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Validation of Global Airport Spatial Locations From
Open Databases Using Deep Learning

for Runway Detection
Chen Ji , Liang Cheng , Ning Li, Fanxuan Zeng, and Manchun Li

Abstract—Airports are important transportation hubs, but their
locations searched on open databases are not reliable. Manual ver-
ification of these locations is time-consuming and labor-intensive,
so that a rapid and automated validation of their spatial location
is necessary. In this study, three datasets of global airports were
collected and fused into one dataset through coordinate and name
matching. The fused dataset contained 46 290 airport (with run-
way) records. Then, we downloaded the remote sensing images
of these airports from Google Earth. To determine whether there
were airports in these images, we proposed a process framework.
In this framework, we used a two-scale runway detector based
on YOLOv3 to initially detect the airport runway, then used a
re-classifier based on ResNet-101 to improve the accuracy of the
initial detection results and gave a comprehensive result score.
The precision of this process framework and the airport recall
rate on the test dataset reached 95.4% and 95.6%, respectively.
The framework was applied to airport locations around the world.
When the threshold of the result score was set to 0.65, 29 259 airport
records passed the verification. In addition, we manually verified
the application results. The accuracy of the process framework
reached 91%, while its speed was 15 times faster than that of the
manual verification. The results showed that the entire process
framework can quickly and reliably help verify the spatial loca-
tions of airports worldwide and provide processing ideas for the
validation of the spatial locations of other remote sensing objects.

Index Terms—Airport, deep learning, open database, remote
sensing, runway detection, spatial location.

I. INTRODUCTION

A IRPORTS are important transportation hubs, and their
spatial locations are related to people’s lives and social
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economy [1], [2], which is why it is important to study the
spatial distribution of airports around the world. Usually, the
location of commercial airports can be easily found on web
maps, but these only represent a part of the total number of
airports worldwide, and other airports cannot be found on such
maps. Fortunately, some open-source geographical name and
airport thematic databases contain a large amount of airport
location data, which, however, contains errors. For example,
the database provides a coordinate without an airport being
located, or a coordinate with a position deviation. In general,
these data have great value, but they cannot be used directly. To
get reliable information from these datasets, the validation of the
airport coordinates is essential. In recent years, high-resolution
remote sensing techniques have developed rapidly [3], [4],
and many map suppliers (Google Earth, Microsoft Bing Map,
MapBox, etc.) have released remote sensing image maps with
global coverage, providing a material basis for verifying airport
spatial location data through remote sensing images. However,
there are thousands of airports around the world, and they are
continuously changing. It is time-consuming and labor-intensive
to verify the location of airports by manually viewing remote
sensing images, which is not a good solution. The field of com-
puter vision has been focusing on image interpretation, and many
methods of pattern recognition have been proposed. Especially
since the birth of AlexNet in 2012 [5], deep learning algorithms
have been revived, and various fast and accurate object detection
algorithms have been continuously proposed. Some scholars
have applied these algorithms to remote sensing images and
achieved good results [6], [7]. Applying the object detection
algorithm to the remote sensing image enables the computer to
determine whether there is an airport in the image and frame
the location of the airport relative to the image. Compared to
a manual workflow, this automated method to verify the spatial
locations of the airport is not only more efficient, but also entails
lower costs. Overall, it is very important to collect the airport
location data as completely as possible and automatically detect
airports in remote sensing images.

For the collection of airport location data, thanks to the
development of modern Internet and information technology,
such data can be obtained from open source geographical
names and thematic databases on the Internet. The geographical
names database includes GeoNames (GNO),1 established by a
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European organization, USGS Geographic Names Informa-
tion System (GNIS),2 established by the US government, and
GEOnet Names Server (GNS),3 established by the US military.
The airport thematic database includes OurAirports (OAP).4

These databases contain data such as airport names and spatial
locations, but they have different data structures and classifica-
tions, and there are repetitions in the recorded content. How to
integrate the geographical names data from multiple sources has
always attracted the attention of scholars. Usually, the fusion of
geographical name data is realized by the method of rule match-
ing [8], [9], [10]. In recent years, some scholars have proposed
a deep learning method, in which the computer itself proposes
matching rules to realize the fusion of geographical names data
[11]. Although it is not difficult to obtain the spatial location
data of the airport, the accuracy of the data is debatable. Some
researchers used OSM and other map data to verify geographical
name data [12], [13], but such network maps themselves also
have data accuracy problems. As an important way to observe the
earth, remote sensing images can accurately reflect the position
of objects on the ground. Therefore, the better way to verify
the spatial location of geographic objects is the confirmation
through remote sensing images. For airports with runways, the
validation of the spatial location is to detect the airport in the
remote sensing image at the corresponding coordinate.

The detection of airports in remote sensing images has at-
tracted the attention of researcher in recent years. The airport is
a large-scale object in the remote sensing image. There are ob-
vious commonalities and differences between different airports.
Airports are usually composed of runways, aprons, airplanes,
vehicles, and buildings. However, in different airports, these
facilities are combined in different ways, resulting in huge dif-
ferences in the appearance of airports. The background around
the airport is also very complex. The surrounding roads, fields,
residential areas, and other features are mixed with the airport,
which increases the difficulty of airport detection. Generally
speaking, the airport is detected by identifying local features
of the airport. In this way, detection methods can be divided
into two categories, one is to detect the airport by recognizing
aircrafts [14]–[19], and the other is to detect the airport by
recognizing runways. However, there are no aircrafts in remote
sensing images of many airports, so it is more versatile to detect
airports by recognizing runways.

The detection of airport runways can be divided into tradi-
tional methods and deep learning methods. The basic idea of the
traditional method is to first extract the features in the image, and
then use a classifier to confirm the features belonging to the run-
way, so as to locate the position of the airport. Feature extraction
methods include visual saliency [20]–[25], line segment features
[26], or multi-spectral features [27]–[31]. Classifiers generally
use machine learning methods, such as SVM [26] and CRF
[23]. With the application of convolutional neural networks in
computer vision in 2012, deep learning methods have gradually
become the mainstream of object detection in remote sensing
[32], [33]. The object detection method based on deep learning

2[Online]. Available: https://www.usgs.gov
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is divided into a two-stage and a one-stage method. The two-
stage method, represented by Fast-RCNN [34], Faster-RCNN
[35], and Mask-RCNN [36], has a better accuracy, while the
one-stage method, represented by YOLO [37]–[39] and SSD
[40], is less time consuming. Although the two-stage method
[14], [41]–[44] has also obtained good results in runway de-
tection, it is still relatively slow for the detection in large-scale
remote sensing images, which is not conducive to a global appli-
cation. The one-stage method [45]–[48]is faster and suitable for
global applications, but its ability to detect small objects needs to
be improved. To solve this problem, some multi-scale methods
for remote sensing images have been proposed [49]–[51].

In addition to selecting a good algorithm, the use of deep
learning methods for object detection in remote sensing also
requires the preparation of high-quality samples to train the
model. The first step in sample preparation is sample labeling,
which is usually done with rectangular frames. However, due
to the directionality of the airport runway, the samples marked
with a regular rectangular frame contain a large number of non-
runway features, which is not conducive to model convergence.
Therefore, for the sample labeling of airport runways, it is more
suitable to use polygons [52], [53]. The use of polygons for sam-
ple labeling can ensure that the sample contains as little irrelevant
information as possible after augmenting samples. The second
step in sample preparation is data augmentation. The purpose
of data augmentation is to expand samples with limited labels,
so that the trained model has a better generalization ability.
Histogram equalization, brightness change, cropping, rotation,
mirroring, and other operations are commonly used methods for
sample augmentation [54]. In particular, the same object may
appear on remote sensing images in different directions. For
object detection algorithms based on deep learning, these objects
are completely different. In order to make the trained deep
learning model have stronger directional generalization ability,
some scholars have proposed rotation-invariant methods [55],
[56]. In addition, the sample augmentation can also improve
the generalization ability of the model, so the rotation method
of augmentation is very important for the object detection of
remote sensing images.

In summary, the spatial location of the airport from the
open source database is of great value, but it is not reliable.
It is important to verify these locations using object detection
algorithms. However, due to the complexity of the airport and
its background, it is very challenging to automatically detect
the airport through remote sensing images. Although many
studies have proposed lots of methods for airports detection,
no study has applied such methods to verify the spatial location
of airports around the world. The purpose of this study, thus,
is to detect the presence of airport runways in remote sensing
images to verify the spatial locations of airports (with runways).
The main contributions of this work can be summarized as
follows.

1) The authenticity of datasets on the spatial location of
airports was verified. Integrated multi-source data con-
taining airport locations and remote sensing images were
downloaded at corresponding coordinates, and automated
methods were used to detect whether these images contain
airports with runways or not.

https://www.usgs.gov
http://geonames.nga.mil
https://ourairports.com
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Fig. 1. Distribution of global airports and experimental data from fused dataset.

2) We proposed a runway detection process framework based
on the combination of a two-scale runway detector and a
re-classifier. Compared with ordinary runway detection
approaches, this process framework has a higher accuracy
and recall rate and can be extended to the detection of
other remote sensing objects.

3) We provided the fused dataset of airports, the airport
labeled samples and the code of the proposed framework
on GitHub5 for other researchers to download for their
own studies.

II. DATA SOURCES AND FRAMEWORK

A. Data sources

In this study, four open access databases containing airports
were integrated to form a complete dataset. This dataset con-
tained 5 8751 airports around the world, including 46 290 air-
ports with runways. 500 locations in this dataset were randomly
selected as the validation data and verified manually (Section
IV-B). The spatial distribution of the airports is shown in Fig. 1,
including global airports with runways (blue), the training data
for the deep learning model (green), the test data for the deep
learning model (yellow), and the test data for the proposed
framework (red).

As shown in Table I, the location data of the airports come
from OurAirports.com (OAP), GeoNames.org (GNO), GEOnet
Names Server (GNS), and the USGS Geographic Names Infor-
mation System (GNIS). OAP is a dataset providing global airport
information, which contains four kinds of airports, including air-
ports with runways, heliports, seaplane bases and balloonports.
GNO provides global geographic names data, among which the
categories related to airports are airports, airbases, heliports, and

5[Online]. Available: github.com/jichen1226/GlobalAirportsValidation

TABLE I
DATA SOURCES OF THIS ARTICLE

seaplane bases. GNS provides geographic names data except for
the United States, while GNIS only provides data for the United
States.

The images of the airports were taken from Google Earth
(level-17), which were downloaded as tiles and spliced into a
complete image in the size of 37 ∗ 37. Each tile is a picture with
a size of 256 ∗ 256 pixels. In this size, the longitude span of
the image is about 0.1 degree to avoid that the airport cannot be
covered by the image due to data error.

B. Framework

The whole framework of airport locations validation proposed
in this article is shown in Fig. 2. The framework is roughly

github.com&sol;jichen1226&sol;GlobalAirportsValidation
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Fig. 2. Framework of validating global airport spatial locations.

divided into three parts: (1) Fusing of airport data: the three
datasets of global airport location termed OAP, GNO, and GNS
+ GNIS were fused to get a more complete dataset. (2) Train-
ing of deep learning models: Two deep learning models were
trained. The first one was the runway detection model based on
YOLOv3 to detect runways in images, and the second one was
the reclassification model based on ResNet-101 to reclassify
the detected boxes for improving the accuracy. (3) Validation
of airport images: The two trained models were combined and
applied to images of all locations from fused dataset to obtain
potential boxes. Based on these boxes, the prior knowledge
of airports and the comprehensive scores of the two models’
confidence were used to filter the final results. These final result
boxes were regarded as real runways. If there were runways
in one image, it was considered that there was an airport with
runways here, and the location was verified.

1) Fusing of Airport Data: The purpose of data fusion was
to fuse the global airport datasets from OAP, GNO, and GNS
+ GNIS into one set. To achieve this, the basic idea was to
match the two sets of data, GNO and GNS + GNIS, with OAP
data as the benchmark. When the data could be matched, the
OAP dataset already contained these airport records, and GNO
or GNS + GNIS were only used as information supplement;
when the data could not be matched, the OAP dataset did not
contain these airports, and the airport records were added from
the other datasets.

Due to the different classification criteria of each dataset,
pre-processing work was required on each set before starting
the matching. The pre-processing included redefining the air-
port type, data deduplication, and formatting the data struc-
ture. The data structure and annotations of the fused data after
pre-processing are shown in Table II. Data matching was based
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TABLE II
STRUCTURE AND ANNOTATION OF FUSED DATA

on the assumption that if there were airport records with similar
spatial locations and similar names in different datasets, these
records were considered to refer to the same airport. In coordi-
nate match, the difference between each location record in the
OAP dataset and the records in other data sets is calculated.
If the differences in latitude and longitude were less than the
threshold (0.04°), the coordinate match was successful. If the
data failed to match the coordinates, the text similarity was
calculated based on the airport’s name. The text similarity was
calculated by the edit distance, as in (1). Before the calculation
of the text similarity, keywords related to place names (such as
Shanghai) and airport types (such as Airport) were removed
from the airport name; then, the words were reordered, and
finally the edit distance of the new string was calculated. If
the name similarity was greater than 0.8, coordinate matching
was performed again (with greater threshold: 0.08°). After the
above processing, unmatched airport data were finally obtained
and added to the OAP dataset to form a more complete airport
dataset.

leva,b (i, j) =

⎧⎪⎪⎨
⎪⎪⎩

max (i, j) ifmin (i, j) = 0,

min

⎧⎨
⎩

leva,b (i− 1, j) + 1
leva,b (i, j − 1) + 1
leva,b (i− 1, j − 1) + 1

otherwise.

(1)

2) Training of Deep Learning Models: In this framework,
two deep learning models were trained. The first was the runway
detection model, which uses the neural network structure of
YOLOv3. YOLOv3 was one of the most advanced object de-
tectors at the time of writing this article. It has a good balance in
speed and accuracy [39]. For global validation, speed is the key to
validation, so that this study used YOLOv3 as the airport runway
detector. The second model was the reclassification model. This
model used ResNet-101 as the neural network structure and
employed a part of the runway detection results as training
samples. All sample images used in the training were from
Google Earth and were labeled and augmented. Fig. 3 shows
some examples of sample labeling and data augmentation.

Object detection in the field of computer vision is divided
into three stages: image classification, object localization, and
semantic segmentation. For the different stages, the sample
annotation methods are also different. Runway detection belongs

Fig. 3. Examples of training samples: (a) Raw labeled image; (b) Samples after
data augmentation for runway detector; (c-d) Positive and negative samples for
re-classifier.

to the detection stage of object localization, in which the sample
is commonly labeled with a regular rectangle. However, airport
runways are mostly oblique in remote sensing image. If these
are labeled with a regular rectangle, the label box contains
too much information about surrounding features, which is not
conducive to the training of the model. Therefore, the runway
sample annotation in this study was labeled with polygons to
ensure that the runway samples after the rotation method of
data augmentation contained as little surrounding ground feature
information as possible.

Limited by the number of labeled airport runway samples,
and to train a model with stronger generalization ability, it is
necessary to augment the sample data. Data augmentation is
divided into color operations, geometric operations, and labeled
box operations [57]. For remote sensing images, the proportion
of labeled boxes is small, so that we did not use labeled box
operations. As shown in Table III, methods such as histogram
equalization, lightness, contrast, rotation, mirror, zoom clip, and
translation were used to augment samples. The color operation
made the model adapt to images in different regions, the ro-
tation and mirror methods made the model adapt to runways
in different directions, and the zoom clip method made the
model adapt to runways of different sizes. After data augmen-
tation, the final samples were 128 times larger than the labeled
samples.

Before training, we customized some hyperparameters and
the training strategy. YOLOv3 uses anchor boxes to predict
bounding boxes. To obtain anchor boxes, the usual approach is to
use k-means algorithm clustering from the ground truth boxes in
the training dataset. The k-means algorithm needs to specify the
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TABLE III
THE METHODS OF SAMPLE DATA AUGMENTATION USED IN THIS STUDY

Fig. 4. Selection of anchor box: (a) The average IOU with various choices for
the number of clusters. (b) The shapes of anchor boxes at 9 anchor boxes. In
YOLOv3, the blue, green and red anchor boxes are used to predict at different
scales of 13∗13, 26∗26, and 52∗52, respectively.

number of clusters. As shown in Fig. 4(a), we have calculated
different numbers of cluster and calculated the average value
of the maximum IoU (Intersection over Union) between the
bounding box and each anchor box. Obviously, as the number
of clusters increases, the average IoU between the anchor box
and the bounding box will stabilize. More clusters will allow
greater overlap between the anchor box and the bounding box.
However, as the number of anchor boxes increases, the number
of convolution filters in the prediction filter will increase linearly.
This will result in a larger network size and increase training
time. Therefore, we stuck with 9 anchor boxes, to stay true
with the original YOLOv3 implementation. By using 9 anchor
boxes, the average IoU reached 62%. When the input size was
set to 416, the sizes of anchor boxes were (7,104 112,9 63,63
26,153 157,36 118,122 65,210 211,87 204,217) in our training.
Their shapes are shown in Fig. 4(b). The training of the runway
detection model was based on the pre-trained model released
on the website of YOLOv3 and we used the Adam algorithm as

the optimizer for training. There were 100 epochs in the whole
training process. The learning rate of the first 50 epochs was set
to 0.001, and the layers of darknet body were frozen, and the
learning rate of the last 50 epochs was set to 0.0001, which
unfroze all layers. The training of the reclassification model
was based on the pre-training model of Resnet-101. The entire
training had a total of 100 epochs, using Adam algorithm as the
optimizer, and the learning rate was set to 0.0001.

3) Validation of Airport Images: As mentioned at the begin-
ning of Section II-B, the first step of airport validation was the
runway detection. To adapt to different scales of the airport, two
runway detectors of different scales were applied to the target
image. The first detector detected medium and large airport
runways at the entire scale of the image (37 ∗ 37 tiles); the
second detector detected small and medium airport runways in
the image with a sliding window of 17 ∗ 17 tiles (with a step size
of 5). The reason why these two window sizes were selected
for detection are discussed in Section IV-A. After detection,
the results of the two detectors were used as candidate boxes
for non-maximum suppression (NMS), and the detected boxes
were merged into the initial result boxes.

Initial results were obtained through the runway detection, but
there were some non-runway objects (such as rivers, highways,
strip clouds, etc.) in the results. To get more reliable results,
the second step of our airport validation was the reclassification
of the initial results. The re-classifier determined whether all
potential boxes obtained in the first step were airport runways.
Fig. 5 shows the strategy for runway detection and reclassifica-
tion. The third step was to filter the result box based on the prior
knowledge of airports. If the box was too small (smaller than the
size of one tile) or too large (larger than the size of 25∗25tiles)
as a runway, this box was discarded. If the center coordinates of
the box were too far (more than 0.04°) from the location to be
verified, this box was removed. Finally, based on the confidence
scores of the runway detector and the re-classifier, a scoring
formula for evaluating the final result was employed:

scoreresult =

{
scoredetector if scoredetector > 0.9,
2∗scoredetector ∗ scorereclassifier

scoredetector+ scorereclassifier
otherwise.

(2)

When the result score was greater than 0.65 (empirical value),
the box was judged to be an airport runway, and the image con-
taining the result box was verified. At the same time, longitude
and latitude in the center of the result box were compared with
the records in the fusion dataset to correct the offset coordinates
in the dataset.

III. RESULTS

A. Performance of the Proposed Framework

This article proposed a data fusion method based on coordi-
nate and name matching. After the data fusion of three open
source datasets, there were 58 751 airports, including 46 290
airports with runways. We manually selected 300 airports for
labeling and data augmentation, and 38 400 samples were used
to train the runway detection model. In addition, 30 airports were



1126 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

Fig. 5. Strategy for runway detection and reclassification from the Google Earth image (37 ∗ 37 tiles) at airport coordinates: (a) The red dotted boxes are 2
runway detector areas of different scales. (b) The red solid boxes are detected results by runway detection. (c)–(d) The yellow solid boxes are obtained by merging
detected boxes after NMS, and the box in (c) is judged as negative result while the box in (d) be judged as positive result by the re-classifier.

selected as the test data for the runway detection model. The
images of these 30 airports were also labeled and augmented,
generating 3840 test samples. After training of the runway
detection model, the detection strategy proposed in Section II-B
was applied to all images of airports around the world to obtain
initial results. From the initial results, we selected 1222 potential
regions (positive: 811, negative: 411) as training data for the
reclassification model. These data were augmented by 45-degree
rotation and histogram equalization to generate 19 552 (pos-
itive:12 976, negative: 6576) samples. The data augmentation
method was the same as that for the training data. Fig. 6 shows the
performance of model in different stages during training. When
the epoch reached 100, the loss of the runway detection model
was 5.2, the test precision was 92.8%, and the recall was 85.1%.
The loss of the reclassification model was 6.7, the test precision
was 85.9%. By using a NVIDIA 2080Ti graphics card, the whole
training process for detection and reclassification model took
about 5 days.

The trained models were used as the detector and re-classifier
of the framework proposed in this article, and the framework
performed well. The test results are shown in Table IV. The
precision, recall, and speed of this framework were better than
those proposed by previous scholars (Method1 [43], Method2
[58], Method3 [44]). This was due to the rapid development of
deep learning algorithms, which improved the precision. The
data augmentation method and recognition strategy used in this
article improved the recall rate. If only the runway detection
model (based on YOLO) was used, the precision of the result
was 92.8%, the runway recall rate was 85.1%, and the airport
recall rate was 91.7%. When using the framework proposed in
this article, the precision was improved by 2.6% to 95.4%, the
runway recall rate was increased by 5.3% to 90.4%, and the
airport recall rate was increased by 4.1% to 95.8%. The multi-
scale runway detector in the framework improved the model’s
ability to identify small airports, thereby increasing the resulting
recall rate. The improvement of the precision of the detection
results was attributed to the addition of the re-classifier.

Fig. 6. Loss, precision, recall and f1 of the trained model with different
epoch in test: (a) The runway detection model based on YOLOv3. (b) The
reclassification model based on ResNet-101.

B. Application of the Proposed Framework

The framework proposed in this article was applied to remote
sensing images of 46 290 airport locations worldwide, and the
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TABLE IV
PERFORMANCE OF THE RUNWAY DETECTION MODEL AND THE FRAMEWORK

PURPOSED IN THE ARTICLE

Fig. 7. Results of the application of the framework to airport locations around
the world. In this chart, the x-axis represents the threshold of the result score,
and the y-axis represents the number of results.

results were scored according to (2) in Section II-B-3). The
remote sensing image of each location was derived from the
level-17 images of Google Earth, with a resolution of about 1.2
m. An entire image was composed of 37 ∗ 37 tiles, where each tile
was a picture composed of 256 ∗ 256 pixels, so that the image
size was 9472 ∗ 9472 pixels (about 18 MB). To complete the
validation of all images, the framework took 102.9 hours, with
an average of 8 seconds per image. The framework detected
initial result boxes in 41296 images. Based on the experience
of visual sampling, we recommend using a score of 0.65 as
the threshold for passing the validation (Fig. 7). Under this
threshold, 29 259 images passed the validation, that is, there
were airports with runways in those images. The reliability of
these results is discussed in Section IV-B.

IV. DISCUSSION

A. Selection of Image and Sliding Window Size

Applying the runway detection model to a suitable size of
images could detect runways more accurately. Conversely, some
small runways in the images could not be detected, or some
objects with long linear features (such as highways and rivers)
were incorrectly detected as runways. However, there are huge
differences in the size of different airports. As shown in Fig. 8,
large airports may have multiple runways with a length of several
km, while small airports have runways with a length of only a few
hundred m. Because a fixed-scale detector cannot complete the
detection and validation of airport runways in different locations,
we used the sliding window method to achieve a multi-scale
recognition of the images, so as to accurately complete the
detection of airport runways of different sizes.

Based on Google Earth’s level-17 images, our study counted
pixels of the runway length, the minimum number of tiles
required to contain the runway, and the airport. The results are
shown in Table V, and the first column (Airport Scale) in the
table refers to the ratio of the height/width of the airport to the
height/width of the image. When the image was composed of
37 ∗ 37 tiles, 95% of the airports accounted for 10 to 80% of it.
In our framework, by the zoom method of data augmentation,
the training sample images were clipped by the proportion of the
airport to the entire image (20–80%), so that the trained model
has a better generalization ability for multi-scale detection.
When the detection window was fit to the entire image (37 ∗ 37
tiles), airports with a scale of 20 to 80% could be well detected,
and when the detection window was half the image size (17 ∗ 17
tiles), airports with a scale of 10 to 40% could be well detected.
Therefore, the use of these two window sizes allows the detector
to more accurately process images containing airports of various
sizes.

B. Reliability of Validation Results

To prove the reliability of the framework for the validation
of the spatial locations of airports worldwide, we sampled some
airports from the global airport location dataset and checked the
results of the framework manually. The sampling considered
the size and spatial distribution of the airports. Based on the
spatial distribution of the whole samples, we ensured that large,
medium, and small airports were sampled. The results of the
manual verification are shown in Table VI. The total number
of samples was 500. Among them, 292 airports were found
in 281 sample images by manual verification. The framework
proposed in this article correctly identified 455 sample images
and the accuracy reached 91.0%. Among the 281 sample images
containing airports, 266 images were correctly identified with an
accuracy of 94.7%. Among the last 219 images without airports,
198 images were correctly judged, and the judgment accuracy
was 86.3%.

We further analyzed the reasons for the misidentifications.
There were 15 images containing airports, but they were wrongly
judged by the framework. In one image of them, there was
no runway but aircrafts. In two images of them, the airports
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Fig. 8. Examples of airports on Google Earth Image (37 ∗ 37 tiles): (a) Large airport in Japan. (b) Medium airport in Russia. (c) Small airport in Brazil. The blue
box represents the range of one tile, the red box represents the extent of the airport, and the green box represents the range of the sliding window (17 ∗ 17 tiles).

TABLE V
STATISTICS OF AIRPORT SCALE IN SAMPLE IMAGES

TABLE VI
SAMPLING STATISTICS OF THE TEST RESULTS BY THE VALIDATION FRAMEWORK APPLICATION
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were abandoned, and the runways were broken. In six images
of them, the detector found airports, but they were excluded
after comprehensive scoring. In the last six images, the detector
did not find the airport runways. From the perspective of an
intercontinental distribution, the accuracy of the results in Asia
and on islands was highest, while the accuracy of the results
in Oceania was relatively low. The reason why the accuracy of
the results in Oceania, North America, and South America was
lower than in other regions was that there was a large number of
ultra-small airports in these regions. These airport runways were
located in farmland areas and appeared like empty spaces. This
made it difficult for the detector to distinguish these runways
from surrounding fields. Although the results of the framework
had errors and omissions, the overall accuracy reached 91.0%,
and it only took 1.1 hours for a complete evaluation of the dataset.
In contrast, the manual verification took 16 hours. For all airports
around the world, manual verification is estimated to take 1543
hours, while the framework proposed in this study is estimated to
take only 102.9 hours. As the data structure continually changes
and hardware equipment is regularly updated, this gap will
enlarge.

V. CONCLUSION

In this article, we proposed a process framework that validated
the spatial location of airports from a fused dataset. The fused
airport dataset was extracted from four open access databases
and contained 46 290 airport (with runway) records. The pro-
cess framework consisted of two deep learning models. The
first was a detection model based on YOLOv3 for detecting
airport runways on two-scales. The second was a reclassification
model based on ResNet-101 for correcting the results that were
misidentified by the detection model. The process framework
performed well on the test dataset, with a precision of 95.8%
and a recall rate of 95.8%. In addition, 1% manual sampling
verification was performed on airports from the fused dataset
to test the reliability of our framework. These tests showed that
the accuracy of the framework was up to 91.0% and the speed
was 15 times that of the manual verification. Finally, the process
framework was applied to a global airport fusion dataset, of
which 29 259 airport records were verified, indicating that there
were airports with runways at the respective location in Google
Earth.

Our research still has some limitations: (1) The airport loca-
tion data only came from structured databases, unfused with
unstructured text from the Internet and POIs of web maps
to further expand the fused dataset. (2) The detector did not
combine aircraft and other object detection model, which could
have further improved the reliability of the results. (3) The
re-classifier did not consider the differences in surface cover-
age around the airport. Improvements to address these short-
comings will be reflected in further research. In the future,
we will detect and discover airports that are not included in
existing datasets from the remote sensing images of globe cov-
erage, rather than just detecting airports in images at known
coordinates.
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