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Abstract—In remote sensing images, domain adaptation (DA)
deals with the regions where labeling information is unknown.
Typically, hand-driven features for learning a common distribu-
tion among known and unknown regions have been extensively
exploited to perform the classification task in hyperspectral im-
ages with the aid of state-of-the-art machine learning algorithms.
Under limited training samples and using hand-crafted features,
the classification performance degrades significantly. To overcome
the engineered feature extraction process, an automatic feature
extraction scheme can be seen useful to generate more complex
but useful features for classification. Deep-learning-based architec-
tures have been found to be pivotal on this regard. Deep learning
algorithms are effectively used in hyperspectral domain to solve the
DA problem. However, attention-based activation mappings, which
are very successful for distinguishing different classes of images via
transferring relevant mappings from a deep-to-shallow network is
not widely explored in DA domain. In this article, we have opted
to use attention-based DA through transferring different levels
of attentions by means of different types of activation mappings
from a deep residual teacher network to a shallow residual student
network. Our goal is to provide useful but more complex features to
the shallow student network for improving the overall classification
in case of DA task. It has been shown that for different kinds of ac-
tivation mappings, the proposed attention-based transfer improves
the performance of the shallow network for the DA problem. It also
outperforms the state-of-the-art DA methods based on traditional
machine learning and deep learning paradigms.

Index Terms—Activation mapping, attention mappings,
hyperspectral image (HSI), knowledge distillation (KD), residual
network, transfer learning.

I. INTRODUCTION

DOMAIN adaptation (DA) in hyperspectral images (HSIs)
helps to deduce the labels for the data where labeling

information is unavailable. This can overcome the limitation
of gaining information about the regions where direct human
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access is impossible. Due to this property of DA, one can see
the classification problem in HSI domain as semisupervised,
supervised, or unsupervised. By using the knowledge of the
known (source) regions, DA is used to predict the unknown
regions (target) whose distributions may or may not be known
in advance thereby giving us much needed labeling information
about the regions of interest. If the deduced labels are accurate,
target region classification accuracy can improve.

The classification problem of DA can be defined in terms of
the information about the target regions. If a small number of la-
bels in the target region are available, DA can be seen as a super-
vised problem where the distribution about the unknown pixels
in the target regions can be learned from the source region. While
in the semisupervised case, the joint distribution of the unknown
pixel in the target regions can be learned from the known labels
of pixels of both source and target regions. Conversely, in case
of unsupervised problem, no prior knowledge about the labels
in the target region is given. Although classification problems in
DA could be different, the main idea still remains the same where
pixel distributions of the source region are needed to be matched
to that of the target region for correct estimation of labels in the
target region. By doing this genre of matching, the knowledge
from one region is transferred to another to find the desired
hidden features in a given image. The more the distribution
can be matched, the more improvement on the classification
accuracy can be obtained. This suggests a direct application for
classification challenges in HSI. Specifically in HSI domain,
challenges like atmospheric turbulence, distortion in the image
acquisition process create blurry representation of pixels in the
scene. These blurry representations have a detrimental effect on
generalizing the pixel distributions in different regions. These
representations produce different spectral signatures even for
the same objects. Moreover, the high-dimensional nature of HSI
makes the blur effects even more noticeable in [1] and [2]. Hence,
the main theme is to overcome the effects of limitations in the
image acquisition process. After overcoming these limitations,
a more generalized distributions of data in both the source and
target regions in the HSI image will be found. If the distributions
can be generalized accurately, then the labels in the target regions
can be estimated efficiently.

Different machine learning (ML) algorithms have been ex-
tensively used in the literature to achieve the generalized pixel
distributions in both the source and target regions [3]–[6]. By
adopting such state-of-the-art methods, the task of transferring
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knowledge from one domain to the other has been simplified [7].
However, the hand-driven nature of the feature extraction pro-
cess has become a challenge in adopting ML algorithms in DA
cases. To cope with this problem, deep learning (DL) architec-
tures are widely employed to generate automatic feature driven
models from the given data itself. The design of different DL
architectures also paves the way to learn different hierarchical
representation of the HSI image to produce unique abstraction
of the regions in HSI. To show the effectiveness of DL, the work
in [8] has employed a deep neural network (DNN) on HSI to
extract more informative features for the classification problem
and provided improved performance measure comparing to the
traditional ML-based classification methods. The trend of using
different architectures of DNNs can be seen in various HSI
classification tasks [2], [9]–[11]. All of these architectures show
increased classification performance compared to the various
state-of-the-art techniques for DA. Nonetheless, the requirement
of producing useful and relevant features for DA still remains
as a fundamental challenge. Recently, attention-based feature
extraction using DL models opens the way to focus on specific
parts of underlying objects in order to improve the classifica-
tion accuracy [12]. The main idea in this study is to transfer
the features from a superior deeper supervisor network with
greater accuracy to a less complicated shallow student network
to improve the accuracy of the shallow network based on the
attention losses incurred by activation functions in the DNNs.
Inspired by this, we have proposed to use attention-based domain
adaption for HSI classification [13]. This prior publication re-
ported higher classification accuracy for DA than the compared
state-of-the-art methods. However, features extracted in [13]
have been only done for spectral distribution of the given HSI,
which can be an obstacle for improving the classification of
the shallow network. In addition, only one particular activation
mapping was employed to transfer the attention between the
teacher (TN) and the student (SN) networks. To overcome these
limitations, in this study, we have opted to evaluate different
attention transfer mechanisms including taking advantage of
both spatial and spectral features. It has been found that with
the combination of change of attention mappings and different
spatial–spectral features, we can achieve better performance
measures than the earlier version of our work. In addition,
for a fixed size of TN, different SN sizes are analyzed in
order to determine the best attention-based DA performance
for HSI.

The main contributions of this work can be stated as follows:
1) to introduce spatial–spectral based attention mappings in

HSI domain;
2) to introduce and compare different variants of attention

losses in case of HSI image classification;
3) to investigate the DA performance of shallow but wider

SN after using attention mappings in the given DL archi-
tecture; and

4) to compare the computational complexity of different
settings for TN and SN.

The rest of this article is organized as follows. Section II gives
a brief introduction of background work. Section III details the
attention-based neural network architecture for DA. Section IV

presents the experimental settings and results. Conclusions and
future work are summarized in Section V.

II. BACKGROUND AND RELATED WORK

The DA process on remote sensing images is widely exploited
for regression, classification, and clustering problems. The stud-
ies in the literature about DA for remote sensing images can be
mainly divided into the following categories.

A. Instance-Based DA

In this genre for DA, the samples of the source patches
are iteratively reweighted for use in the target domain. For
satisfactory performance, both source and target samples must
share the same dimensionality and be closely related to each
other [14], [15]. The reweighted parameters try to reduce the
difference in marginal/conditional distributions between the
source and target domain. This weighting procedure can negate
the misleading instances that are not relevant in the target do-
main [14]. While the work in [14] deals only with a supervised
example, the method in [15] studies the semisupervised classifi-
cation problem. In [15], few informative labeled examples from
the distribution to be labeled have been selected via actively
determining the set of most informative pixels to be labeled
from a set of candidates in the target domain with the help of
instance weights and SVM as a classifier. Another instance of
this type of DA method iteratively reweights the source data
for learning a common space between the heterogeneous source
and target domain [16]. From the obtained common subspace,
according to the relative importance, the source data are reused
and reweighted by the iterative reweighting strategy and can also
be used for transferring. The major advantage of this method is
that reuse of source data enables the improvement of supervised
classification in case for limited labeled samples in both source
and target data. The method does not support semisupervised
classification. The kernel instance DA method in [17] uses
multiple kernels’ weights in an adaptive way to train from
the available labeled samples in the source domain and adds
minimum number of most informative and active samples to
label the pixels in the target domain.

B. Feature-Representation-Based DA

The feature-representation-based DA intends to extract fea-
tures to represent the source and target domains such that the
invariant features from both the source and target pixels are
selected to improve the land-cover classification [18]. Recently,
kernel-based nonlinear features are extracted to align the source
domain (i.e., pixels with known labels) with the target domain
(i.e., pixels with unknown labels) for semisupervised remote
sensing image classification [19]. In addition, DL-based archi-
tectures like denoising autoencoder (DAE) and domain adver-
sarial neural network (DANN) have also been used in [20] to
learn the invariant feature representation for DA. By proposing
DL architecture, the work in [20] learns invariant features in
end-to-end manner across the domains to further boosting the
classification performance of HSI by focusing on the individual
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snapshots of the labels in the HSI. Another variant of DL-based
autoencoder, namely segmented stacked autoencoder (SAE) is
proposed in [21] where authors apply individual stack autoen-
coders in different regions of the given HSI. It reports improved
classification while producing hierarchical features in a less
complex manner. However, in case of complex distributions,
the method may fail to locate the important spatial features for
HSI classification.

C. Parameter-Transfer-Based DA

In this DA method, the information from the target image is
transferred to adjust the parameters of the classifier to improve
the accuracy of land-cover classification [22]. The associated
parameters are mainly learned from the source domain. The
works in [23] and [24] use this approach for updating feature
parameters for a maximum-likelihood classifier in a multiple
cascade classifier system by retraining the source domain to
improve the land-cover classification. Another variant of this
type of DA method is seen in [25] where different acquisition
conditions of the dataset have been considered to design the
DA algorithm. It uses the parameters from the source domain
to the target one by using an estimate of nonlinear deformation,
which has been done by graph matching and vector quantization.
The transferred maps are obtained in unsupervised manner. The
obtained maps help to project the parameters from the source to
the target domain to solve the classification problem in HSI. Liu
et al. [26] use homologous component analysis (HCA) for DA
where the projected data information from the source and target
domain is used to align the distributions.

D. Relational Knowledge-Based DA

This DA paradigm exploits the feature formalism in relational
source and target domains. These relational features help to
revise the initial mapped structure of target image to yield
higher classification accuracy [27]. This work can be extended
to multisensor domain as depicted in [28]. The method in [28]
tries to exploit the feature subspace from the multisensor data to
detect the same properties in both the source and target domains.
In addition, the method in [29] uses two-level cluster mapping
[derived from self-organizing maps (SOM)] to match the feature
maps for both the source and target domains. After finding the
closest feature maps, autoencoder is used for transforming the
matched source–target pairs. This method can include missing
points to improve the land-cover classification in both source
and target domains.

However, all the aforementioned DA methods are successful,
if the data from both source and target images resemble the
same characteristics. In case of supervised classification, these
methods need many samples for defining source subregions. In
addition to these methods, DA based on DL architectures has
become very popular. In [2], different strategies of DA in case
of multisource data for land-cover classification task have been
presented. The results show that for a limited amount of training
data, convolutional and shallow neural networks tend to outper-
form other competing methods. In [30], a spectral–spatial unified
network (SSUN) has been proposed for DA. Here, spectral and

Fig. 1. Block diagram of the proposed method.

spatial feature extraction and classifier training are incorporated
to formulate a uniform cost function for optimization simultane-
ously. The authors use long short-term memory (LSTM) model,
and a multiscale convolutional neural network to extract spectral
and spatial features, respectively, showing an improvement of
overall accuracy (OA) in the case of multiple HSI datasets. For
attention, transfer-based approaches mainly inspired from the
unsupervised image saliency detection with Gestalt-laws guided
optimization and attention in [31], a 3-D convolutional neural
network (3-DCNN)-based residual channel and space attention
network (RGSCA) is used for HSI classification [32]. It uses
residual connection in both bottom-up and top-down manner to
optimize the attentions of the channel and spatialwise features
in the training process. It has the advantage to boost up the
spatial features even if we have a limited amount of training
samples. The works in [33] and [34] add a new dimension of
feature extraction by including fusions of spectral and spatial
features in HSI domain. Mu et al. [33] use a multiscale and
multilevel spectral–spatial network to fuse the features effec-
tively in different domains. The method uses a combination of
3-D and 2-D CNN to achieve the fusion of spectral and spatial
features. In [34], local spectral features are obtained by applying
1-D CNN to each band in the HSI, where multiscale spatial
features are obtained via hierarchical spatial pyramid pooling.
Then, these features are concatenated to get the spectral–spatial
fused features for HSI classification.

III. PROPOSED METHOD

A. Overview of the Architecture

Motivated by the recent success of the attention-based transfer
learning for object classification [12], we proposed a DL-based
attention transfer architecture in [13] for DA to classify hyper-
spectral imagery. The overview has been presented in Fig. 1. The
proposed architecture mainly consists two vital components:
the TN and the SN (elaborated in Fig. 1). The TN, which
is a deep residual network, transfers knowledge to improve
the performance of a shallow pretrained network, namely, SN.
These components are triggered by the central element of these
networks, the DL architecture, basically, a series of convolu-
tion layers to extract hierarchical features at different levels



MDRAFI et al.: ATTENTION-BASED DOMAIN ADAPTATION USING RESIDUAL NETWORK FOR HYPERSPECTRAL IMAGE CLASSIFICATION 6427

automatically from the raw input image. These hierarchical
features help to produce different levels of mappings, which
are critical to make architecture to focus on the specific parts
of the image. These levels of mappings are known as attention
mappings. For different levels of convolutional layers, different
levels of attention mappings can be realized. In this work, we
have exploited the attention mappings for the TN to transfer
them to the SN for classifying the test regions for the given HSI.
Since it would be computationally expensive to feed the whole
attention mappings at different levels from the TN to the SN,
we have opted to use attention losses as the passing parameters
from the TN to the SN to reduce the computational cost of the
proposed architecture.

B. DL Architecture

As already mentioned, the state-of-the-art DL architecture
like CNN and its different variants are widely used and demon-
strated to be very successful in many complex computer vision
tasks. The fundamental blueprint of CNN follows a multiple
convolutional filters to give us a hierarchical representation
of the given image. The formulation of such blueprint can be
constructed in two ways: shallow and wide. A shallow CNN is
the initial architecture of CNN to be used for many complex
computer vision tasks [35]. However, as the network size grows
large, a shallow CNN has the problem of gradient explosion [36].
To overcome this limitation, a much deeper and wider blueprint
of CNN has been proposed in [36]. This genre of CNN is
found to be more successful than a shallower one for many
computer vision tasks, widely known as a wide residual network
(WRN). The main difference is that it allows to use convolutional
layers with different width and depth by using the residual
blocks of convolutional filters in the architecture. This residual
blocks help to overcome the problem of gradient explosion
after including series of convolutional layers. In [12], it is also
shown that a wider and deeper residual network achieves better
classification accuracy than a less wider and deeper residual
network. In this work, both the TN and SN are WRNs. The
number of feature maps in each WRN has been determined
by two hyperparameters, namely, width and depth. These two
parameters decide how deep and wide the WRN can be in terms
of generating feature maps. In our case, the TN is deeper in terms
of number of the components than that of the SN. The feature
map size per each layer in TN is higher than that of the SN.
Both the TN and SN initially pass through a convolutional layer
with eight filters as the output. Then, as shown in Fig. 1, the
resultant feature maps are fed into three groups of convolutional
layers. Each group is initially fed by batch normalization, and
ReLU layers. These groups produce hierarchical features in a
residual manner, which is indicated by skipping connection of
the input to the output layer in each group. The first group of
convolutional layer generates an output with dimension of four
filters multiplied with the width of the layer. The second group of
convolutional filter outputs eight filters multiplied with the width
of the layer to produce the residual features. The final group of
convolutional filters uses 16 filters multiplied with the width of
the layer to produce its output. The output of the final group

of convolution is passed through batch normalization, ReLU,
the pooling (average pooling is used), and the softmax layer
to predict the label of the given set of pixels in HSI domain.
This whole operation is repeated for the given number of depth.
Different combinations of width and depth have been considered
for the SN for a given TN, which have been discussed detailed in
Section IV. The three blocks represent the generated low-, mid-,
and high-level of features, respectively. These levels of features
represent different mappings of attentions in the network for
the given source regions of the HSI. However, transferring all
the attention mappings from low-, mid-, and high-level features
from TN would be computationally expensive. Therefore, we
have opted to transfer attention losses.

C. Attention Losses

The attention loss parameters mainly share the loss of each
residual block level in a WRN to give low-, mid-, and high-level
losses. Basically, these attention loss parameters act as the hints
for the SN parameters to improve classification. Initially, a WRN
with a certain depth and width is trained to get the parameters for
the TN with some extra nontrainable attention loss parameters.
Then, with the aid of the TN, the SN is trained in the same
model architecture but these some extra nontrainable attention
loss parameters from the TN is added as extra parameters for
training. These losses mainly give the summary of features at
various stages of the WRN while training the input image. In
this work, the following attention losses are considered.

1) Knowledge Distillation (KD)-Based Attention Loss: KD
is the base line transfer learning method, which is introduced
in [37]. In our work, attention takes the form of the knowledge
to be transferred from the TN to the SN. Initially, the TN is
trained with the cross entropy as the function between the ground
truth and the predicted labels. Then, at the first step of KD,
the probability of each class pi is calculated from the softmax
distribution of the classes, i.e.,

pi =
exp(zi/T )∑
j exp(zj/T )

. (1)

Here, zi is the presoftmax logit for class i. T is the temperature,
which controls the amount of attention to be distilled in the SN.
If T is high, then we will have a softer probability distribution,
i.e., all classes have almost the same probability. Therefore,
more incorrect decisions can be made while classification, which
enables the hidden attention from the incorrect classes to become
more prominent to be distilled. The attention learned from
training the TN with the normal softmax (T=1) can be distilled
and partially transferred to the SN by minimizing the following
loss function, which is known as the KD-based attention loss:

LKD = αT 2CE(PS , PT ) + (1− α)CE(PS , ytrue). (2)

In (2), CE stands for cross entropy, ytrue is the true label of
the class. PS , PT are the softened probability of the SN and
the TN for the same temperature T , respectively, and α is the
tuning parameter to tune the weighted average between the two
components in the loss function. The first component in the
loss function helps to focus on the similarity between the soften
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distributions of both the TN and the SN, whereas the second one
tries to optimize the soften distribution of the SN with respect to
the ground truth label of the data. However, using KD, only for
attention transferring has the limitations of difficulty to optimize
the pararmeters in very deep networks [12], [38]. Therefore, we
opt to use activation-based attention loss.

2) Activation-Based Attention Loss: Basically, we can ap-
proximate the dimension of any active layer of a CNN as
M ×N × P , where M is the number of feature planes with
the spatial dimension of N × P . An activation map outputs a
spatial attention map, i.e., a flattened 2-D tensor defined over the
spatial dimensions N × P . It means it reduces the dimension of
the active layer by the means of a statistic of feature plane to
get the reduced map aka attention map [12]. In this work, the
activation-based spatial attention maps are generated as

C =
M∑

i=1

|Ti|w (3)

where Ti is the ith feature plane of tensor T [M ×N × P ],
which denotes the shape of current active layer, and C is the
obtained activation-based spatial attention maps. The absolute
value of the tensor T is taken because it helps to indicate about
the importance of a particular hidden neuron activation with
respect to the specific input. Therefore, by computing the sum
of the absolute values raised to the power ofw over theM feature
planes, a spatial-activation-based attention map can be generated
for the given tensor T . From (3), it is seen that the spatial
map C can control the discriminative property by changing the
weights to spatial location, which is related with the neurons
for high activation. The more power w is increased, the more
attention is given toward the spatial location that corresponds to
the neurons with the highest activation. We can also get attention
mapping over spatial locations that can carry multiple neurons
with high activation. Once the activation mapping is obtained,
the activation-based attention loss is calculated as

LAT = CE(PS , ytrue) +
β

2

∑

jεI

|| Y j
S

||Y j
S ||2

− Y j
T

||Y j
T ||2

||p. (4)

Here, Y j
S = vec(Cj

S), Y j
T = vec(Cj

T ) are the vectorized jth
activation-based attention maps for the SN and TN, respectively,
and p define the norm type. In this work, we have selected p = 2
to make the attention mapping as the l-2 normalized. β is the
hyperparameter to control how much attention can be transferred
from the TN to the SN.

3) Combined Activation and KD-Based Attention Losses:
We use the combined attention loss including both the activation
and KD-based attention losses, which is defined as

LAT+KD = LAT + LKD

=
β

2

∑

jεI

|| Y j
S

||Y j
S ||2

− Y j
T

||Y j
T ||2

||p

+ αT 2CE(PS , PT ) + (1− α)CE(PS , ytrue). (5)

The common term between (2) and (5) is incorporated as a single
term to compute the total loss due to activation mapping and KD.

4) Gradient-Based Attention Loss: In this work, we consider
to transfer the gradient-based attention loss from the deeper TN
to shallow SN. The gradient-based attention loss is given as

LGD = αT 2CE(PS , PT ) + (1− α)CE(PS , ytrue)

+
β

2
||JS − JT ||2 (6)

where JS and JT is the gradient of the trainable activation
mappings of the SN and TN, respectively, i.e., JS = ∂YS

∂WS
and

JT = ∂YT

∂WT
.

Overall steps of the proposed method can be summarized as
follows.

1) Decide for a selected number of patches with different
patch sizes in source and target HSI regions.

2) Feed the source region into the wide residual TN for a
particular width and depth.

3) Pass the image through the three residual blocks of 4, 8,
and 16 filters with each block being repeated several times.

4) Use (3) to extract the spatial–spectral attention maps for
each block with w = 2 to get the high-, mid-, and low-
levels of attention maps.

5) Store these maps as nontrainable parameters for the TN
while training it.

6) Repeat steps 2) to 5) for the same image in case for residual
SN with the different combinations of depth and width to
get the spatial attention maps at different levels.

7) Load the nontrainable attention maps from the already
trained TN obtained in 5) and compare with the attention
maps of the SN in 6) while training the SN using (5) or
(6). The parameters of the pretrained TN are fixed in this
process.

8) For testing phase, find the performance measures by feed-
ing the randomly selected samples from the target regions
to the trained SN.

9) Find land-cover classification map, by using the whole
target region with the trained SN.

IV. EXPERIMENTS

In this work, we have employed Pavia city dataset [39],
which can resemble the shifting of pixel intensities between the
source and the target domains. This dataset uses the ROSIS-03
hyperspectral sensor with a spatial resolution of 1.3 m over the
city of Pavia, Italy. A total of 102 bands has been obtained within
the spectrum region between 430 and 860 nm. In this work,
for this urban setting dataset, four thematic classes have been
considered. The selected labels are buildings, roads, shadows,
and vegetation. For land-cover classification task, the natural
variation of vegetation produces a significant difference of the
spectral signatures of the given classes across the whole image.
Therefore, to account this difference, we have opted to split the
whole image into different source and target subregions. The
selected source subregion contains the patch of 172×123 pixels,
whereas the target one takes a larger patch of 350 × 350. Since,
the size of the source subregion is very small compared to the
target one; therefore, variation of the spectral signatures over all
the classes in the entire image cannot be fully represented. To get
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Fig. 2. Sample source and target subregions for the ROSIS image of the city
of PAVIA.

the information of the target subregions from such less number
of source subregions, domain adaption is required. The sample
source and target subregions of the ROSIS image is shown in
Fig. 2, which are almost exactly the same source and target
regions as shown in [19] and [20] and different from the source
and target regions in [13].

A. Experimental Settings

Each pixel in both target and source regions is normalized to
zero mean and unit variance. In total, 200 pixels are selected
randomly from each class in the source domain for training
the TN. Out of the 200 training pixels from each class, 85%
of them are used for training the model, and rest of them are
used for validation. Then, 200 × c pixels are selected randomly
in the target region for training and testing the SN, where c
represents the total number of classes. After testing the network,
the unknown regions are presented to the SN to generate the
knowledge about the unknown label in the image. The depth and
width of the TN are fixed as 28 and 10, respectively, whereas the
SNs depth and width are 16 and 2, respectively. We have selected
these size based on the typical WRN settings [36]. The number of
filter maps for the three groups of convolutional layers for both
the WRNs of TN and SNs are 4, 8, and 16. For optimization
process, stochastic gradient descent is used with exponential
learning rate decay starting from 0.1. We set the batch size to 16
with 200 epochs, weight decay of 0.05 in each trainable layer,
and all the weights are initialized from Gaussian distribution
with zero mean and unit variance. The values of T , α, and β
contributing to the attention losses are set to 2, 0.1, and 0.5,
respectively. First, the TN is pretrained with the source data.
Then, while the training the SN, the parameters of the TN are
fixed. The baseline is created after testing the TN, i.e., WRN on
the target region.

B. Results and Analysis

The performance of the proposed method is reported with
respect to the quantitative measures including OA, average

accuracy (AA), and kappa statistics [40]. OA shows the number
of correctly classified testing samples to the total number of
testing samples in the target regions. AA is the ratio of the sum
of the accuracy figures for each class to the number of classes
in the target regions. Kappa statistic estimates the agreement
between the classification results and the ground truth where full
agreement shows the complete alignment of the predicted results
with the ground truth while complete misalignment of the results
indicates the randomness is dominant in the label prediction. The
performance measures with respect to the compared methods
with different patch sizes are reported in Table I. The patch size
of 1× 1 denotes the spectral features of both the source and
target regions as in [13]. The label in this case are the labels
associated with each given pixel. In other patch size cases, the
label is decided based on the central pixel label of the given
patch. Since the DL network can extract features on a particular
width and depth, using convolution can perform spatial–spectral
learning altogether from a given region. It has been seen that
the proposed method improves the performance if we adopt
learning features jointly from both spatial and spectral domains.
Table I shows the results of the performance measures used in
this work with different testing regions for the TN or SN. Src-TN
represents training and testing data from the source region,
whereas Tgt-TN shows the performance of the TN network
trained in the source region but tested on the target region. These
results are included for creating the baseline for the proposed
method. Rest of the results demonstrates the performance of the
SN on the target region. The bold faced measures in Table I
shows the performance of the shallow SN after training the
transferred parameters from the deeper TN. We have used the
loss-activation-based mappings in (5) as the loss parameters to
produce this result. It has seen that the architecture deriving
features and labels from the 3× 3 patch size provides the best
performance measures as highlighted with underline in Table I.
It is obvious that after introducing the attention in the SN, the
performance of the proposed method has improved compared
to the case than without using the attention in the SN. It can
be seen that our proposed method with spatial–spectral features
outperforms the compared state-of-the-art methods in [19] and
[20]. These methods exploit traditional ML [19] and DL [20]
entities for DA, based on in-variance and representational nature
of the features, respectively. These methods are very useful
for extracting complex features; however, our proposed method
helps to produce not only more complex but also useful features
for the classification task. The attention mechanism nature of
the proposed method helps to locate and produce such kind
of features. Due to this structure of the proposed architecture,
better performances can be provided. In addition to the result
reported in Table I, we have also evaluated the performance
of shallow but wider SNs to see whether the introduction of the
attention helps improve their classification accuracy. The results
of different wider shallower SN with respect to the given TN
has been reported in Table II. It can be seen that as the network
becomes wider, the shallow network tends to perform better and
yield better estimates of performance measures than the original
shallow one (16 × 2 SN). Similar to the previous cases, in this
case, we also utilize the attention loss in (5). However, obtained
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TABLE I
DA CLASSIFICATION RESULTS FOR PAVIA DATASET (SRC:SOURCE, TGT:TARGET, PM:PROPOSED METHOD, W/ATT:WITH ATTENTION, W/O ATT:WITHOUT

ATTENTION) (TN: 28 × 10, SN:16 × 2)

TABLE II
DA CLASSIFICATION RESULTS FOR PAVIA DATASET WITH DIFFERENT WIDTH SIZE OF THE SN (SRC:SOURCE, TGT:TARGET, PM:PROPOSED METHOD,

W/ATT:WITH ATTENTION, W/O ATT:WITHOUT ATTENTION) (TN: 28 × 10, PATCH SIZE: 3 × 3)

TABLE III
COMPUTATIONAL COMPARISON FOR DIFFERENT CONFIGURATIONS

OF THE SN AND TN

improvement comes with some computational overhead. The
computational cost in terms of number of parameters and testing
time has been reported in Table III. All simulations are run on
a DL machine with 2 NVIDIA Titan RTX GPUs. It can be seen
that as the shallow network becomes wider the computational
complexity increases. However, we can still get a very high ac-
curacy comparing to state-of-the-art techniques by using fewer
parameters in the SN while getting attention from a very wide
and deep TN.

Fig. 3. Performance comparison of different attention losses as a function of
SN width (for SN depth of 16, and TN size of 28 × 10).

Moreover, we have also exploited attention losses due to
gradient activation equation in (6) and KD in (2) to show the per-
formance of the proposed attention transferring DL architecture.
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Fig. 4. Labels prediction of a sample target region. (a) Ground Truth. (b) Without attention transfer. (c) Activation-based attention. (d) KD-based attention. (e)
Gradient-based attention. (f) Activation+KD based attention.

As shown in Fig. 3, the activation-based attention outperforms
other comparing attention mechanisms, but gradient-based at-
tention performs very close to it. It is seen that introducing
various forms of attentions in the HSI domain can lead to
produce different attention maps for DA case. It also shows that
activation and gradient-based attentions carry more useful and
important information than that of full activations. Furthermore,
this result indicates the importance of transferring attention maps
in cases where spatial information is more important than that
of spectral domain. Intuitively from Fig. 3, we can also say
that activation and gradient-based attention mappings preserve
the most important spatial information of the source domain
captured by the neurons in the TN to enhance the abilities of
the SN to extract more useful features from the source domain,
and contribute to the improved performance of DA on the target
region.

The learning of the labels by the SN for a sample region
before and after introducing the attention mechanism is shown
in Fig. 4. The ground truth of the target region is presented in
Fig. 4(a). Following figures from Fig. 4(b)–(f) show the labels
learned by the different configuration of SN. Fig. 4(b) shows the
land-cover map obtained without using attention, and Fig. 4(c)–
(f) shows the results using the activation-based, KD, gradient,
and activation+KD-based attention, respectively. All the results
are produced with 3× 3 patches. It can be seen that the result
from using activation-based attention in Fig. 4(f) is closer to the
ground truth.

V. CONCLUSION AND FUTURE WORK

In this work, an attention-based DA for HSI classification
has been proposed. It has been shown that the proposed deep

transfer learning architecture outperforms state-of-the-art meth-
ods adopted for DA. In particular, a simpler student network with
fewer parameters and faster testing time can yield the perfor-
mance comparative to a deeper and wider teacher network. The
future work mainly involves investigating transferred parameters
to increase the overall classification performance in DA.
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