuity is outlined
in Algorithm 1 beginning with the MMAE encoder model, e,
transforming N input samples, (yT ,yA), to the latent code z ∈
RN×c for a model with latent dimension c. The decoder model,
d, reconstructs the input resulting in ŷT , ŷA. To determine latent
space continuity, z is modified and the output deviation from ŷT

is measured in terms of AUC-BT, denoted as ΔAUC-BT. The
Algorithm 1 inputΔΔΔ ∈ RN×c is the latent space deviation matrix
used to modify z. The rows of matrixΔΔΔ are formed by randomly
picking points on a hypersphere using [34]

ΔΔΔi =
r√

x2
1 + x2

2 + · · ·+ x2
n

⎡
⎢⎢⎢⎢⎣
x1

x2

...

xn

⎤
⎥⎥⎥⎥⎦ , xl ∼ N(0, 1) (30)

where ‖ΔΔΔi‖ = r. To make comparable changes to each β model
latent space z, Algorithm 1 applies PCA whitening to z resulting
in z̃. After adding ΔΔΔ to z̃, the whitening process is reversed and
the decoder transforms the new latent samples to y′T and y′A.
Output deviations are measured between ŷT and y′T resulting
in ΔAUC-BT. If small changes to z lead to large ΔAUC-BT
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Algorithm 1: Latent Space Variation.

Input: e, d, yT , yA, ΔΔΔ, ε
Output: ΔAUC-BT
Modify latent components:

1: z← e(yT ,yA)
2: ŷT , ŷA ← d(z)
3: ΣΣΣ← E[(z− E[z])(z− E[z])T ]
4: U,ΛΛΛ← s.t. ΣΣΣ = UΛΛΛUT

5: z̃ = (ΛΛΛ−1/2UT z)
6: z̃Δ = z̃+ΔΔΔ
7: z′ = UΛΛΛ1/2z̃Δ

Measure output deviation
8: y′T ,y

′
A ← d(z′)

9: E(ŷT ,y
′
T , ε)←√

1
K

∑K
i=1(TBB(λi, ε)− T̂BB(λi, ε))2

10: ΔAUC-BT← ∫ 1.0

0.0 E(ŷT ,y
′
T , ε)dε

11: return ΔAUC-BT

values, sampling the latent components will be challenging as
greater sampling accuracy is needed.

Applying Algorithm 1 to each β model results in the
ΔAUC-BT shown in Fig. 6, where smaller output deviations
are observed for larger β values. The right axis of Fig. 6 shows
the validation reconstruction error for the (LT ,LA) loss con-
figuration from Fig. 5. When β > 10−2, KL divergence loss
begins to negatively affect reconstruction error as the latent
space is overconstrained. In this research, β = 10−2 is selected
to tradeoff a continuous latent space and low reconstruction
error.

Many generative model studies have investigated latent space
attribute vectors allowing for new samples to be generated
with certain properties such as images of faces wearing sun-
glasses or smiling [35], [36]. Varying the MMAE latent space
components reveals analogous attribute vectors allowing atmo-
spheric state conditions to be precisely controlled. One latent
component is varied from −1.0 to 1.0 (the domain of this
component) while all other components are unchanged resulting
in the atmospheric measurements and TUD vectors shown in
Fig. 14. The predicted atmospheric measurements show sig-
nificant changes in the total water vapor content and ozone
content as a single component is varied with corresponding
changes in the predicted TUD output. Sampling additional
points in this region of the data manifold is useful for a range
of applications such as radiative transfer modeling and data
augmentation. Next, the joint, low-dimensional representation
created by the MMAE will be used for in-scene atmospheric
compensation.

B. Atmospheric Compensation With Synthetic Data

Using the previously fit MMAE network, the MDAC network
was trained to predict the low-dimensional representation z
from a set of at-sensor radiance samples, X. At-sensor radi-
ance sets were generated based on the set generation algorithm

presented in [4]. Using a batch size of 512 and set size of
N = 50, training executed for 50 epochs. At the conclusion of
50 epochs, new training data were generated, with this process
repeated 60 times. During each 50 epoch training iteration,
error was gradually reduced as the model fit to the new data.
We found that 60 iterations of this training process resulted in
stable errors, even when the model was presented new at-sensor
radiance sets.

The MDAC network relies on attention pooling to convert the
pixel set X into the set representation vector, u. The attention
weights,ai, represent the importance of each pixel in forming the
set representation. To evaluate data characteristics the attention
pooling operation has learned, at-sensor radiance sets were
generated with varying blackbody pixel percentage within the
scene. These synthetic scenes were used to evaluate the attention
weights with the results shown in Fig. 7. The violin plots in
Fig. 7 represent the attention score density as there are 50 points
displayed for each blackbody pixel percentage.

Reflective material dominated scenes (low blackbody per-
centage), result in tightly clustered, low attention scores be-
cause multiple reflective pixels contain information necessary
for recovering the scene TUD vector. As the generated scenes
change from reflective material dominated to emissive material
dominated (large blackbody percentage), the overall attention
score increases. The remaining reflective pixels are important for
downwelling radiance estimation and receive a larger attention
score. This observation is supported by the LWIR radiative trans-
fer equation where downwelling radiance can only be estimated
if reflective materials are present. This dependence on reflec-
tive pixels is an important characteristic of the MDAC model,
specifically when applying the model to globally diverse data.

C. Collected HSI Data Results

This study considers three data cubes collected by the SE-
BASS LWIR imager at altitudes of 0.45, 0.92, and 1.22 km.
The first two cubes were collected on the same day and the
third cube was collected five days later as shown in Table I.
The collected data contains varying size material panels at
different tilt angles, however, only flat panels within the scene
are considered to evaluate downwelling radiance accuracy. The
labeled materials considered are: Foam board, low emissivity
panel (LowE), glass, medium emissivity panel (MedE), and
sandpaper with the configuration shown in Fig. 8. The ground
truth emissivity for each material was measured with a D&P
spectrometer and downwelling radiance was measured using an
infragold sample.

Predictions for FLAASH-IR, DAC [4], and each output of
MDAC are shown in Fig. 9 when applied to cube 1. The
downwelling radiance provided by FLAASH-IR also contains
atmospheric transmission. To compare downwelling radiance
quantities, the FLAASH-IR downwelling radiance is divided
by atmospheric transmission resulting in the Ld(λ) shown
in Fig. 9.

It is important to note the yA prediction in Fig. 9 is based on
the model’s atmospheric state prediction (T, H2O, O3) converted
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Fig. 9. Applying MDAC to collected data (cube 1 in Table I) results in the two TUD predictions yA and yT shown. The τ(λ) and La(λ) estimates are
comparable for all methods. As expected, the largest model discrepancy is in the downwelling estimate, which relies on the selection of reflective pixels to estimate
this term.

Fig. 10. Atmospheric state prediction corresponding to the yA TUD pre-
diction shown in Fig. 9 is plotted showing the complexity of predicting each
atmospheric level from in-scene data only. No truth data is available at the time
of collect to compare against.

to a TUD vector using MODTRAN. This atmospheric state pre-
diction is shown in Fig. 10, highlighting the complexities of pre-
dicting pressure level measurements. While no radiosonde data
is available to directly compare the atmospheric state prediction,
this atmospheric state estimate does result in a comparable TUD
estimate to DAC and yT using only in-scene data. Next, the
TUD estimates are compared from a target detection perspective,
using both TES [14] and improved alpha residuals (AR) [18].

D. Target Detection Results

Many target detection applications require an efficient
pipeline to resolve targets as quickly as possible. To support
these applications, the improved AR approach outlined in [18]
is used for comparing detection performance. Additionally, the
commonly investigated maximum smoothness TES approach
presented in [14] is also considered; however, this approach is
significantly more time-consuming compared to improved AR.
For all considered materials, the recovered signals are shown in

Fig. 11 based on the TUD predictions shown in Fig. 9. Close
agreement is observed between all AR results for this data cube,
while the TES results contain larger biases. These biases are
derived from incorrect temperature estimates made during the
TES process, but the distinctive signal features are still clearly
evident. Additionally, the emissivity measurements will have
some spectral variability, however, we do not consider the impact
of spectral variability in this study. The results presented thus
far are for a single data cube. To further compare performance,
two additional data cubes are considered and aggregated target
detection results are reported.

For each of the three investigated data cubes, the ACE back-
ground covariance matrix, ΣΣΣ, was estimated using the Maha-
lanobis anomaly detector with a threshold of 90% to classify
pixels as background or anomaly. To compare ACE detector
performance, receiver operating characteristic (ROC) curves are
used to show the relationship between probability of detection
(PD), and probability of false alarm (PFA) for varying operating
points. Applying the ACE detector in AR space or emissivity
space results in the average ROC curves shown in Fig. 12 with
comparable results observed for all methods and materials. To
further illustrate this point, SCR mean and standard deviation re-
sults are shown for each material across all three cubes in Fig. 13.
With few exceptions, comparable SCR results are observed for
all materials and methods.

Many target detection scenarios are time-sensitive, requiring
an efficient data pipeline to convert measured at-sensor radiance
to a detection statistic. Atmospheric compensation with MDAC
takes on average 0.3 s including pixel selection. Combining
MDAC with the improved AR approach and the Mahalanobis
anomaly detector for background statistic estimation allows for
target detection in 8.5 s using the data cubes reported in this
study. Replacing MDAC with FLAASH-IR in this processing
chain results in 75 s target detection, which may be significant
for some detection applications.
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Fig. 11. Predicted alpha residual curves and emissivity profiles are shown for FLAASH-IR, DAC, and the two MDAC outputs for cube 1. Alpha residual estimates
were made using the improved alpha residual method discussed in [18] and the emissivity estimates were made using the maximum smoothness TES procedure
from [14]. Materials are organized by increasing mean emissivity from left to right.

Fig. 12. Mean ROC curves are shown for DAC, each MDAC output, and FLAASH-IR for all considered materials across three collected cubes. The probability
of false alarm axis utilizes a logarithm scale because of the low false alarm rates for all methods and materials.

Fig. 13. Considering three collected data cubes, the SCR results are shown based on multiple atmospheric compensation approaches. Similar performance is
observed for all compensation methods; however, DAC and the MDAC outputs, yA and yT , reduce the compensation time allowing for faster target detection.
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Fig. 14. Modifying one latent component from −1.0 to 1.0 results in the generated atmospheric state vectors and TUD vectors. Warping the latent space in this
range allows samples to be created varying from dryer atmospheric conditions (−1.0) to more humid conditions (1.0). By increasing the total water vapor content,
more radiation can be absorbed (lower transmittance) and more radiation can be emitted (higher path and downwelling radiance).

V. CONCLUSION

This study has presented a new LWIR in-scene atmospheric
compensation approach, producing both an atmospheric state
vector and TUD vector from in-scene data only. The com-
pensation approach takes advantage of a pretrained generative
model that jointly maps atmospheric state vectors and TUD
vectors to a low-dimensional space using LWIR radiative trans-
fer loss, variational loss, and a weighted atmospheric state
loss. Sampling the generative model yields physically plausible
outputs with correct dependencies between atmospheric con-
stituents, transmission, and radiance. Given a set of in-scene
data, the permutation-invariant MDAC method produces low-
dimensional components which map through the generative
model to compensate the data cube.

Both of the MDAC predictions were compared against
FLAASH-IR and DAC on collected data cubes, demonstrating
commensurate detection performance, with a significant reduc-
tion in processing time. The use of attention set pooling in the
MDAC network revealed the model’s use of reflective pixels,
agreeing with the LWIR radiative transfer equation. This is an
important model property, as fully understanding the mecha-
nisms governing network prediction is necessary for dealing
with diverse data. While not a primary goal of this study, the
atmospheric state predictions of the MDAC network demon-
strated that limited atmospheric sounding can be performed.
The comparable detection results using the atmospheric state

vector prediction suggest the model prediction was a reasonable
estimate of the actual atmospheric state.

Applying this approach to higher resolution sensors is an area
of future work that will identify how increased sensor resolution
impacts target detection performance. Increasing sensor reso-
lution is expected to improve the atmospheric state estimate,
supporting the in-scene atmospheric sounding results presented
in this study. Also, applying this atmospheric compensation
method to additional data cubes is necessary to better understand
how emissivity and temperature diversity affects target detection
results.
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