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Abstract—The surface soil moisture (SSM) products derived
from microwave remote sensing have a coarse spatial resolution;
therefore, downscaling is required to obtain accurate SSM at
high spatial resolution. An effective way to handle the strati-
fied heterogeneity is to model for various stratifications; however,
the number of samples is often limited under each stratification,
influencing the downscaling accuracy. In this study, a machine
learning-based geostatistical model, which combines various kinds
of ancillary information at fine spatial scale, is developed for spatial
downscaling. The proposed support vector area-to-area regression
kriging (SVATARK) model incorporates support vector regression
and area-to-area kriging by considering the nonlinear relation-
ships among variables for various stratifications. SVATARK also
considers the change of support problem in the downscaling in-
terpolation process as well as for solving the small sample size
in trend prediction. The SVATARK method is evaluated in the
Naqu region on the Tibetan Plateau, China, to downscale the
European Space Agency’s (ESA) 25-km-resolution SSM product.
The 1-km-resolution SSM predictions have been produced every
eight days over a six-year period (2010–2015). Compared with five
other downscaling methods, the downscaled predictions from the
SVATARK method performs the best with in situ observations,
resulting in a 24.4% reduction in root-mean-square error with
0.08 m3·m−3 and a 8.2% increase in correlation coefficient with
0.72, on average. Additionally, anomalously low SSM values, an
indicator of drought, had a record low anomaly in mid-July for
2015, as noted by previous studies, indicating that SVATARK could
be utilized for drought monitoring.
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I. INTRODUCTION

SURFACE soil moisture (SSM) is an essential hydroeco-
logical parameter for monitoring energy, water, and carbon

cycles [1], [2]. Continuous SSM at fine spatial resolutions pro-
vides crucial information for hydrological models, precipitation
forecasting models, land–atmosphere models, drought and flood
forecasting, and vegetation growth monitoring [3]–[5]. In gen-
eral, soil moisture is acquired by using in situ measurements
[6], including wireless sensor networks [7] and cosmic-ray soil
moisture observing system [8], which have helped overcome
the sparse sampling and poor dynamic limitations of traditional
in situ methods. These ground-based measurement methods
require suitable ground conditions and are limited to small
monitoring areas. With the development of active and passive
microwave remote sensing techniques [9], it becomes possible
and more convenient to acquire SSM information dynamically at
different spatiotemporal resolutions over large areas. A series of
SSM products derived from various satellite-based microwave
sensors has been released [10]–[12]. However, with spatial
resolutions of tens of kilometers, the current microwave-based
SSM products are limited to large-scale monitoring applications.
Most hydrological applications need a high-resolution SSM
product which would enhance the knowledge of the hydrological
processes at local scale [13]. In consideration of the spatial
representativeness and overall accuracy, the 1-km spatial res-
olution has become a common high resolution in many SSM
downscaling researches [13], [14].

Many approaches have been developed for downscaling these
coarse-scale SSM products. Some of these benefit from ancil-
lary information that captures the variations of SSM at fine
resolution, combined with correlated variables [15]. There are
two main sources of ancillary variables—active microwave data
and visible/infrared data. Change detection-based downscaling
algorithms [16], [17] and Bayesian merging methods [18], [19]
have been proposed to downscale the coarse SSM by using
active microwave data. The active microwave technique is highly
sensitive to SSM and can even penetrate clouds; however, it is
greatly affected by soil roughness and vegetation. An alternative
downscaling approach is to use fine resolution optical/thermal
data. A number of downscaling algorithms have been developed
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to generate fine-resolution SSM, such as Disaggregation based
on Physical And Theoretical scale Change (DISPATCH) [20],
[21], trapezoid-based methods [22], [23], regression-based ap-
proaches [24], [25], and geostatistical methods [26], [27]. For
downscaling with optical/thermal data, the statistical correla-
tion between SSM and ancillary variables or physically-based
models have been explored [14].

Chauhan et al. [28] proposed an empirical polynomial fitting
downscaling approach using a polynomial regression at coarse
spatial resolution to obtain the fine-spatial-resolution SSM.
Since then, further polynomial fitting downscaling methods have
been presented by employing multiple data sources or different
ancillary parameters [29], [30], such as land surface temperature
(LST), vegetation information, brightness temperature, albedo,
evapotranspiration, and terrain indices. Meanwhile, geographi-
cally weighted regression, which takes into consideration local
characteristics [31], and machine learning algorithms have been
introduced into downscaling. Machine learning algorithms such
as random forest and support vector regression (SVR) perform
better in capturing the nonlinear relationships among variables
and have already been widely applied to enhance the spatial res-
olution of coarse-resolution images, including super-resolution
land cover mapping [32] and downscaling SSM [33], [34].
Some studies directly combined the fine-resolution trend and
coarse-resolution residual to predict the fine-resolution SSM
[34], [35]. Interpolation techniques such as bilinear interpolation
and kriging interpolation have been generally used in residual
analysis for approximating the actual fluctuations [37], [38].
Geostatistical methods with a focus on the spatial correlation
between variables have been increasingly applied in downscal-
ing [39], [40]. However, these downscaling approaches ignore
the change in supports before and after downscaling. Moreover,
due to the stratified heterogeneity [15], the geographical variable
would have patch-based variation in the variability, which needs
to capture the properties in each stratification (i.e., subregion).
The downscaling models for various stratifications established
in the scaling process are limited to the smaller samples captured
by the model. The SVR approach possesses a strong adaptability,
global optimization, and a high generalization ability, and is also
suitable for small samples of data [41], [42]. It could provide a
solution to the small sample size problem.

Considering all the previous machine learning algorithms, this
article proposes a new machine learning-based geostatistical
model that integrates SVR and area-to-area kriging (ATAK,
which changes the supports before and after the interpolation
[43]) to achieve spatial downscaling by fusing various ancil-
lary variables. The proposed support vector area-to-area regres-
sion kriging (SVATARK) can tackle the modifiable areal unit
problem, as well as model the complex nonlinear relationship
among variables in the downscaling process. The downscaling
approach was employed to predict 1-km-resolution SSM data
by downscaling ESA’s 25-km-resolution SSM product, climate
change initiative (CCI), with consideration of land cover types.
Downscaled SSM predictions were produced every eight days
over the Naqu region in the central Tibetan Plateau (TP), and
were evaluated using in situ SSM measurements. A comparison
of the SSM residuals obtained from the ATAK method versus the

residuals from bilinear interpolation and kriging interpolation
indicated advantages of the SVATARK downscaling approach,
which was also verified by comparing with two other statisti-
cal downscaling methods and a physically-based downscaling
model.

The remainder of the article is organized as follows. Section II
describes the downscaling methodology, including the down-
scaling strategy during the experiment. Both the study area and
the datasets are introduced in Section III. Section IV validates the
downscaled predictions and discusses the comparison results.
Finally, some conclusions are summarized in Section V.

II. METHODOLOGY

The proposed SVATARK downscaling method mainly con-
sists of both trend and residual models. In this section, we briefly
describe the downscaling model components SVR and ATAK
and the experimental downscaling scheme.

A. Support Vector Regression Method

Support vector machines (SVMs) have been widely applied
to classification and regression, which minimize both empirical
risk and structural risk to seek the best compromise between the
complexity and learning capability of a model [41], [42]. For
regression, SVR was first introduced by Vapnik et al. [44].

Let χ = {xi, yi; i = 1, . . . , n} be the training dataset with
ancillary vectors xi and corresponding targets yi. The input
space χ can be mapped into some feature space Φ using the
nonlinear function ϕ = χ → Φ. In the feature space Φ, the
training data may exhibit linearity, which can be approximated
by linear regression. The general form of the nonlinear SVR
function can be expressed as

f(ω, b) = ω · ϕ (x) + b (1)

where ω and b are the parameter vectors. The kernel function
K(xi, xj) = 〈ϕ(xi) · ϕ(xj)〉 can be used to calculate the inner
products in the feature space Φ. By introducing α−

i
and ᾱi in

the dual form to solve the optimization problem in SVR, the
regression function of the nonlinear SVR allowing the kernel
function is expressed as

f(xi) =

n∑
i=1

(
α−
k
− ᾱk

)
K (xi, xk) + b. (2)

More details about the nonlinear SVR can be found in Smola
and Schölkopf [45]. It is well known that the kernel function
and its hyperparameters have a great impact on the performance
of nonlinear SVR model. In our study, ε-SVR is used with the
Gaussian radial basis function as its kernel function. The relevant
penalty coefficient (C) and gamma (γ) can be optimized by
minimizing the model error. The SVR was implemented in R
“e1071” package [46]. The epsilon in SVR models was taken as
0.1, whereas the C ranged from 8 to 64 and γ ranged from 32
to 128. Owing to the stratified heterogeneity, the SVR models
are established for different land cover types, considering that
different underlying surfaces might influence the relationship
among SSM and ancillary variables.
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B. Area-to-Area Kriging Method

The area-to-area kriging is a case of areal interpolation, which
changes the supports before and after the interpolation [43]. A
linear combination of areal data is used to predict other areal
values. The target areal value z over a given unit uα is estimated
with the K neighboring observations at units ui

z (uα) =

K∑
i=1

λi (uα) · z (ui) (3)

where λi(uα) is the weight assigned to z(ui), which can be
calculated by minimizing the prediction error variance. The
corresponding kriging system is written as{∑K

j=1 λj(uα)·C̄(ui, uj)+μ(uα)= C̄(ui, uα), i=1, . . . ,K∑K
j=1 λj (uα) = 1

(4)
where μ(uα) is the Lagrange multiplier, C̄(ui, uj) and
C̄(ui, uα) are block-to-block covariance terms. The most im-
portant step for the implementation of ATAK is to obtain the
point support covariance for deriving the covariance terms. A
deconvolution procedure can be used to achieve the point support
covariance [47]. In our study, 25 nearest neighboring pixels were
employed to predict the target area of ATAK.

C. Support Vector Area-to-Area Regression Kriging

The proposed SVATARK is based on SVR for trend prediction
and ATAK for residual prediction. The residual is the differ-
ence between the observed value and the estimated value, such
as, coarse residual is defined as the discrepancy between the
original input 25-km SSM and aggregated 25-km SSM from
1-km trend predictions in this article. Let Z(Si) and Xk(Si)
be the target and k ancillary random variables at coarse pixel
Si. The nonlinear regression model between Z(Si) and Xk(Si)
can be obtained using (2), denoted by fSVR(·). Assuming that
the statistical relationship among variables is scale-invariant, the
trend component of the fine spatial resolution can be estimated
by using the coarse regression function

m (sj) = fSVR (xk (sj)) (5)

where xk(sj) represent k ancillary variables of fine pixel sj .
The residual component of the fine spatial resolution is

estimated using (3), interpolating the coarse residual with I
neighboring coarse pixels e(Si)

e (sj) =
I∑

i=1

λi (sj) · e (Si)

=

I∑
i=1

λi (sj) · [Z (Si)− fSVR (Xk (Si))] (6)

where λi(sj) are the weights assigned to I neighboring coarse
pixels for the prediction at fine resolution.

Combining (5) and (6), the SVATARK downscaling model
prediction z(sj) can be expressed as

z (sj) = m (sj) + e (sj) = fSVR (xk (sj))

+

I∑
i=1

λi (sj) · [Z (Si)− fSVR (Xk (Si))] . (7)

D. Downscaling Strategy

To illustrate the different performances of various down-
scaled predictions, five downscaling methods have been adopted
to compare with the proposed SVATARK, including support
vector regression kriging (SVRK), support vector regression
with interpolation (SVRB), K-nearest neighbors (KNN) [24],
geologically weighted regression kriging (GWRK) [25], and
DISPATCH [20]. The six downscaling methods were used to
downscale the CCI SSM product over 36 months (during May–
October, 2010–2015). LST, normalized difference vegetation
index (NDVI), land cover (LC), blue sky albedo (BSA), digital
elevation model (DEM), aspect, and slope were directly used as
ancillary variables in five statistical downscaling methods (i.e.,
SVATARK, SVRK, SVRB, KNN, and GWRK). As a physical-
based downscaling method, the DISPATCH relies on an SSM
proxy term to model the spatial variability of SSM over the
coarse-resolution pixels, where the soil evaporative efficiency
(SEE) indirectly estimated from LST and NDVI was employed
in this article [13], [48]. Considering the relatively low coverage
of daily remotely sensed observations, the eight-day composites
of all variables were employed by using average aggregation
to maintain stability and representativeness of each variable.
To deal with the missing value issue in remote sensing data
introduced by cloud cover, sensor failure, and so on, various gap
filling methods have been developed, and a spatial–temporal
prediction method [49] was adopted to replace the missing
values for LST and BSA in this article. Prior to performing the
downscaling algorithm, a bias correction step [40] was used for
remotely sensed SSM data to reduce the influence of the original
SSM product taking into account its discrepancy compared to
ground observations. The downscaling procedure is shown in
Fig. 1, including the downscaling and validation processes.

The entire implementation process of the downscaling strat-
egy is shown in following steps.

Step 1): Preparer the SSM data and ancillary variables at dif-
ferent spatial resolution. All of the input data are prepared
by resampling, aggregation, gap filling, and bias correction,
resulting in the 25- and 1-km variables with full spatial cover-
age for each eight-day period as well as the eight-day in situ
measurements within 1 × 1 km grids. The eight-day in situ
measurements could be obtained by averaging the in situ SSM
values within eight days, and then would be aggregated into
1 × 1 km grids.

Step 2): Establish regression models at 25-km spatial resolution
for five statistical downscaling methods. Three trend mod-
els [i.e., SVR, KNN, and geologically weighted regression
(GWR)] are established by employing the 25-km SSM and
ancillary variables, in which the SVR models are trained for
each land cover type [details in Fig. 2(b)] without two classes
(i.e., water bodies and permanent snow and ice).

Step 3): Predict SSM trend at fine resolution for five statistical
downscaling methods. The various regression models are ap-
plied to predict 1-km SSM trend part by using 1-km ancillary
variables.

Step 4): Calculate the coarse residuals for five statistical down-
scaling methods. The 1-km trend predictions are aggregated
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Fig. 1. Flowchart of the downscaling procedure in this study. (SEE was
employed in DISPATCH method.)

into 25 × 25 km, which is compared with coarse SSM values
for obtaining the coarse regression residuals.

Step 5): Predict SSM residuals at fine resolution for five sta-
tistical downscaling methods. The coarse residuals of SSM
are interpolated into 1 × 1 km regular grids by using ATAK,
kriging, and bilinear interpolation for different downscaling
methods, which correspond to SVATARK, SVRK, GWRK,
SVRB, and KNN, respectively.

Step 6): Generate the 1-km SSM and validate the downscaled
results. For five statistical downscaling methods, the down-
scaled SSM values can be acquired by combining the 1-km
trend and residual predictions. For DISPATCH method, the
downscaled SSM can be derived from the relationship be-
tween SSM and SEE (more details in [13] and [48]). The
above-mentioned six downscaled predictions are validated by
ground-measured SSM with four classical statistical metrics,
including correlation coefficient (R), mean absolute error
(MAE) (m3·m−3), root-mean-square error (RMSE) (m3·m−3),
and slope (SLOP) of linear regression between ground obser-
vations and downscaled predictions. In the experiments, SSM
values for water bodies and permanent snow and ice were not
included.

III. STUDY AREA AND DATA DESCRIPTION

A. Study Area

The study area is 3 × 3 ° ranging from 30.0 ° to 33.0 °N
and 90.5 ° to 93.5 °E in the Naqu region located in the center

Fig. 2. (a) Location, elevation and (b) land classification of the Naqu region.
The spatial distribution of the Naqu network and the coarse grid pixels are also
shown. (Network area, Station A, B, and C were used for dynamic analysis.)

of the Tibetan Plateau (TP), China. Due to the influence of
the South Asian summer monsoon, the annual precipitation is
approximately 500 mm in most of the central TP, with 75% of
precipitation events occurring between June and August [50].
Soil thawing and freezing take place around each May and
November, respectively.

As seen in Fig. 2, most of the study area has a main vegetation
type of high elevation alpine grasslands. The period of interest
is during the growing season (May 1–October 31) during 2010–
2015. In the following dynamic analysis, five ground stations
were employed, and three of them were identified as Station A,
Station B, and Station C. The network area covers all of the
ground sites.

B. In Situ Measurements

The Naqu network was established in July of 2010 for mon-
itoring SSM and soil temperature, and comprises of 57 ground
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Fig. 3. In situ SSM values during the available study period. (a) Daily case.
(b) Eight-day case.

stations. The ground stations provide SSM and soil temperature
at four different depths of 0–5, 10, 20, and 40 cm, with 30 min
and daily sampling intervals. The data are published by the
National Tibetan Plateau Data Center1 from August 1, 2010
to October 31, 2014. The available daily SSM data at depths of
0–5 cm were collected during the period of interest to evaluate
the downscaling performances. Not all in situ measurements
were available during the study period at the 57 ground stations
because some stations have been out of operation. The mean
and standard deviation (SD) values of in situ SSM are shown
in Fig. 3 during the available study period for both daily and
eight-day cases. For eight-day case, the in situ SSM values of
every station could be obtained by averaging the corresponding
daily SSM measurements within eight days.

C. Coarse-Resolution SSM Product

In 2012, the ESA CCI project for SSM was established to
fulfill global long-term SSM monitoring by merging multiple
available active and passive microwave-based SSM products
[51]. That same year, the first SSM product from the ESA CCI
(v0.1) was publicly released. By involving new sensors and
improving the merging scheme, the subsequent SSM dataset
has been updated over an extended spatiotemporal coverage.
The daily SSM product provides a consistent SSM record from
1978 to the present. The latest version (v04.4) of the ESA CCI
SSM product at depths of 0.5–5 cm was used in this study, with
a spatial resolution of 0.25 °.2 The SSM data were interpolated
and resampled to 25 × 25 km regular grids (see Fig. 2).

1[Online]. Available: http://data.tpdc.ac.cn/en/data
2[Online]. Available: https://www.esa-soilmoisture-cci.org

D. Moderate Resolution Imaging Spectroradiometer
(MODIS) Products

The MODIS is a key instrument onboard the Terra and Aqua
satellites. Fine-resolution ancillary variables LST, NDVI, BSA,
and LC information were collected from the Version 6 products
of Aqua MODIS.3. The daily LST and 16-day NDVI were
provided by MYD11A1 and MYD13A2 at 1-km resolution,
while the 16-day albedo and annual LC were provided by
MCD43A3 and MCD12Q1 at 500-m resolution. The BSA data
were calculated from shortwave radiation of MCD43A3, which
uses a linear combination of the black-sky and white-sky albedo
data, with weights of 0.34 for the former and of 0.66 for the
latter. The SEE data were calculated from the soil and vegetation
temperatures which are derived from MODIS LST and NDVI
[13], [48]. All MODIS products were reprojected consistently
with the ESA CCI product. Missing values were filled using
the aforementioned spatiotemporal prediction method to ensure
complete coverage. The LST and NDVI data were resampled
and aggregated into 1 × 1 km and 25 × 25 km regular grids.
The average aggregations of BSA, modal aggregations of LC
and SEE were achieved at both fine and coarse grids.

E. DEM Products

The DEM at 90-m resolution provided by the NASA Shuttle
Radar Topographic Mission (SRTM) within the study area was
employed. The void-filled DEM product was downloaded.4 The
DEM data were resampled into 1× 1 km and 25× 25 km regular
grids by using average aggregations. The basic terrain factors at
1 km and 25 km, including aspect and slope, were calculated
from the DEM information.

IV. RESULTS AND DISCUSSION

A. Downscaled 1-km SSM

Fig. 4 displays the 25-km SSM images in comparison with the
1-km downscaled SSM predictions by six different models (i.e.,
SVATARK, SVRK, SVRB, KNN, GWRK, and DISPATCH) for
May 1 of 2011, July 20 of 2013, and September 22 of 2015.
It can be inferred that the 1-km downscaled results provide
more detailed information and variations of the SSM spatial
distribution within each 25 × 25 km grid. The SSM data at
fine spatial resolution can improve the characterization of the
spatial variability of the SSM, which are useful for filling the
gap between low-spatial-resolution SSM satellite observations
and the needs of catchment-based or regional hydroecological
studies. In the downscaled SSM images, the maximum and
minimum values of SSM are shown in blue and red, respectively.
The blue areas are near the water bodies and in areas with
low elevation. Besides surface water, the negative correlation
with elevation is another primary factor affecting the spatial
distribution of SSM. The results from the proposed SVATARK
method showed spatial patterns that were similar to those of the

3[Online]. Available: https://lpdaac.usgs.gov/
4[Online]. Available: https://www.usgs.gov/centers/eros

http://data.tpdc.ac.cn/en/data
https://www.esa-soilmoisture-cci.org
[Online]. ignorespaces Available: ignorespaces https://lpdaac.usgs.gov/
https://www.usgs.gov/centers/eros
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Fig. 4. Comparison of 25-km SSM and downscaled SSM by six models for (a) May 1, 2011, (b) July 20, 2013, and (c) September 22, 2015. The green, purple,
pink, yellow, and steelblue histograms show the differences of downscaled results between SVATARK versus SVRB, SVRK, KNN, GWRK, and DISPATCH.

25-km SSM, while SVRK and SVRB produced smoother down-
scaled results, KNN displayed more areas with low and high
values, GWRK presented a more uniform distribution of SSM
with few extreme values, and DISPATCH generated blocking
artifacts in the boundaries of 25-km pixels and displayed more
areas with high values. The coherence of the ATAK predictions
ensures that the average of the disaggregated predictions is equal
to the original areal data, and confers the downscaled SSM
of SVATARK a continuous pattern. Visual comparison of the
downscaled SSM products confirmed that the failure of SVRK
to predict extreme SSM and the failure of SVRB to properly
capture high SSM were influenced by the kriging and bilinear
interpolations. The poor performances of KNN and GWRK
might be explained by the use of the nearby important point
values when predicting and the limitation of linear regression,
respectively. The linear model linked to SSM and SEE might
have influenced the performance of DISPATCH, where its block
effect was caused by the same coarse SSM value used in the
inner high-resolution pixels. SVATARK exhibits better results
in modeling extreme SSM (both maximum and minimum) than
the other two downscaling methods.

The difference histograms of the downscaled results between
SVATARK versus other five methods are also shown in Fig. 4.
The histograms of SVR-based methods do not indicate large dif-
ferences, while it shows obvious distinctions in KNN, GWRK,
and DISPATCH cases, perhaps because the same trend model
was employed in the first three downscaling methods. For
the SVRB case, the minimum differences range from −0.068
to −0.033 m3·m−3 and the maximums range from 0.027 to
0.036 m3·m−3, while the differences for SVRK, KNN, GWRK,
and DISPATCH span from −0.063 to 0.085 m3·m−3, from
−0.229 to 0.165 m3·m−3, from −0.784 to 0.843 m3·m−3, and
from−0.300 to 0.589 m3·m−3, respectively. Although only three
days of downscaled SSM predictions are presented in Fig. 4, it
is evident that the three SVR-based downscaling approaches

Fig. 5. Density plots of (a) SVATARK, (b) SVRK, (c) SVRB, (d) KNN, (e)
GWRK, and (f) DISPATCH, and (g) CDF of six downscaled predictions versus
25-km SSM during the study period.

generate fine-resolution predictions with similar numerical dis-
tribution, while the KNN, GWRK, and DISPATCH cases present
discrepancies, which are reflected in the similar or dissimilar
performances of the cumulative distribution functions (CDFs)
derived from 36-month data (see Fig. 5). In addition, as found
in the visual comparison, the CDFs and density plots of the
six downscaled predictions match well with those of the 25-km
SSM product (see Fig. 5). When comparing the differences of
the density curves between 25-km SSM and the six downscaled
SSM, SVATARK appears to have the closest match. Over the
study area, the downscaled SSM by SVATARK is quite similar
to the coarse SSM, both in spatial distribution and values.
The following validations further demonstrate its improved
performance.
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Fig. 6. MAE values of downscaled results on grasslands generated by
SVATARK with varying C and γ.

Moreover, the mentioned penalty coefficient C and gamma γ
of SVR model have great impacts on its performance, and would
also affect the performance of SVATARK. Considering that most
of the ground stations are located in grasslands, the SVATARK
method was implemented repeatedly for grassland type with
different C and γ to assess the influence of these two parameters
on the downscaled results. Both log2C and log2γ were defined
in a range from −4 to 10 with an interval of 1. Fig. 6 shows
the MAE values of downscaled results on grasslands generated
by SVATARK with varying C and γ. It is observed that the
MAE value becomes smaller as the two parameters increase
in the beginning, then tends to be stable or to decrease. The
model complexity and the learning ability would improve with
increased C and γ, which might lead to an initial higher accuracy
but subsequent lower accuracy with overfitting.

B. Validation With the In Situ SSM Measurements

The downscaled 1-km SSM of each algorithm were validated
using the in situ observations from 57 ground stations over
the Naqu region within the available days from 2010 to 2014.
Fig. 7 shows the comparisons between ground observations and
1-km predictions of SVATARK, SVRK, SVRB, KNN, GWRK,
and DISPATCH. It also displays the linear regression mod-
els between ground observations and downscaled predictions,
which owns a different intercept for each downscaling case. The
SVRK model produces more accurate predictions than those of
the SVRB-based, GWRK-based, KNN-based, and DISPATCH-
based SSM data with an RMSE value of 0.10 m3·m−3, a MAE
value of 0.07 m3·m−3, and a SLOP value of 0.70, but with
slightly smaller R value of 0.64. The KNN and GWRK models
generate a better R value of 0.69 than the SVRK and SVRB
methods. The DISPATCH model presents a better R value of
0.65 than the SVRK method. A smaller MAE seems to improve
the RMSE, but not always corresponds to higher SLOP and R
values. The comparison illustrates that the proposed SVATARK
approach significantly outperforms the other four downscaling
approaches with the smallest RMSE and MAE values of 0.08
and 0.06 m3·m−3, and the largest R and SLOP values of 0.72
and 0.71. The scatterplot from the SVATARK approach visually

gathers along the 1:1 line and has the lowest dispersion. Because
of the model prediction error and errors in input variables,
there are some discrepancies between the 1-km downscaled
results and in situ measurements. In addition, these discrepancies
were also due to the representativeness errors among different
resolutions, i.e., point values versus either 1 × 1 km regular
grid values or 25 ×25 km regular grid values, the different time
intervals in the temporal aggregation among various products,
i.e., daily remote-sensed SSM and 30-min in situ SSM, and the
impact of variables at different resolutions has been reduced by
the aggregation of variables into the same resolution. Although
the spatiotemporal prediction approach can help fill the missing
values of remote-sensed data, the errors from this process can be
propagated into the final results. In future research, more error
analyses, especially before downscaling, should be performed
to improve the downscaling accuracy. The improvements made
by SVATARK are illustrated by increases in R (0.06 or 8.2%
on average) and SLOP (0.08 or 12.8% on average), and de-
creases in RMSE (0.03 m3·m−3 or 24.4% on average) and MAE
(0.02 m3·m−3 or 22.9% on average). A general improvement
can be seen in Figs. 8–10.

Fig. 8 presents the comparisons between ground observations
and six downscaled results for each year. The CDFs of SSM
measured by in situ and downscaled results derived from six
different algorithms are displayed in Fig. 9. The performance
shown by the four statistical metrics appears inconsistent from
year to year when comparing the results of SVRK, SVRB, KNN,
GWRK, and DISPATCH methods. The other four results are
frequently worse than the SVRK’s during the five-year period.
In comparison with the other five downscaling models, the
SVATARK model produces the two highest statistical metrics
(i.e., R and SLOP) and the two lowest statistical metrics (i.e.,
RMSE and MAE). The CDF comparison indicates that the
downscaled results of SVATARK models show minimum de-
viations from the CDF calculated from the ground observations.

To explore the spatial distribution of the estimation errors,
the MAE values from 2010 to 2014 of the 57 ground stations
were calculated. For each ground station, Fig. 10 visualizes the
MAE values of the downscaled results using SVATARK, SVRK,
SVRB, KNN, GWRK, and DISPATCH with color bars, as well
as the mean value of these MAEs with color circles. It displays
the percentage of cloud-free days during available period in
Fig. 10(b). As seen in Fig. 10, the MAE values tend to be higher
in the upper left and middle part, likely due to higher topographic
relief and the lack of the corresponding original remotely sensed
observations, which could introduce errors from filling gaps.
The SVATARK model has the smallest MAE values at each
station, suggesting a better performance than the other five
methods. Further SSM analyses at each station are shown in
the next section. Although the above validations were all taken
at stations of grasslands, which is the main vegetation type in the
Naqu region, the SVATARK method could theoretically result
in accurate downscaling predictions from other areas, given its
ability to learn for small samples and the strong generalization of
SVR, as well as the coherence of ATAK. The proposed method
should be validated and applied to other land cover types in
future work.
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Fig. 7. Scatter plots between ground observations and downscaled 1-km SSM using (a) SVATARK, (b) SVRK, (c) SVRB, (d) KNN, (e) GWRK, and (f) DISPATCH
during available period also displaying the linear regression models between ground observations and downscaled predictions.

Fig. 8. Comparison metrics between the ground observations and six down-
scaled results from 2010 to 2014: (a) RMSE; (b) MAE; (c) R; and (d) SLOP.

In addition to the spatial representativeness errors, there
is a bias between the coarse SSM product and the in situ
observations. The ground-based measurements and original
coarse SSM product have different observation intervals, with
30 min and daily, respectively. The eight-day in situ and coarse
SSM could be derived by averaging all available corresponding
observations within eight days. The different time intervals in

the averaging process would also cause the bias between the
eight-day averaged remote-sensed and in situ SSM, which would
also be propagated into the 1-km downscaled results. Compared
with the eight-day averages of ground observations, the eight-
day coarse SSM product owns an RMSE value of 0.13 m3·m−3,
a MAE value of 0.10 m3·m−3, and with very small SLOP and R
values of−0.014 and−0.03. To reduce the negative effect of the
bias in the downscaled prediction accuracy, in this experiment,
the mean difference between the eight-day averaged 25-km SSM
values and the point supports was removed before downscaling.
It narrowed the discrepancy between the input coarse SSM and
ground observations, with smaller RMSE and MAE values of
0.12 and 0.09 m3·m−3. Because of the same input variables
in each downscaling method, it would not generate significant
impact on the relative performances among various downscaled
results. From a validation perspective, the 1-km downscaled
SSM results are at an obvious advantage compared to the 25-km
SSM with the improvements of all statistical metrics, especially
for the 1-km SSM derived by SVATARK, which has a decrease
of 33.3% in both RMSE and MAE. Considering that all the
ground stations were installed on grasslands, this bias step was
used without consideration of the differences resulting from
topography and LC types. However, the remotely sensed product
might perform differently over various surfaces and therefore,
incorporation of the impact of LC types may be beneficial for
improving the bias correction accuracy. In addition, how to
determine whether bias needs to be applied to all coarse grids is
still a problem, if the SSM can be effectively observed at some
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Fig. 9. CDFs of the ground observations and downscaled 1-km SSM using
(a) SVATARK, (b) SVRK, (c) SVRB, (d) KNN, (e) GWRK, and (f) DISPATCH
during available period. (The ground observations and downscaled results are
marked as Obs and Pred, respectively.)

grids. Moreover, the employed average values of SSM within
eight days in this article could reflect the average state of SSM;
however, it would ignore the rapid changes of instantaneous
SSM.

C. Dynamic Analysis of Downscaled SSM

The downscaled maps and validation analyses described in
this study illustrate that the downscaled SSM results generally
show a good performance compared with ground-based mea-
surements, and their spatial pattern follows those of the coarse
SSM. In this section, we investigate whether the fine-resolution
SSM predictions from the six downscaled methods also cap-
ture the temporal dynamics of ground-based SSM observations
during the study period. Fig. 11 shows the temporal variations
of 1-km downscaled SSM derived from all six downscaling
methods and in situ observations at five ground stations (in
Figs. 2 and 10) and at network scale (i.e., network area in
Fig. 2). There is a significant seasonal variation in the time series,
generally reaching its highest value in August. By using average
aggregation within the network domain, the aggregated values
of ground measurements and 1-km SSM were obtained. Two
statistical metrics, MAE and RMSE, were used to evaluate their
performance. The MAE and RMSE values of these time-series
SSM seem better than the comparisons results of the scatter plot
in Fig. 7, which might be caused by the varying performance of
downscaled results at different stations.

In the proposed SVATARK downscaling method, the values
of MAE and RMSE at all five stations range from 0.033 to
0.065 m3·m−3 and from 0.041 to 0.076 m3·m−3, respectively,
where SVATARK is found to be more accurate than the other
five approaches. From the time series comparisons at different

Fig. 10. Spatial distribution of (a) MAE between ground observations and six
downscaled results and (b) mean value of different MAE derived by six methods
for each station and the percentage of cloud-free days during the available period.
(The lowest and highest average MAE for Station D and Station E, respectively,
were employed to analyze temporal characteristics.)

ground stations [see Fig. 11(a)–(e)], the downscaled SSM pre-
dictions, especially of the SVATARK method, show temporal
consistency with the in situ observations, although there is a
significant bias between them. This indicates that the down-
scaled SSM of SVATARK can describe the temporal changes of
the in situ SSM. The discrepancies are mainly because of the
large-scale differences between the 1-km predictions and point
observations. For five statistical downscaling methods, the best
performance was obtained at Station D with the lowest MAE
of all stations, which did not happen in DISPATCH. It might
be due to the different ancillary variables employed in statisti-
cal and physical-based downscaling methods, respectively. The
variation in performance of various stations might be the result
of the station’s location, which would affect the soil type and
have different accuracy of the input variables. The ranges of
values for the downscaled SSM for almost all are less than the
ground measurements’ range. This matches well with the fact
that the range of SSM decreases dynamically from fine to coarse
scales [34]. Areal-averaged downscaled SSM agrees well with
the ground-based SSM in Fig. 11(f). However, the discrepancies
between the six downscaled SSM and ground observations in the
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Fig. 11. Time series of the 1-km SSM and in situ observations at the five selected ground stations and network areas: (a) Station A; (b) Station B; (c) Station C;
(d) Station D; (e) Station E; and (f) Network area.

network area seem smaller than those of the stations, particularly
for the SVRK, SVRB, KNN, GWRK, and DISPATCH methods,
perhaps due to the comparisons at the same scale for avoiding
scaling differences in the validation. The errors associated with
upscaling the SSM from the 1-km and point scale to the network
scale require further research and exploration. Note that a better
performance of the downscaled SSM is also obtained by using
SVATARK.

Soil moisture is a direct indicator of agricultural drought. In
situ observations of SSM may not be able to assess drought
conditions in a region, whereas the 1-km downscaled predic-
tions could provide powerful data support. A simple relative
drought analysis was attempted using the downscaled SSM
of SVATARK. The pixels with anomalously low values in the
downscaled images were counted by comparing the pixel values
on the same date every year. The mean and standard deviation
were calculated for each pixel. Pixels with a larger absolute value
than the standard deviation were considered to be in a drought
condition. The main idea behind this assumption is to find the

Fig. 12. Proportion of pixels with relatively smaller SSM in downscaled
images of SVATARK during study period.

pixel which has a low value and relatively large variation in SSM
over the same period. Fig. 12 shows the proportion of pixels
with relatively smaller SSM in the downscaled images using
SVATARK during the study period. Several proportions are
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larger than 0.30, meaning that 30% of the 1 × 1 km pixels in the
corresponding date have abnormally low values. The proportion
values suddenly increase in mid-July 2015, indicating relative
drought conditions. These results are consistent with Zhu et al.
[52]. Although the SSM at 0–5 cm depth might have a limited
ability to reflect soil drought without deep soil moisture, this
preliminary attempt demonstrates that the proposed downscal-
ing method could be used in drought remote sensing monitoring
applications for a large area. The downscaled SSM could also
help understand how often and where these droughts occur. In
this study, only four types of ancillary variables were employed,
but rainfall (including its infiltration and runoff) also affects SSM
variations, and should be explored as an ancillary variable in the
downscaling process in future work.

V. CONCLUSION

In order to transform coarse-resolution remote sensed data
to a fine resolution, we proposed a machine learning-based
geostatistical downscaling method in this study. The proposed
SVATARK relies on SVR that expresses the nonlinear relation-
ship between target (i.e., SSM) and ancillary variables (i.e., LC,
LST, NDVI, BSA, and terrain factors), and utilizes ATAK to
achieve the predictions on changed supports. SVATARK was
compared to the benchmark methods SVRK, SVRB, KNN,
GWRK, and DISPATCH to obtain 1-km predictions from a 25-
km SSM product over the Naqu region during a 36-month period
from 2010–2015. The downscaled predictions were validated
using ground stations. In general, the adopted statistical metrics
indicate that the SVATARK downscaling approach obtained the
greatest accuracy, and the dynamic analysis of 1-km SSM at
five different stations reached the same conclusion. The com-
parison among the aggregated SSM values for network area also
shows the high potential of our proposed method for producing
fine-resolution SSM images. Moreover, the SVATARK-based
downscaled predictions were extended to monitor the relative
drought by capturing the abnormally low SSM, which might be
further generalized with systematic analyses. The SVATARK
method is entirely general, and it can be employed to downscale
or even upscale other continuous variables owing to the changes
in the supports in ATAK. In the future work, other machine
learning or deep learning methods, such as random forest or
neural network algorithms, could be applied in trend predictions
and could be integrated with ATAK for spatial scaling.
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