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Airport Detection in SAR Images Via Salient
Line Segment Detector and Edge-Oriented
Region Growing

Jun Tu", Fei Gao"”, Jinping Sun

Abstract—Airport detection in synthetic aperture radar (SAR)
images has attracted much concern in the field of remote sensing.
Affected by other salient objects with geometrical features similar
to those of airports, traditional methods often generate false de-
tections. In order to produce the geometrical features of airports
and suppress the influence of irrelevant objects, we propose a novel
method for airport detection in SAR images. First, a salient line
segment detector is constructed to extract salient line segments in
the SAR images. Second, we obtain the airport support regions by
grouping these line segments according to the commonality of these
geometrical features. Finally, we design an edge-oriented region
growing (EORG) algorithm, where growing seeds are selected from
the airport support regions with the help of edge information in
SAR images. Using EORG, the airport region can be mapped
by performing region growing with these seeds. We implement
experiments on real radar images to validate the effectiveness of
our method. The experimental results demonstrate that our method
can acquire more accurate locations and contours of airports than
several state-of-the-art airport detection algorithms.

Index Terms—Airport detection, line segment detector (LSD),
region growing, synthetic aperture radar (SAR).

I. INTRODUCTION

YNTHETIC aperture radar (SAR) can achieve all-day and
S all-weather imaging of the earth’s surface [1], [2]. Cur-
rently, target detection in SAR images has received extensive
concern in the field of remote sensing [3]. Airports are valuable
traffic facilities, and the detection of airports is widely applied
in many practical applications, such as airport navigation, aerial
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reconnaissance, etc. Therefore, it has received considerable at-
tention on how to precisely extract the airport region from SAR
images.

There are four major types of methods for airport detection in
remote sensing images: 1) line-based; 2) image segmentation-
based; 3) saliency-based; and 4) deep learning-based. The line-
based methods focus on the edges of airport runways, where
salient line features are significant. They generally use Hough
transform, Radon transform or line segment detector (LSD) [4]
to acquire line segments. The line segments classified as runway
lines are then clustered to derive the airport regions [5]-[9].
However, these methods are prone to generate irrelevant line
segments because of the multiplicative speckle noise and the
complex scenes in SAR images. Therefore, line-based methods
generally result in more false alarms. The image segmentation-
based methods mainly utilize textures [10]-[13], structural fea-
tures [14], and intensity information of airports [15]. The com-
plex feature extraction process and pixel-level analysis of these
methods lead to high computational costs and poor practicabil-
ity. The saliency-based methods generally design saliency cues
based on the detection results of line segments [16]-[20], image
frequency [21], or superpixel analysis [22]-[24] to highlight the
airport regions. Since airports appear quite different from the
surroundings in SAR images, the saliency-based methods are
able to locate the airport regions according to above saliency
cues. However, large-scene SAR images contain complex ob-
jects like rivers, which may be as salient as airports. Hence, how
to distinguish the airports from other salient objects becomes
a very critical and difficult problem. In recent years, with the
rapid development of deep learning theories [25], [26], many
methods based on convolutional neural networks (CNN) have
been applied to airport detection in optical images [27]-[32].
The CNN-based methods do not require a prior information or
handcrafted airport features for detection. Nevertheless, deep
learning-based methods require a certain number of image sam-
ples for supervised training [33]. In some cases, it is difficult
to obtain sufficient large-scene SAR image samples that cover
airports for training an effective network.

In various methods of airport detection, LSD is generally
applied to highlight airport geometrical features. The internal
design of LSD is complicated and can be roughly divided into
four parts [4]. In the first part, the image gradient and the local
orientation are computed pixel by pixel, where the local orien-
tation is defined as the orientation perpendicular to the gradient
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orientation. Then, all the pixels are sorted according to their
gradient magnitudes. In the second part, the sorted pixels are
used as initial seeds, and a region growing algorithm is applied to
forming line support regions according to the local orientations
and these seeds. In the third part, line support regions are
approximated with rectangles. Finally, for each rectangle, a noise
model is constructed and the number of false alarms (NFA) is
calculated. The rectangles with low NFA are regarded as true
line segments. However, traditional LSD is designed for optical
images and cannot be directly applied to SAR images.

For applying LSD in SAR images, some researchers have
proposed improvement methods [20], [34]. Traditional LSD uses
the difference between neighboring pixel values to compute the
gradient. Nevertheless, the differential gradient is not applicable
for SAR images because it will be greatly affected by inherent
multiplicative noise. Liu et al. [20] used the logarithmic gradient
to construct an improved line segment detector (ILSD), but there
are still a NFA in the detection results. Besides, the assumptions
about the noise model in traditional LSD are completely unsuit-
able for SAR images. Due to the presence of speckle noise, it is
usually necessary to perform initial filtering on SAR images.
It implies that strong structural dependencies exist between
neighboring local orientations [34]. In order to construct an LSD
suitable for SAR images, LSDSAR is proposed in [34]. It uses
a pure speckle noise image to calculate the noise model of the
local orientations. A first-order Markov chain is introduced to
model the distribution of local orientations at neighboring pixels
in LSDSAR, which performs well. However, LSDSAR aims to
detect all the line segments in SAR images. For the applications
in airport detection, it is only desirable to detect salient line
segments related to airport runways. Consequently, it is worthy
of further researching to construct an effective LSD for SAR
images that highlights the geometrical features of airports.

To solve the problem of high false alarms of traditional LSD
algorithms in airport detection, a salient line segment detector
(SLSD) based on LSD and gradient by ratio (GR) [35] is pro-
posed in this article. On this basis, we combine the line-based
and the image segmentation-based methods to propose a coarse-
to-fine detection model, which can precisely detect airports from
large-scene SAR images in an unsupervised way. First of all, to
highlight the geometrical features of airports, SLSD is used to
extract the salient line segments in the SAR images. Next, we use
line segment grouping (LSG) algorithm in [20] to group salient
line segments and obtain the airport support regions. Moreover,
edge detection and foreground extraction are performed on the
airport support regions. All pixels from the foreground nearby
the edges are sorted by gradient to produce a list of seed points.
Finally, all seeds with high gradients are tested recursively and
the airport region is mapped by performing region growing with
these seeds, according to the features of airports like scattering
intensity in SAR images. The main contributions of this article
are summarized as follows.

1) A novel SLSD is proposed to extract salient line segments
in SAR images. This method can suppress line segments, which
are not related to the airports and thus effectively highlight the
edges of airport runways. Moreover, a line segment saliency is
proposed and combined in our method to help extract the edges
with salient line features.
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2) An effective edge-oriented region growing (EORG) algo-
rithm is designed to extract the airport contours. This algorithm
makes full use of the intensity information and edge features of
the airports in SAR images, which helps produce precise detec-
tion results. Furthermore, the designed seed selection method
facilitates the algorithm to achieve high performance with ac-
ceptable computational complexity.

3) The proposed method is a coarse-to-fine detection model
as a whole. The airport support regions are acquired by coarse
detection first, and then the airport contours are extracted by
fine detection nearby those regions. Therefore, this method
avoids detailed pixel-wise analysis of the entire large-scene SAR
images and limits the computational complexity as a result.

The remaining parts of this article are organized as follows.
Section II introduces the proposed method in detail. In Sec-
tion III, our method is evaluated on real SAR images. Finally,
Section IV concludes this article.

II. METHODOLOGY

This section details the flow of our proposed method. Fig. 1
shows the flowchart. The method consists of three parts: SLSD,
airport support region acquisition, and EORG. First, SLSD
is constructed for the input image to extract the salient line
segments and utilize the linear features of the edges of the
airport. Second, the salient line segments are grouped by the LSG
algorithm to obtain the airport support region. Finally, according
to the edge strength map and the dark foreground image of the
airport support region, the EORG algorithm is designed to obtain
the seeds, which are combined with the input image to precisely
extract the airport contours. Next, we will introduce the three
parts of our method, respectively.

A. Salient Line Segment Detector (SLSD)

The detection of line segments in SAR images can highlight
the edges of the airport runways. However, the detection results
of existing methods generally contain a large number of line
segments, which are not related to airports, resulting in many
false alarms. In order to suppress the influence of irrelevant linear
objects and reduce false alarms of line segments, we propose a
novel SLSD.

As shown in Fig. 1, SLSD is mainly composed of four
parts: edge detection, coarse LSD, line segment saliency map
acquisition, and fine adjustment of line segments. First of all,
GR is used to obtain the edge strength map of the input image.
GR is essentially a ratio of exponentially weighted averages
operator with the logarithmic gradient [36]. It is effective for
detecting multiscale edges in SAR images. Given a point (a, b),
the GR is defined as
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where I(a + x,b+ y) is the gray level value of the pixel (a +
x,b+ y) in the image I. G,,  is the edge strength, which is
defined as the gradient magnitude here. G and G are the
horizontal and vertical gradient calculated by GR, respectively.
« is the exponential weight parameter. It can be seen from (1)
that when « is small, the edge strength is mainly affected by the
gray level values in a small window; when « is large, the edge
strength is mainly effected by the gray level values in a large
window. Consequently, « is related to the scale of edges.

Second, an enhanced LSD is constructed for coarse LSD. In
view of the effectiveness of LSDSAR in detecting line segments
in SAR images, this part is constructed based on LSDSAR.
However, LSDSAR uses GR to compute the local orientations
at pixels. For the local orientation at a pixel, GR utilizes the
intensity values in a large mask, which contains not only the
eight-connected pixels but other pixels farther from the target
pixel. It does not match the region growing with the local
orientations in the eight-connected neighborhood in LSDSAR.
Therefore, on the basis of LSDSAR, we improve the calculation
method of local orientations for more accurate LSD. In this
article, local orientations are only calculated from 2 x 2 masks.
We define local orientations similar to [20] as follows:

o (Hes b
Gx(a,b)—log( I(a,b) + I(a,b+1) )

- (a,b+1)+I(a+1,b+1)
Gﬂmw—lg( I(a,b) + I(a+1,b) )
O(a,b) = arctan ( ?c;bl)) @)

Flowchart of the proposed airport detection method. It consists of three parts: SLSD, airport support region acquisition, and EORG.

where G (a, b) and Gy (a, b) are the horizontal and vertical gra-
dients calculated from a 2 x 2 mask, respectively. O(a, b) is the
local orientation. It should be noted that the gradient magnitudes
are not calculated based on G, (a, b) and G (a, b), but using GR
of LSDSAR. In the usual LSD, the gradient magnitudes are only
used for the selection of seeds in the region growing process
for the acquisition of line support regions, whereas the local
orientations are related to the region growing rules. Therefore,
both of them do not need to rely on the same calculation method.
The rest of the enhanced LSD is the same as LSDSAR, which
can refer to [34]. The enhanced LSD is applied to the input
image to obtain a set of line segments, which are called coarse
line segments.

Third, the line segment saliency map is obtained according
to the coarse line segments. For a rectangular line segment, the
line segment saliency is defined as

LSS = —log(NFA) 3)

where NFA is the number of false alarms associated with a
rectangle. Specifically, a pixel in a rectangle is aligned if it has
the same local orientation as the rectangle, up to a given angle
tolerance, which is generally set to 7 /8. Not aligned pixels are
regarded as the false alarms. For a rectangle, we write n for its
total number of pixels and £ for its number of aligned pixels. We
consider a rectangle with size n in a pure speckle noise image
and write kg for the number of aligned pixels in this rectangle.
Then, the NFA is calculated by

NFA = N - P(ko > k) %)

where Nr is the total number of possible rectangles. For an
image containing M x N pixels, Nr is generally derived by



TU et al.: AIRPORT DETECTION IN SAR IMAGES

11- (M N)®/? [4]. The probability P (ko > k) is computed ac-
cording to the Markov chain assumption for local orientations
[34]. Therefore, the smaller the NFA value, the higher the
possibility that the rectangle is a meaningful line segment. To
make more detailed use of the NFA values of line segments, we
compute the line segment saliency based on them to highlight the
edges with linear airport runways. Consequently, the definition
of the line segment saliency in (3) is reasonable. The line segment
saliency map consists of the linearly normalized LSS of all
coarse line segments.

Finally, the coarse line segments are fine adjusted according
to the edge strength map, the coarse line segments and the line
segment saliency map. Specifically, the edge strength map is
binarized according to the line segment saliency map to extract
the edges with salient line feature. For each coarse line segment,
if the center point of which is not in the edges with salient
line feature, the segment is removed. Therefore, we remove the
coarse line segments, which have small saliency and obtain the
fine line segments. The binarization threshold is calculated by

w=1+px (1 — QLSSnUrm)
BWy = w x BWyy )

where LSS, is the normalized LSS. w is the binary weight.
BW,s, is the binarization threshold directly obtained by the
standard Otsu method [37]. BWy, is the final binarization thresh-
old. (3 is the regulatory factor that regulates the influence of the
line segment saliency on the edge extraction. When 3 equals to
zero, the line segment saliency has nothing to do with the edge
extraction. The larger the factor /3, the higher the influence of
the line segment saliency on edge extraction.

B. Airport Support Region Acquisition

To improve the accuracy of airport detection and reduce the
time complexity of the algorithm, it is very necessary to obtain
the airport support region to roughly locate the airport. We use
the LSG method in [20] to obtain the airport support region after
the line segments are acquired using the SLSD. Specifically, first,
the line segments are sorted by area in the descending order.
Moreover, for the line segments which are the neighbors of each
other and are parallel or vertical to each other, they are clustered
into the same group [20]. The bounding rectangle of each group
of the line segments is the candidate airport support region.
Then, we apply the nonmaximum suppression to the candidate
airport support regions to reduce overlapping rectangles. Finally,
according to a priori hypothesis that there is only one airport in
a SAR image, the rectangle with the largest sum of saliency
of internal line segments is determined as the airport support
region.

C. Edge-Oriented Region Growing

Since LSD generally cannot detect complete airport contours,
the airport support region can only cover part of the airport.
Therefore, the airport support region acquisition is essentially
a rough location of the airport. Therefore, it is necessary to
design an effective algorithm to conduct more precise detection

317

for airports. Because the scattering intensity of the airport is
evenly distributed, the region growing algorithm is suitable for
airport detection. In addition, although the airport support region
does not fully cover the airport, it can be used as a candidate
region for the selection of the seeds for region growing in the
airport. The full coverage of the airport region can be finally
achieved based on the seeds in this limited candidate region.
Therefore, we design an algorithm to select seeds from the
airport supportregion for airport detection. The selection method
of seeds directly affects the detection performance. On the one
hand, if the number of seeds is too small, there will be too many
fractures in the detection result. On the other hand, if the number
of seeds is too large, the calculation will take too long to meet
the real-time requirements in practical applications. To balance
the contradiction between performance and efficiency, an EORG
algorithm is proposed in this article. The procedure is shown in
Algorithm 1.

The input of this algorithm is the airport support region R,
the SAR image I, and a status variable Status. The return is
the airport detection result OutR. The status variable Status
records the usage of the seeds. When a seed appears in the
result of any iteration of region growing, it is updated as used.
Specifically, first, GR is used to perform edge detection on the
airport support region to obtain the edge strength map gradient.
Second, on one side, the edge strength map is binarized by the
Otsu method to obtain the edges of the airport support region; on
the other side, the airport support region is binarized to obtain
the dark foreground region dark. For the latter, the binarization
threshold is taken as the average gray value of the largest dark
connected region after Otsu binarization. Next, all the pixels in
the four neighbors of the edges and in the dark foreground region
at the same time are added to the set of candidate seeds seeds,
which is written as

seeds = P, U Py (6)

where P, is the pixels in the binarized edge strength map and
Py is the pixels in dark. The seeds are sorted in descend-
ing order according to the edge strengths to obtain the seed
list OrderedListSeeds. Note that this sort is pseudoorder-
ing, which means dividing seeds into 1024 bins in sequence,
rather than strictly sorting all seeds [4]. No sorting is required
inside each bin, thus the calculation time is saved. At the
same time, to reduce the computational burden without signifi-
cantly affecting the performance of the algorithm, the seed list
OrderedListSeeds only retains the first Ny, bins. Then, the
average gray difference 7 of adjacent pixels is calculated as the
gray tolerance of region growing. For an airport support region
of size N x M pixels, 7 is defined as

1
T = —
N, 2
1<iy, i <N
1<j1,j2<M

|R(i1, 1) — R(i2, j2)| @)

where 0 < |i1 —i2|, |j1 —jg‘ <1 and |i1 —i2| + |j1 —j2| #*
0. R(i1,71) and R(i2, jo) are the gray value of adjacent pixels in
the airport support region. IV, is the number of pairs of adjacent
pixels. Subsequently, the seeds are selected in sequence from
the seed list for region growing, in which the pixels with similar
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Algorithm 1: Edge-Oriented Region Growing.

Input: airport support region R, SAR image 1,
a status variable Status

Output: airport detection result OutR

1 gradient «— GR(R)

2 dark < Binarization(R)

3 seeds «— SeedRegion(gradient, dark)

4 OrderedListSeeds < OrderedByGradient(seeds,

gradient)
5 7 « GrayTolerance(R)
6 foreach pixel P € OrderedListSeeds do

7 if Status(P)= NOT USED then
38 r < GrayConnected(/, P, T)
9 if S, < Sk then

10 if (r € Neighbor(OutR)) A
11 (Irav — Oav| < 7) then

12 | Add r — OutR

13 else if [, > [p X 2 then
14 | OutR —r

15 else if (r,, < O4) A (I, > 1p/2)then
16 | OutR —r

17 end

18 Update(Status)

19 end

20 end

21 end

22 OutR « MedianFilter(OutR)

gray values are added to one set. The newly grown region r is
continuously compared with the detection result Out R to obtain
the final detection region. Finally, the detection region is median
filtered to acquire the final airport detection result.

When we compare the newly grown region 7 and the current
detection result Out R, we mainly rely on the texture feature,
structural feature and intensity information of the airport in the
SAR image. First, on the texture feature, the airport has great
intensity homogeneity. We use the gray entropy of region to
measure the intensity homogeneity. The entropy of a region is
calculated by

255
S=-Y pilogsp
i=0

where ¢ is the gray level and p; is the probability of the gray level
1 in the region. When the entropy of the newly grown region 5. is
less than the average entropy of the entire airport support region
SR, the comparison in the next step is executed. Afterward, if
the absolute difference of the mean gray value of new region
ryy and the mean gray value of current detection result O,, is
lower than 7, they are judged as similar gray values. If the new
region is adjacent to the current detection result and the gray
values are similar, the new region is added into the detection
result. This step can merge the airport fragments divided by
a few strong noise. Furthermore, on the structural feature, the
length and aspect ratio of the airport are high. If the length of
the new region [, is greater than twice the length of current

®)

TABLE I
DETAILED INFORMATION OF DATASET

Image Location Size ressg ;Elt?(lm Poﬁggzuon
#1 Hebei Shahe 1945%x2160 4m \'A%
#2 Shanxi Pucheng 2000x2229 2m \'A%
#3 Guangdong Shantou 969x2344 4m \'AY%
#4 Sichuan Guanghan 1842x1024 1.5m HH
#5 Sichuan Mianyang 899x1901 2m HH
#6 Beijing Daxing 2238x%2233 10m HH
#7 Beijing Nanyuan 2233%2401 Sm HH
#3 Beijing Nanjiao 1181x2179 10m HH

detection result o, then the detection result is directly replaced
with the new region. In addition, on the intensity information,
the scattering intensity of the airport in the SAR image is quite
low, which is presented as the dark brightness. Therefore, if the
new region is darker and the length of new region /,. is similar to
the length of current detection result /o, then the detection result
is directly replaced with the new region. Here, two lengths are
judged as similar when lp /2 < I < lp % 2.1In the end, after all
seeds are utilized, the detection result is smoothed by the median
filtering to obtain the final airport detection result.

III. EXPERIMENTS

In this section, the dataset and the evaluation metrics used
in our experiments are introduced first. Subsequently, the LSD
results of different LSDs are compared. Then, the airport contour
detection results and the airport location detection results of
different methods are compared in detail. At last, we discuss
the parameter settings and the computational efficiency of dif-
ferent airport detection methods. For LSD, three methods are
selected for comparison with SLSD in this article. They are
traditional LSD [4], ILSD [20], and LSDSAR [34], respectively.
In the part of the comparative experiments for airport detection,
we choose four comparison methods, namely spatial-frequency
visual saliency (SFVS) [21], saliency-oriented active contour
model (SOACM) [23], LSG [20], and multilayer abstraction
saliency (MLAS) [24]. Among these four methods, except that
LSG can only obtain the airport location detection results, the
other three methods can all obtain the airport contour detection
results.

A. Dataset and Evaluation Metrics

The dataset used in this article contains eight real SAR images,
whose detailed information is shown in Table I. The ground truth
(GT) is manually labeled to precisely depict the airport contours
according to the Google Earth images.

For the LSD results, the ratio between the number of the line
segments related with the airport and the irrelevant line segments
is used to evaluate the performance of the algorithms. This ratio
is written as

. N,
Ratio = ——
i

©)
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where N, is the number of the line segments related with the
airport and N, is the number of the irrelevant line segments.
The purpose of applying LSD in this article is to obtain the line
segments related with the airport, and then combine the other
steps for airport detection. Therefore, only the line segments
related with the airport are considered as the correct detection
result. The higher the Ratio, the better the algorithm can sup-
press irrelevant objects and highlight the geometrical features of
the airport.

For the airport contour detection results, we first take precision
and recall as the evaluation metrics. They are defined as follows:

N,
Precision = —£ x 100% (10)
Ng
N
Recall = N—“’ x 100% (11)

gt

where Ny, is the number of pixels in the correctly detected
airport region. Ny is the total amount of pixels in the airport
detection result. Ny, is the number of pixels in the real airport
region. To integrate precision and recall to evaluate the algo-
rithms, F-measure is used for experimental evaluation. It is the
weighted harmonic average of precision and recall, which is
defined as

(1 4 ¥?)Precision x Recall

x 100
~2Precision + Recall %

F, = (12)

where ~?2 is a weight parameter. We set y2 = 0.3 to weigh preci-
sion more than recall [38], [39]. In addition, these three measures
do not consider the true negative counts [40]. Therefore, for
more comprehensive algorithm evaluation, the mean absolute
error (MAE) is added as an evaluation metric. The MAE is used
to measure the average pixel difference between the detection
result and GT. It can consider the proportion of the airport in
the image. The smaller the MAE, the more similar the detection
result is to the label. It is defined as

MAE = ITlfl > ID(IL) = G(IL)| x 100% (13)

where I denotes the input image. | - | means the sum of all pixels
in an image. D is the detection result and G is the GT. More-
over, to consider about the image-level structures and statistics
of the SAR images, the structure-measure (S-measure) [41]
and enhanced-alignment measure (E-measure) [42] are added
as evaluation metrics. S-measure captures the structural infor-
mation, which evaluates the structural similarity between the
detection result and GT. E-measure jointly captures image-level
statistics and local pixel matching information. The detailed
calculation processes of S-measure and E-measure refer to [41]
and [42].

The accuracy of the airport location is also important. We use
the intersection-over-union (IoU) of between the detection result
and the matched GT box to measure the performance. The loU
is defined as

IoU = Sn x 100%

5, (14)
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Fig. 2.
and (d) SLSD. The blue rectangles label the airport locations and the red line
segments are the detection results. The line segments in blue rectangles are the
line segments related to airports.

LSD results obtained by (a) Traditional LSD, (b) ILSD, (c) LSDSAR,

where Sn is the amount of pixels in the intersection region
between the detection result and the GT box. .S, is the amount of
pixels in the merged region between the detection result and the
GT box. Obviously, the higher the IoU, the better the algorithm
performance.

B. Comparison of the LSD Results

The LSD results of four SAR images using SLSD and other
LSDs are shown in Fig. 2. To highlight the airport locations, blue
rectangles are artificially added here to label the correct airport
locations. As shown in Fig. 2(a) and (b), ILSD has fewer false
alarms on line segments than traditional LSD. ILSD adopts the
logarithmic gradient on the basis of traditional LSD to highlight
the edges in SAR images. Therefore, compared with traditional
LSD, ILSD reduces a certain amount of false alarms on line
segments. But there are still a lot of useless line segments that
cannot be ignored in the detection results of ILSD. LSDSAR
replaces the optical image model in the traditional LSD with
the SAR image model, and introduces the first-order Markov
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Ratio

traditional LSD ILSD

LSDSAR SLSD

Fig.3. Comparison of the evaluation metrics of different LSDs applied in the
airport detection.

hypothesis about the local directions. However, LSDSAR aims
to detect as many line segments as possible in SAR images.
So, the detection results of LSDSAR contain a large number of
line segments, which are not related to the airports, as shown
in Fig. 2(c). It is shown in Fig. 2(d) that the number of line
segments detected by SLSD is much less than of the other
three methods. Because the line segment saliency is designed
to suppress irrelevant objects in SLSD, the number of irrelevant
line segments is greatly reduced. Moreover, the line segments
related to airports are retained, and the geometrical features of
airports are highlighted. Therefore, SLSD is able to detect the
line segments related to airports in SAR images more accurately,
and lay a good foundation for the subsequent extraction of the
airport regions.

In order to quantitatively compare the performance of differ-
ent LSDs in airport detection applications, Fig. 3 shows the aver-
age number of two types of line segments and the ratio of them
in the detection results for all SAR images. Obviously, in the
results of our SLSD, the number of line segments irrelevant to the
airports NV, is greatly reduced compared to other methods. At
the same time, SLSD retains a certain number of airport-related
line segments /V,., thus obtaining the highest Ratio. The SLSD
is designed for the detection of salient line segments, and the line
segments on airport runways are generally more prominent than
the line segments unrelated to the airports. Therefore, SLSD can
better highlight the geometrical features of airports.

C. Comparison of the Airport Contour Detection Results

SFVS, SOACM, and MLAS can obtain airport contour detec-
tion results. In SFVS, the images are decomposed by Gaussian
pyramid first, and then the saliency maps are obtained according
to the grayscale feature and frequency characteristics of the
images. The largest connected region after binarization of the
saliency maps are the airport detection results. In SOACM,
the superpixel segmentation results of the images and the LSD
results are combined to acquire the saliency maps, and the rough
locations of airports are obtained according to the saliency maps.
The airport contours are acquired by the active contour algorithm
finally. In MLAS, the superpixel-wise segmentation results and

TABLE II
EVALUATION METRICS OF DIFFERENT AIRPORT CONTOUR
DETECTION METHODS

Methods SFVS SOACM MLAS Ours
Precision 31.34% 42.53% 50.04% 81.11%
Recall 55.06% 44.03% 93.15% 87.74%
F-measure 32.50% 42.65% 52.03% 81.62%
MAE 2.13% 1.85% 2.14% 0.55%
S-measure 46.73% 49.20% 75.79% 88.94%
E-measure 46.58% 57.81% 81.41% 96.52%

The bold values show the best performance among the methods with the corresponding
metrics.

the airport support regions obtained by LSG are utilized to design
amultilayer extraction structure to obtain the saliency maps. The
largest connected region after binarization of the saliency maps
are extracted as the airports.

Figs. 4 and 5 show the detection results of the proposed
method and three comparison methods. It can be observed from
Fig. 4(b) that the detection results of SFVS are not satisfied and
appear some errors. The performance of SFVS is greatly affected
by other dark and narrow regions and other prominent regions,
so that roads and narrow rivers are easily mistaken for airports,
as shown in the second and third images in Fig. 4(b). And the
prominent lake is also mistaken for airport in the fifth image in
Fig. 4(b). This is because SFVS only uses the grayscale feature
and edges of airports as the main basis for airport detection.
Nevertheless, the results in Fig. 5(b) are better because the
images contain less other dark or prominent regions. As shown in
Fig. 4(c), the detection results of SOACM are relatively precise,
because it adopts an active contour model for precise iteration
after locating the airports. However, because SOACM only uses
simple saliency to locate the airports, once the positioning is not
accurate, the final result will have no relation to the airports, as
shown in the second image in Fig. 4(c) and the last two images
in Fig. 5(c). As shown in Fig. 4(d) and (e) and Fig. 5(d) and
(e), on our dataset, both MLAS and the proposed method can
correctly detect the airports. Both methods make full use of the
line segments gathered at the edges of airports. But what MLAS
ultimately uses is superpixel-wise analysis, instead of pixel-wise
detection in EORG in this article. Superpixel-wise analysis
has large errors near the edges of airports. In comparison, the
detection results of the proposed method are obviously closer to
the real airport regions.

Table II shows the average value of each evaluation metric
of each method on our dataset. Except for MAE, the higher
the values of the other five evaluation metrics, the better the
algorithm performance. It can be observed that our method
achieves high performance in all kinds of metrics. Both SFVS
and SOACM have serious false detection on our dataset, so that
the performance in all metrics except MAE is much lower than
our method. The following focuses on the detailed comparison
between MLAS and our method. Observed from the first two
metrics, although the recall of MLAS is higher than ours, its
precision is much lower. This shows that there are more wrongly
detected regions in the results of MLAS, because the superpixel
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Fig. 4.

(e ®

Comparison of airport contour detection results obtained by different methods. (a) Original images of Image #1-#5 (top to bottom), (b) SFVS, (c) SOACM,

(d) MLAS, (e) our method, and (f) GT. Note that there are some complete error results in (b) and (c).

analysis used in MLAS is easier to cover wider regions than
the pixel-wise analysis in our method. F-measure integrates
precision and recall. The too low precision of MLAS makes
F-measure much lower than our method. The F-measure of
MLAS is only 52.03%, whereas the F-measure of our method
can reach 81.62%. Observed from the fourth metric MAE, the
value of MAE is generally low due to the small proportion of
the airport in each image. The MAE value of our method is
the lowest, indicating that the difference between the detection
results and GT is quite small. The S-measure of our method is as
high as 88.94%, which is higher than that of all other methods.
It indicates that the airport structure information retained by
our method is the most complete, as shown in the comparison
between the results and GT in Fig. 4(e) and (f) and Fig. 5(e)
and (f). The E-measure of our method is 96.52%, which also
achieves the highest level among all methods. It shows that our

detection results can match the GT very well in terms of global
information and local details.

D. Comparison of the Airport Location Detection Results

Next, we compare the airport location detection results of
different methods. The comparison methods include SFVS,
SOACM, LSG, and MLAS. In LSG, first, the ILSD is used to
detect the line segments, which are grouped to obtain the airport
support regions. Then, a kind of saliency are defined according
to the length of line segments and the histogram contrast of
the airport support regions. The most salient airport support
region is selected as the airport location. For the other three
airport contour detection methods, the bounding rectangle of the
airport region is taken as the airport location. The comparison
of the results is shown in Figs. 6 and 7. As shown in Fig. 6(b)
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(e ®

Comparison of airport contour detection results obtained by different methods. (a) Original images of Image #6-#8 (top to bottom), (b) SFVS, (c) SOACM,

(d) MLAS, (e) our method, and (f) GT. Note that there are some complete error results in (c).

TABLE IIT
IoUs oF OUR METHOD AND FOUR COMPETING METHODS

Methods SFVS SOACM LSG MLAS Ours

TIoU 39.60% 44.12% 57.24% 69.01% 87.23%

The bold values show the best performance among the methods with the corresponding
metrics.

and (c) and Fig. 7(b) and (c), neither SFVS nor SOACM can
correctly locate the airports, so the following mainly focuses
on the comparison of LSG, MLAS and the proposed method.
From Figs. 6(d) and 7(d), it can be observed that in the most
of the detection results, the rectangles of LSG only cover a part
of the actual airport regions. This is because LSG heavily relies
on the line segments, which cannot be completely consistent
with the edges of airports. As shown in the first and last three
images of Fig. 6(e), although the rectangles of MLAS cover the
entire airport regions, they are too large and not precise enough.
They cover part of the surroundings, because the superpixel-wise
segmentation in MLAS cannot precisely distinguish the airports
from surroundings. The detection result in the first image of
Fig. 7(e) does not even cover the entire airport region. The airport
runway on the far right is missing due to the inaccurate airport
support regions acquired by MLAS. In contrast, as shown in
Figs. 6(f) and 7(f), our method is the most precise for all images.

The average IoU of the results on all SAR images detected
by each method is shown in Table III. Only the LSG, MLAS,
and our method can be basically correct for airport detection on

all of our dataset. The IoUs obtained by the three methods are
all above 50%. Among them, the IoU obtained by our method
reaches 87.23%, which is the highest. The comparison shows
that MLAS is better than LSG, but the IoU is still only 69.01%.
Because MLAS only introduces a superpixel-wise saliency anal-
ysis method on the basis of LSG. In the proposed method, based
on the usage of LSG to obtain the airport support regions, we not
only construct the SLSD, which is easier to highlight the edges
of the airports, but also design a pixel-wise EORG algorithm for
precise detection. Therefore, compared with LSG, our method
achieves a great performance improvement, and the IoU is much
higher than the other four methods.

E. Parameter Setting

The experiments in this article involve some important pa-
rameters, so it is very necessary to explain the specific parameter
settings. /3 is an important parameter in SLSD, as shown in (5).
The specific value of 5 determines the influence of line segment
saliency on the edge extraction. Furthermore, it influences the
final fine adjustment of the line segments. Fig. 8 shows the
average precision and recall of airport detection results of all
images under different 3. It can be observed that when £ is small,
the two metrics basically maintain a high level. This is because
[ only affects the detection result of line segments. As long as
the airport support region obtained by grouping line segments
covers a part of actual airport region, the subsequent EORG can
precisely detect the complete airport region. When S is greater
than 0.15, the performance drops significantly. This is because
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Fig. 6.

Comparison of airport location detection results obtained by different methods. (a) Original images of Image #1-#5 (top to bottom), (b) SFVS, (c) SOACM,

(d) LSG, (e) MLAS, and (f) our method. The blue rectangles in (a) label the correct airport locations. Only the last three methods correctly locate all airports in our

dataset.

a high [ will bring about a high saliency threshold so that only a
few salient line segments can be located. It makes it difficult
to accurately obtain the airport support region. Therefore, 3
must be maintained at a low level. In this case, our algorithm
performance is robust to the fluctuation of 5. In this article, the
specific value of 5 is 0.1.

Npin s an important parameter in EORG, as introduced in
Section II-C. It represents the number of bins in
OrderedListSeeds shown in Algorithm II-C. These bins
retain the seeds closest to the edges of airports. Fig. 9 shows
the average precision and recall of airport detection results of
all images under different Np,. In the experiments, the range
of Npiy is set from O to 1024. From Fig. 9, we can find that
the overall performance generally continues to improve as Ny,
gradually increases. It is because that higher Ny, allows more

regions to be analyzed. However, for the precision metric, the
performance slightly degrade when Ny, increases from 200 to
400. It is because that large Ny, may increase false detections.
When Ny, is greater than 500, the overall performance is
stable and maintained at a high level. Therefore, to reduce the
computational burden, the value of Ny, is set to 512 in all our
experiments, which is half of the original number of bins.

For GR used in this article, the exponential weight parameter
« in (1) is taken as 2, which is consistent with [35]. It is related
to the scale of the target edges. Because the airport runways
are wide, the edges of airports can be reflected in both large
and small scales. Therefore, a has very little influence on the
experimental results. In addition, in the technologies related to
LSDSAR used in SLSD, the parameter settings are consistent
with LSDSAR. The parameters of the technologies related to
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(b)

Fig.7.

Comparison of airport location detection results obtained by different methods. (a) Original images of Image #6-#8 (top to bottom), (b) SFVS, (c) SOACM,

(d) LSG, (e) MLAS, and (f) our method. The blue rectangles in (a) label the correct airport locations. The results in (d) only cover a part of the actual airport

regions.
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Fig. 8. Precision and recall under different values of 3. The performance is
great when [ is between 0.05 and 0.15.

LSG involved in the acquisition of the airport support regions
are also consistent with them. All comparison methods use the
default parameters settings described in the origin papers.

FE. Comparison of the Computational Time

The computational time of our method depends on the com-
plexity of SLSD, airport support region acquisition and EORG.
For SLSD, the enhanced LSD for coarse LSD is a linear-time
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Fig. 9. Precision and recall under different values of Npi,. The performance

is great when Ny, is greater than 500.

algorithm as LSDSAR [35]. And other processes of SLSD such
as computing the image gradient, acquiring the line segment
saliency and fine adjustment of line segments only need opera-
tions proportional to the number of pixels in SAR image N.
Therefore, the computational complexity of SLSD is O(N).
For airport support region acquisition, LSG method is used
and the computational complexity of which is O(V; log NV;),
where [V; is the number of line segments [21]. In EORG, region
growing is the major part and its computational complexity
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TABLE IV
COMPUTATIONAL TIME FOR DIFFERENT METHODS

Methods SFVS SOACM LSG  MLAS  Ours
Image #1 3.64 5.70 3.52 15.62 31.30
Image #2 3.39 7.47 2.60 16.14 29.02
Image #3 1.86 4.66 1.53 6.21 13.72
Image #4 1.47 4.27 1.74 6.57 6.36
Time(s) | Image #5 1.39 4.13 1.27 5.22 14.27
Image #6 3.75 7.15 2.25 17.63 15.94
Image #7 4.04 8.43 2.48 21.92 14.15
Image #8 2.04 5.89 1.40 6.75 7.71
Averages 2.70 5.96 2.10 12.01 16.56

is O(Ns;Nlog N), where N; is the number of visited seeds.
Because our seed selection method generates a rather small
number of seeds compared to the pixels in the image. The
computational complexity of EORG still can be considered as
log-linear. All in all, the proposed method can run in log-linear
time.

The comparison of computational time of different methods is
shown in Table IV. The programs of all methods were developed
in MATLAB. And all experiments were implemented on Intel
Core 17-9700K CPU at 3.60 GHz and 32-GB RAM. Comparing
the average time consumption for airport detection in all images
with different methods using the same hardware platform, it can
be observed that SFVS and LSG consume very short time. The
computational time in SOACM is mainly spent on the active
contour algorithm, so it takes a little long time. The superpixel-
wise analysis for images in MLAS 1is quite time-consuming.
Our method takes the longest time, which is because the region
growing in EORG is very time consuming. Nevertheless, it is
acceptable that the high computational loss brings a substantial
improvement in detection performance.

IV. CONCLUSION

Aiming at the airport detection in SAR images, we propose a
coarse-to-fine detection model. To emphasize the geometrical
features of airports and suppress the influence of irrelevant
objects, anovel SLSD is proposed to detect salient line segments.
Compared with other LSD algorithms, SLSD can highlight the
edges of airport runways more effectively. The line segments
obtained by SLSD are used to roughly locate the airport support
regions. Furthermore, combined with the airport support regions,
an effective EORG algorithm is designed for precise airport de-
tection. The experimental results on real SAR images show that,
by allowing a certain amount of time-consuming calculation, our
method can not only locate the airports more accurately than the
other comparison methods, but also extract the contours that best
matches the actual airports.
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