
474 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

Self-Supervised Pretraining of Transformers for
Satellite Image Time Series Classification

Yuan Yuan , Member, IEEE, and Lei Lin

Abstract—Satellite image time series (SITS) classification is a
major research topic in remote sensing and is relevant for a wide
range of applications. Deep learning approaches have been com-
monly employed for the SITS classification and have provided
state-of-the-art performance. However, deep learning methods suf-
fer from overfitting when labeled data are scarce. To address this
problem, we propose a novel self-supervised pretraining scheme
to initialize a transformer-based network by utilizing large-scale
unlabeled data. In detail, the model is asked to predict randomly
contaminated observations given an entire time series of a pixel.
The main idea of our proposal is to leverage the inherent tem-
poral structure of satellite time series to learn general-purpose
spectral-temporal representations related to land cover semantics.
Once pretraining is completed, the pretrained network can be
further adapted to various SITS classification tasks by fine-tuning
all the model parameters on small-scale task-related labeled data.
In this way, the general knowledge and representations about
SITS can be transferred to a label-scarce task, thereby improv-
ing the generalization performance of the model as well as re-
ducing the risk of overfitting. Comprehensive experiments have
been carried out on three benchmark datasets over large study
areas. Experimental results demonstrate the effectiveness of the
proposed pretraining scheme, leading to substantial improvements
in classification accuracy using transformer, 1-D convolutional
neural network, and bidirectional long short-term memory net-
work. The code and the pretrained model will be available at
https://github.com/linlei1214/SITS-BERT upon publication.

Index Terms—Bidirectional encoder representations from
Transformers (BERT), classification, satellite image time series
(SITS), self-supervised learning, transfer learning, unsupervised
pretraining.

I. INTRODUCTION

NOWADAYS, a huge volume of Earth observation
(EO) data are being accumulated thanks to remarkable

Manuscript received September 15, 2020; revised October 22, 2020; accepted
November 3, 2020. Date of publication November 9, 2020; date of current
version January 6, 2021. This work was supported in part by the Research Project
of Surveying Mapping and Geoinformation of Jiangsu Province under Project
JSCHKY201905, in part by the Natural Science Foundation of Jiangsu Province
under Grant BK20170897, in part by the National Natural Science Foundation
of China under Grant 41901356, and in part by the support of Environmental
Protection Research Project of Jiangsu Province under Grant 2019010. (Yuan
Yuan and Lei Lin are co-first authors.) (Corresponding author: Yuan Yuan.)

Yuan Yuan is with the School of Geographic and Biologic Information,
Nanjing University of Posts and Telecommunications, Nanjing 210023, China
(e-mail: yuanyuan@njupt.edu.cn).

Lei Lin is with the Beijing Qihoo Technology Company Ltd., Beijing 100015,
China (e-mail: linlei1214@163.com).

This article has supplementary downloadable material available at https://
ieeexplore.ieee.org, provided by the authors.

Digital Object Identifier 10.1109/JSTARS.2020.3036602

breakthroughs in the latest-generation of satellites. After the
successive launch of the twin satellites (Sentinel-2A/B) of the
Sentinel-2 mission, it is now possible to access large area,
high-quality medium spatial resolution EO data with much
higher frequency. Due to the high revisit time of Sentinel-2A/B
satellites (five days from the two-satellite constellation),
consecutively acquired images covering the same geographical
area can be properly organized into satellite image time
series (SITS) [1]. Such medium-resolution SITS data provide
valuable information about the status and dynamics of the Earth
surface, supporting analyses of the functional and structural
characteristics of land covers as well as identifying change
events [2], [3]. For this reason, SITS have been widely used in
various application domains, such as ecology [4], agriculture [5],
forest [6], land management [7], disaster monitoring [8] risk as-
sessment [9], etc. In the meantime, new challenges are also being
introduced by the question of how to extract valuable knowledge
and meaningful information to exploit such abundant data.

SITS classification is one of the central problems in the SITS
analysis, which is closely associated with many land applica-
tions, such as land cover mapping and change detection [10],
vegetation species classification [11], and crop yields estimation
[12]. SITS classification involves assigning every pixel in an im-
age to a categorical label, primarily based on the pixel’s spectral
profile (trajectories of spectral variations over time) [3]. Machine
learning algorithms provide effective tools to achieve automated
SITS classification. Traditional algorithms such as support vec-
tor machine (SVM) and random forest (RF) classify SITS via
handcrafted features, such as raw reflectances, spectral statistics,
and phenological metrics [13], [14]. However, characterizing
these features is rather difficult due to the strong interannual
variations in seasonal patterns of the land surface reflectance,
which can be caused by shifts in land cover or environmental
conditions, management practices, and disturbance [15].

Lately, deep learning is gaining widespread popularity in the
remote sensing community. Various deep neural network archi-
tectures have been introduced to advance the state of the art for
many remote sensing classification problems [16]–[18]. The ma-
jor advantage of deep learning methods is that they are capable
of learning features from the input data optimized for a specific
task without the need for manual feature engineering [1], [19].
Deep learning-based approaches are increasingly being applied
to SITS classification. Among these methods, convolutional neu-
ral networks (CNNs) [20], [21] and recurrent neural networks
[RNNs, including long short-term memory (LSTM) or gated
recurrent units] [22], [23] have been most widely used to capture

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-1860-3275
https://orcid.org/0000-0002-7012-4901
mailto:yuanyuan@njupt.edu.cn
mailto:linlei1214@163.com
https://ieeexplore.ieee.org

YUAN AND LIN: SELF-SUPERVISED PRETRAINING OF TRANSFORMERS FOR SATELLITE IMAGE TIME SERIES CLASSIFICATION 475

temporal characteristics from spectral profiles. To exploit both
spatial and temporal information of high-resolution SITS, hybrid
architectures combining convolutional and recurrent layers [24],
[25] and convolutional-recurrent neural networks [26] have been
introduced and comprehensively compared [27]. Recently, a
promising alternative to RNNs for sequence encoding, namely
the transformer, has been proposed in the field of natural lan-
guage processing (NLP) [28]. Transformers have been reported
to have advantages over RNNs in terms of feature extraction and
training efficiency. Garnot et al. first introduced transformers
into SITS classification. They employed a transformer encoder
to learn temporal correlations from a sequence of pixel-set
embeddings [29]. A detailed comparison between transformers
and other prevailing deep learning architectures for SITS clas-
sification can be found in [30], showing that transformers and
RNNs outperform CNNs on processing raw satellite time series
in terms of their architectures.

Nonetheless, the recent success of deep learning approaches
has been primarily driven by deeper architectures and the avail-
ability of large amounts of labeled data. For instance, by training
a deep CNN on millions of human-annotated photographs such
as ImageNet, it can learn powerful visual features reusable in
various image understanding tasks. When training samples are
scarce, a common drawback of most deep learning architectures
is that they are very prone to overfitting, since such models often
have millions of parameters. However, there are rarely enough
labeled data in remote sensing applications, since labeling is very
time/labor-consuming and requires expertise. As a result, even
though a huge supply of SITS data are available, the performance
of deep learning approaches is restricted due to lack of labels.

To fully tap the potential of deep learning methods for the
SITS classification, some studies have begun to explore how
to mitigate the demand for labeled data. For example, Bazzi
et al. proposed a transfer learning framework, which adapts a
network trained on a label-rich dataset to a label-scarce task
by means of knowledge distillation [31]. Ienco et al. developed
a weakly supervised layerwise pretraining strategy to initialize
parameters of RNNs by utilizing coarse granularity labels to
provide supervision signals [32]. Although these approaches can
partially alleviate the problem, their effectiveness is still limited
by the quality and quantity of labeled samples. To the best of
our knowledge, none of the existing work takes advantage of
unlabeled data for SITS classification.

Self-supervised learning is a recently emerged unsupervised
learning paradigm for tackling the challenge of insufficient
labels [33]. In this paradigm, models are trained on unlabeled
data by leveraging the structure present in the data itself to
create supervised tasks (such tasks are often referred as “pretext
tasks”) [34]. The general pipeline of self-supervised learning is
as follows: in the pretraining stage, models learn an initial set
of representations by solving a predefined pretext task; in the
fine-tuning stage, these representations are further adapted to
a downstream task by continued training on task-related data
in a supervised manner. In this way, deep learning models can
transfer general knowledge learned from large-scale unlabeled
data to a label-scarce downstream task, thereby enhancing the
generalization capacity of deep learning models and preventing

Fig. 1. Proposed pipeline for satellite image time series (SITS) classification:
in the pretraining stage, a neural network (i.e., SITS-BERT, where BERT stands
for bidirectional encoder representations from Transformers) is pretrained on
massive unlabeled data to solve a pretext task; in the fine-tuning stage, the
pretrained network serves as a representation model that is used in a specific
classification task by fine-tuning all the parameters on task-related labeled
samples.

overfitting. Although a variety of self-supervised learning meth-
ods have emerged in recent years in computer vision [35]–[38]
and NLP [39]–[41], we are not aware of any existing work that
introduces the perspective of self-supervised learning into the
SITS analysis to cope with the label scarcity problem.

In this article, we propose a novel self-supervised pretrain-
ing scheme for parameter initialization of deep neural net-
works on SITS classification tasks, which follows a stan-
dard unsupervised-pretraining/supervised-fine-tuning pipeline
shown in Fig. 1. We design the following pretext task to train
a transformer network: the model is forced to predict corrupted
observations with randomly added noise, given an entire annual
time series of a pixel. The central idea behind our pretext task
is to leverage the inherent temporal structure of satellite time
series to capture meaningful spectral-temporal characteristics
from a large volume of SITS data, and that these characteristics
are closely related to the natural changes at the Earth’s surface.
In this way, enormous amounts of background knowledge are
accumulated in the network through pretraining, making the
model “understand” what satellite time series should look like.
Hence, it is more robust for neural networks to learn a mapping
between spectral profiles and corresponding types given a small
amount of labeled data, as the connection between temporal
dynamics of satellite time series and land cover semantics is
strong.

The key contributions of this article are threefold.
1) For the first time, we propose a self-supervised pretraining

scheme to cope with the problem of insufficient labeled
samples for the SITS analysis.

2) We introduce an end-to-end deep learning architecture
as an effective alternative to convolutional and recurrent
neural networks for the SITS classification.

3) We conduct comprehensive experiments on three large-
scale datasets to validate the effectiveness of the proposed
method.

The remainder of this article is organized as follows. Section II
summarizes related work on self-supervised learning in remote
sensing. Section III explains the motivation of the proposed
method. Sections IV and V describe the proposed network
architecture and pretraining scheme, respectively. Section VI
provides the data information. Section VII reports the experi-
mental results and discussions. Finally, Section VIII concludes
this article.

476 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

II. RELATED WORK

An effective pretext task is the key to successful self-
supervised learning and should guarantee that the model learn
meaningful representations instead of trivial solutions [34].
According to the strategies used to design pretext tasks, most
of the available self-supervised learning approaches in remote
sensing can be broadly classified into the following three
categories.

Reconstruction-based methods include denoising autoen-
coders (DAEs) [42], [43] and deCNNs [44], [45]. These meth-
ods project data into a low-dimensional latent space and then
reconstruct the input from the compressed features. However,
exact input reconstruction is often not conducive to learning
discriminant features.

Generation-based methods include variational autoencoders
[46], [47] and generative adversarial networks [48], [49]. These
methods aim to approximate the real data distribution and simul-
taneously learn a mapping from a latent space to the input space.
However, the main goal of these methods is to generate more
realistic samples rather than extracting meaningful features that
facilitate downstream tasks.

Context-based methods leverage spatial, spectral, and tempo-
ral context similarity or correlation in the data to create super-
vision signals. These types of methods are generally heuristic
and have no uniform theoretical patterns. For example, Wang
et al. learned mapping functions between images and their
transformed copies for the purpose of image registration [50].
Dong et al. sampled image patches from bitemporal images and
then used the temporal-source of these patches as pseudolabels
for change detection [51]. Vincenzi et al. attempted to predict
visible bands of remote sensing images by other spectral bands
[52]. At present, these kinds of methods are rarely applied to the
remote sensing data.

In summary, the existing work mainly focuses on learning
spatial and spectral features from single or bitemporal images,
while very little effort has been devoted to satellite time-series
analysis.

III. MOTIVATION

BERT, which stands for bidirectional encoder representations
from transformers [39], is undoubtedly the most remarkable self-
supervised learning-based framework in the current NLP field.
Following an unsupervised-pretraining/supervised-fine-tuning
pipeline, BERT can learn general language representations that
are reusable in various downstream tasks. In detail, BERT uti-
lizes a “Masked Language Model” as its pretext task, in which
some tokens in a sentence are randomly masked out and the
model is forced to predict the missing tokens according to the
context. This enables BERT to learn word correspondences from
a plain text corpus. Since BERT was proposed, the concept of
self-supervised pretraining has started dominating the state-of-
the-art in NLP.

Similar to text, satellite time series also have strong tempo-
ral correlations. Likewise, the temporal dynamics of spectral
profiles contain rich semantic information, which is closely as-
sociated with seasonal variations and plant phenology. However,
while there are clear similarities between text and satellite time

series, the insight of BERT has yet to be explored in the canon
of existing work in the remote sensing community.

Inspired by BERT, we develop a context-based pretext task
to capture meaningful spectral-temporal features from massive
unlabeled SITS data. Specifically, the network is asked to recover
contaminated observations by means of corresponding acquisi-
tion dates and clear observations. Our hypothesis is that noisy
observations can be distinguished and reconstructed from dense
satellite time series. The main idea to design this pretext task is
based on the fact that noise caused by clouds and shadows is com-
monly found in optical satellite images. Human remote sensing
experts can easily eliminate noise interference and distinguish
different land cover types from a limited number of images. The
absence of images or contaminated images does not necessarily
result in a decrease in the interpretation accuracy because the
missing information can be inferred from the remaining images.
Intuitively, a good representation of SITS should be able to
capture stable spectral-temporal patterns that are robust to noise.

IV. MODEL ARCHITECTURE

A. Overall Network Architecture

In this article, we introduce a transformer-based network for
the SITS classification. Since the model architecture is modified
from BERT, we name it SITS-BERT.

We first introduce the symbols used in our description. Let
X = {〈O1, t1〉, . . . , 〈O1, tL〉} be an annual time series of a
pixel, where Oi ∈ RD denotes a D-dimensional satellite obser-
vation vector whose elements correspond to each of the input
spectral reflectances; ti corresponds to the dateOi was captured,
which is specified using day of year (DOY).

SITS-BERT’s model architecture is comprised of two parts:
an observation embedding layer and a standard transformer
encoder (see Fig. 2). Specifically, all observation tuples
〈O1, t1〉, . . . , 〈O1, tL〉 of a time series are first encoded into a
sequence of observation embeddings, which are then fed into
a multilayer bidirectional transformer network to produce their
corresponding representations. The final observation represen-
tations can be aggregated into a single feature vector, which
contains the global information of the entire time series and
is used for classification. Here, SITS-BERT plays the role of
a representation model. By adding an additional output layer,
the whole network architecture of SITS-BERT can be further
fine-tuned for a specific classification task.

B. Observation Embedding

The observation embedding layer projects an input tuple
〈Oi, ti〉 into a higher-dimensional feature space. The reason for
this is that the input dimension is tied with the hidden layer size
of the transformer, and using larger embedding sizes gives better
performance [41].

In this article, an observation embedding is a concatenation
of two parts. Given an observation Oi, it is projected into a
high-dimensional vector using a linear dense layer. In addition,
the corresponding date ti is also encoded into a vector of the
same size using the positional encoding (PE) technique [28]. PE
encodes the order information of a sequence with sine/cosine

YUAN AND LIN: SELF-SUPERVISED PRETRAINING OF TRANSFORMERS FOR SATELLITE IMAGE TIME SERIES CLASSIFICATION 477

Fig. 2. Structure of the SITS-BERT architecture shown unfolded in time. Besides the output layer (not depicted in the figure), the same architecture is used in
both the pretraining and fine-tuning stages. The input tuple 〈Oi, ti〉 at each timestep is a pair of observation and the corresponding acquisition date (day of year,
DOY). The final hidden representation is denoted as Ti. Ti encodes the information about the entire time series.

functions of different frequencies

Embed (Oi, ti) = Concat (OiWe, PE(ti)) (1)

PE(ti)p =

{
sin

(
ti/10000

2k/dm
)
, if p = 2k

cos
(
ti/10000

2k/dm
)
, if p = 2k + 1

(2)

where Embed(Oi, ti) represents the observation embedding of
〈Oi, ti〉; dm = 256 is the embedding size, which is the same
of the hidden layer size of transformer; Concat denotes a con-
catenation between two vectors; We ∈ RD× dm

2 is the weight
matrix of the dense layer; PE(ti)p represents the pth element
of the PE vector. It should be noted that in BERT, the PE vector
is directly added to a token embedding. However, we suggest
concatenating the two parts in case the model cannot distinguish
between observations and time. Experiments also indicate that
the model converges faster using concatenation than summation.

The main purpose of utilizing time information (i.e., DOY
rather than the order of an image in a sequence) is to make
the model learn meaningful temporal variation patterns that are
closely related to seasonal cycles and vegetation phenology.
The benefits of this are twofold. On one hand, the model can
overcome the limitations associated with different sampling
dates and sequence lengths, making the model trainable and
transferable across different years. On the other hand, the model
is able to deal with irregular sampling problems caused by the
presence of noise in the time series. Accordingly, no smoothing,
gap filling, or compositing method is needed to reconstruct
evenly spaced time series.

C. Transformer Encoder

Transformer was first introduced in NLP as an efficient alter-
native to RNNs [28], which has been introduced to some remote
sensing tasks, such as hyperspectral image classification [53],
image captioning [54], and SITS classification [29].

A transformer encoder is a stack of multiple transformer
blocks. The first transformer block takes a collection of observa-
tion embeddings of a time series as its input and generates cor-
responding hidden representations. Then, these representations
are passed to the next transformer block as its input to iteratively

Fig. 3. Illustration of the scaled dot-product attention (left) and multihead
attention (right). Q stands for queries’ matrix; K stands for keys’ matrix; V
stands for values’ matrix.

generate higher level representations. A single transformer block
(depicted in Fig. 2) contains two major sublayers: a multihead
attention layer and a positionwise fully connected feed-forward
network (FFN). In addition, a residual connection [55] and
layer normalization [56] are utilized for both sublayers. The
two sublayers are described in detail below.

A multihead attention layer consists of H parallel scaled dot-
product attention layers, each called a head (see Fig. 3) [28].
A scaled dot-product attention is a function that maps a query
vector and a set of key-value pairs into an output vector

Attention (Q,K, V) = softmax

(
QKT

√
dk

)
V (3)

whereQ,K, V represent the matrices stacked by multiple query,
key, and value vectors as rows, respectively; dk is the dimen-
sionality of the query/key vectors. Multihead attention takes
it a step further by first mapping Q,K, and V into different
lower-dimensional feature subspaces via different linear dense
layers, and then using the results to calculate attention. Finally,
the outputs produced by H heads are concatenated and projected
into a final hidden representation using another dense layer

MultiHead (Q,K, V) = Concat (head1, . . . , headH)W o

where headi = Attention
(
QWQ

i ,KWK
i , V WV

i

)
(4)

478 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

Fig. 4. Illustration of the proposed pretraining strategy. Some observations in
a satellite time series are randomly selected and added with positive or negative
noise, and then the model is trained to predict these contaminated observations
using the rest of the observations. In the figure, the input observations O3 and
O7 are added with noise ±ε, where ε ≥ 0, and the prediction loss at these two
positions is used to optimize the model.

where WQ
i , WK

i , WV
i are weight matrices of the inner dense

layers of each head; W o is the weight matrix of the top
dense layer. In this article, WQ

i , WK
i , WV

i ∈ Rdm×dv , W o ∈
RHdv×dm , where we use H = 8 as the number of heads, and
use dv = dm

H = 32 as the output dimensionality of each head.
In a transformer, a self-attention mechanism is used to learn

the internal relationship of an input sequence [28]. In the
self-attention mechanism, the query, key, and value vectors are
identical. That is, attention is calculated between each position in
a sequence and every other position (including itself). As a result,
the hidden representation of each observation is a weighted sum
of all positions in a time series, thereby capturing the global
sequence information and highlights the part around the ith
observation.

A positionwise FFN is then applied to the hidden state of
each position independently and identically. FFN is made up of
two linear transformations with a ReLU activation function in
between

FFN (xi) = max (0, xiW1 + b1)W2 + b2 (5)

where xi is the ith hidden state produced by the multihead atten-
tion layer, W1, W2 are weight matrices, and b1, b2 are bias terms
of the inner and output dense layers, respectively. In this article,
we use dff = 4 dm = 1024 as the dimensionality of the inner
dense layer, i.e., W1 ∈ Rdm×dff , b1 ∈ Rdff , W2 ∈ Rdff×dm ,
b2 ∈ Rdm .

V. PROPOSED SELF-SUPERVISED PRETRAINING SCHEME

A. Pretraining SITS-BERT

In analogy to BERT, we train our model on a predesigned
pretext task: some of the input observations are randomly chosen
and added with noise, and then the model is forced to predict
these contaminated observations (see Fig. 4). By solving this
pretext task, the model can learn temporal correspondences
between observations.

In the experiments, 15% of the observations in a time series are
selected at random and added with noise. When an observation
Oi is selected, there is a 50% chance that all elements of the
vector is added a positive noise to simulate abnormal reflectance
increases caused by clouds and snow/ice; and a 50% chance that
all element of the vector is subtracted from a positive noise
to simulate abnormal reflectance decreases caused by shadows.

The noise is generated from a uniform distribution in the interval
[0, 0.5]. In the meantime, the corresponding PE vector remains
unchanged.

The model is then forced to predict the original values of
these contaminated observations according to their acquisition
dates and contextual information. In detail, the final hidden
representations corresponding to the contaminated observations
are fed into a linear dense layer for prediction. The mean-square
error (MSE) between original observations and predictions is
used as the optimization function for model training

MSELoss =

∑
Oj∈Ψ ‖Oj − Ôj‖2

N
(6)

where Ψ denotes the set of contaminated observations; Ôj is
the predicted value of Oj ; and N is the number of contaminated
observations. In this article, we pretrain SITS-BERT for 100
epochs with a batch size of 256 sequences. We utilize Adam
optimizer with a learning rate of 1e−4, learning rate warmup
over the first 30 epochs, and exponentially decay of the learning
rate. Dropout is implemented on all transformer layers with a
dropout rate of 0.1.

As a side benefit, the proposed pretext task overcomes the
pretrain-fine-tune discrepancy suffered by the original BERT
[15]. Specifically, BERT uses a special token [MASK] to tell
the model which inputs are missing; this token does not exist in
the downstream tasks. In contrast, our model does not introduce
artificial tokens. Our assumption is that the model can learn how
to distinguish noise from normal observations from the context
without explicit annotations.

It is noteworthy that the proposed pretext task is different
from DAEs [57], because our aim is to predict contaminated
observations instead of reconstructing the entire time series.

B. Fine-Tuning SITS-BERT

The pretrained SITS-BERT can be easily adjusted to a spe-
cific SITS classification task by adding an additional output
layer. In this article, we fine-tune SITS-BERT on the following
two representative tasks, i.e., crop classification and land cover
mapping. For both tasks, we simply feed the input–output pairs
to the model and fine-tune all the parameters end-to-end on
task-related data. Specifically, the input of the model is an annual
time series, and the output is the corresponding category label.

A common method to address time series classification is to
map time series into a feature space, such that the values of
features should be close for pixels belonging to the same class.
In general, there are two strategies for aggregating individual
observation representations produced by SITS-BERT into a
single sequence-level representation. These two approaches are
1) the use of a [CLS] token, and 2) the pooling method (see
Fig. 5).

1) SITS-BERT with a [CLS] token: The first method is to
insert a special token [CLS] (an abbreviation for “classifi-
cation”) at the front of every input time series and then use
the output of [CLS] as a global representation of the whole
time series [39]. In our implementation, we set [CLS] to
be an all-ones vector with the same dimension as the input

YUAN AND LIN: SELF-SUPERVISED PRETRAINING OF TRANSFORMERS FOR SATELLITE IMAGE TIME SERIES CLASSIFICATION 479

Fig. 5. Two strategies to generate a sequence-level representation (denoted as
C) from individual observation representations of a time series: (1) SITS-BERT
with a [CLS] token, (2) SITS-BERT with pooling.

observations, and set the corresponding time to be zero.
The [CLS] token also needs to be added to the input time
series at the pretraining stage.

2) SITS-BERT with pooling: The second method is to apply a
pooling operation to the output vectors of BERT by either
averaging the output (average pooling) or computing max-
over-time of the output (max pooling) to aggregate them
into a single fixed-size vector.

Once the global representation of a time series is obtained, it is
then fed into a softmax layer to be classified. The cross-entropy
loss is used for the model optimization in the fine-tuning stage

CrossEntropyLoss = −
P∑

j = 1

yj log (ŷj) (7)

where ỹj is the probability score inferred by the softmax function
for class j, and yj is the ground truth, and P is the number of
classes.

In this article, we fine-tune SITS-BERT on task-specific data
in a supervised manner for 100 epochs. Adam optimizer is used
with a learning rate of 2e-4 and a batch size of 128.

VI. STUDY AREAS AND DATASETS

In this article, we applied the proposed method on Sentinel-2
image time series. The data were organized into four datasets:
one was used for model pretraining, the other three (includ-
ing two crop classification datasets and a land cover mapping
dataset) were used for model evaluation.

We investigated the model performance on two kinds of SITS
data. In the first type of data, the pretraining and fine-tuning
data belonged to the same area, serving the purpose of verify-
ing whether the pretrained model can extract informative and
discriminant features from homologous unlabeled data. In the
second type of data, the pretraining and fine-tuning data came
from different areas, with the purpose of exploring whether the
pretrained model can be transferred to unseen data.

A. Pretraining Dataset

We chose three Sentinel-2 tiles (T10SEJ, T10SFH, and
T11SKA, each covering a region of about 100 × 100 km)
located in the Central Valley, CA, USA to create a pretraining
dataset. The location of the study area is depicted in Fig. 6. For

each tile, all the available Sentinel-2 A/B images with <10%
cloud coverage, taken between January 2018 and December
2019, were used. There were a total of 219 images to construct
the pretraining dataset. Samples were collected from each tile
at a regular sampling interval of 10 rows/columns. Sequences
shorter than 10 were discarded. Finally, the pretraining dataset
was composed of about 6.5 million sequences.

We chose California as the pretraining area for the following
reasons. First, California has extremely diverse natural land-
scapes, representing most of the major biomes in North America,
including grasslands, shrublands, deciduous forests, coniferous
forests, tundra, mountains, deserts, rainforest, marine, estuarine,
and freshwater habitats. The state’s varied topography and cli-
mate have given rise to a remarkable plant diversity that cannot
be found in any other state of the United States [58]. Moreover,
the Central Valley where the study area is located is California’s
most productive agricultural region as well as one of the most
productive worldwide. The agricultural systems in this study
area are rather complicated, characterized by small parcels and
a vast variety of crop types [59]. For all those reasons, this area
can provide abundant and diverse training samples for learning
general-purpose SITS representations. Finally, this area has a
Mediterranean climate with no significant precipitation during
the summer season. Therefore, the spectral trajectory of major
crops (such as corn, cotton, rice, and soybeans) throughout the
entire growth cycle can be characterized, making it feasible to
inferring the corrupted part of a time series from the remainder.

B. Two Crop Classification Datasets

We applied the proposed method to two crop classification
datasets.

The first dataset came from the pretraining area. A total of
45 images captured in 2019 from Sentinel-2 tile T11SKA in
California (see Fig. 6 Tile 3©) were used. Ten major crop types
covering most of the study area were targeted in this study: corn,
cotton, winter wheat, alfalfa, tomatoes, grapes, citrus, almonds,
walnuts, and pistachios. Three nonagricultural categories were
also included: developed, evergreen forest, and grass/pasture.
It should be noted that the fine-tuning data were not used for
pretraining.

The second dataset came from the area at the border between
Missouri and Arkansas, USA (see Fig. 7), and was composed
of 26 images acquired in 2019 from Sentinel-2 tile 15SYA. Ten
agricultural and nonagricultural categories were considered in
this study: corn, cotton, rice, soybeans, fallow/idle cropland,
open water, developed, forest, grass/pasture, and woody wet-
lands.

For both datasets, the 2019 Cropland Data Layer (CDL) [60]
and the corresponding CDL confidence layer [61] provided by
the United States Department of Agriculture National Agricul-
tural Statistics Service (USDA NASS) were used as reference
data to collect samples. The original spatial resolution of CDL
and confidence layer products was 30 m. They were upsampled
to 10 m to be consistent with Sentinel-2 images. Then, we
extracted samples from the whole scene at a regular interval of 10
rows/columns. To increase the accuracy of the samples collected

480 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

Fig. 6. 2019 cropland data layer (CDL) product of California, USA, which is colored in the same way as the CDL website
(https://nassgeodata.gmu.edu/CropScape/). Three Sentinel tiles were used for model pre-training: 1© T10SEJ, 2© T10SFH, 3© T11SKA. The coverage of
each Sentinel-2 tile is marked with a red rectangle.

Fig. 7. Location of the second study area for crop classification, showing the
2019 CDL product.

from the CDL, we employed the following two criteria. First,
all the neighboring pixels along with the center pixel in a 7×7
window should belong to the same category, to avoid sampling
from the boundary of land parcels. Second, the classification
confidence of all neighboring pixels in the window should be
higher than 80%.

Fig. 8. Location of the study area for land cover mapping, showing the
FROM_GLC10 product.

C. Land Cover Mapping Dataset

We also applied the proposed method to a land cover mapping
dataset, which was built using 20 images taken in Beijing, China,
in 2017 from Sentinel-2 tile 50TMK (see Fig. 8). Beijing is
characterized by a monsoonal humid continental climate with
hot humid summers and cold dry winters. The natural vegetation

YUAN AND LIN: SELF-SUPERVISED PRETRAINING OF TRANSFORMERS FOR SATELLITE IMAGE TIME SERIES CLASSIFICATION 481

is deciduous broadleaf forest, and the dominant crop types are
winter wheat, corn, and soybean. There is a large divergence
between the study area and the pretraining area in terms of both
geographical conditions and vegetation species. Therefore, this
dataset provides a good example to explore whether the proposed
pretraining scheme is effective when the target domain and the
pretraining domain have distinct data distributions.

The reference data we used was a public global land cover
product named FROM_GLC10 (v0.1.3), which was built on 10
m resolution Sentinel-2 data acquired in 2017 [62]. We adopted
the same classification systems of FROM_GLC10. Five majority
land cover types were considered: cropland, forest, grassland,
water, and impervious area.

D. Data Collection and Preprocessing

All the Sentinel-2 images (Level-1C) we used were down-
loaded from the United States Geological Survey (USGS) Earth-
Explorer website and preprocessed to Bottom-Of-Atmosphere
(BOA) reflectance Level-2A using the Sen2Cor plugin v2.8 and
the Sentinel Application Platform (SNAP 7.0). The Multispec-
tral Instrument (MSI) sensor provides 13 spectral bands, i.e.,
four bands at 10 m (Blue, Green, Red, NIR), six bands at 20
m (Vegetation Red Edge 1–3, Narrow NIR, SWIR 1–2), and
three atmospheric bands at 60 m spatial resolution. With the
exception of the atmospheric bands, all bands were used in
this article. Bands at 20 m resolution were resampled to 10 m
via nearest sampling. A scene classification map was generated
for each image along with the Level-2A processing, which as-
signed pixels to clouds, cloud shadows, vegetation, soils/deserts,
water, snow, etc. According to the scene classification map,
low-quality observations belonging to clouds (including cirrus),
cloud-shadows, and snow were discarded when extracting the
annual time series of each pixel. Each selected sample should
include at least three clear observations. The total number of
samples in each evaluation dataset is displayed in Table I.

VII. EXPERIMENTAL RESULTS

A. Evaluation Criteria and Methods

We compared the performance of different evaluated algo-
rithms with the following metrics derived from the confusion
matrix [18]:

1) Overall Accuracy (OA): This metric represents the propor-
tion of correctly classified samples in all tested samples,
and is computed by dividing the number of correctly
classified samples by the total number of test samples.

2) Kappa Coefficient: This metric is considered to be a con-
sistency measure between the classification result and the
ground truth. Kappa coefficient is generally considered
to be more robust than OA as it takes into account the
possibility of agreement occurred solely by chance.

3) Average Accuracy (AA): This metric is an objective in-
dicator of classification accuracy on unbalanced datasets.
AA is calculated by dividing the sum of the accuracy for
all classes by the number of classes, where the accuracy
(i.e., the producer’s accuracy) is the number of correctly

TABLE I
NUMBERS OF SAMPLES IN THE THREE FINE-TUNING DATASETS

classified samples divided by the number of total samples
of each class.

To assess the effectiveness of the proposed network, we
compared it with five methods that are widely employed in SITS
classification. For traditional machine learning algorithms, we
selected SVM and RF classifiers. SVM is widely considered
as a powerful technique for classification tasks, while RF has
some advantages such as short training time, easy parameteri-
zation, and high robustness to high-dimensional input features
[13], [63]. Concerning deep learning models, we selected three
approaches that performed well in previous SITS classification
studies: CNN-1D (1-D CNN) [21], LSTM [22], [23], and bidi-
rectional LSTM (Bi-LSTM) [64], [65]. These architectures have
been proven to have advantages to capture temporal dependen-
cies in sequential data.

1) SVM: We used a SVM classifier with radial basis function
(RBF) kernel. The hyperplane parameters C and γ were
optimized in a logarithmic grid from 10-2 to 102.

2) RF: We optimized a RF classifier using a varied number
of trees in the forest. The optimal number of trees was
selected in the set of {100, 200, 300, 400, 500}.

3) CNN-1D: A three-layer CNN-1D network was used in the
experiment [21], which was formed by three convolutional
layers (128 units), one dense layer (256 units), and one
softmax layer. The kernel size of all convolutional layers
was set to 5. Dropout was used after each convolutional
layer with a dropout rate of 0.5.

4) LSTM: A three-layer stacked LSTM network was used,
which was formed by three LSTM layer (256 units) and

482 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

one softmax layer. Dropout was used after each LSTM
layer with a dropout rate of 0.5.

5) Bi-LSTM: A three-layer stacked Bi-LSTM network was
used [66], which was formed by three Bi-LSTM layers
(128 units) and one softmax layer. The outputs at each
timestep from both forward and backward directions were
concatenated and used the input of the next layer. Dropout
was used after each layer with a dropout rate of 0.5.

SVM and RF handle a multivariate time series as a flat vector
information, where the dimensionality of the input features
should be identical. Hence, we padded the time series to the
maximum length by filling in the missing observations with
zeros. For deep learning models, we used the same observation
embedding layer to encode the input observations. SVM and RF
were implemented using the Python Scikit-Learn library, while
all deep learning methods were implemented using the Python
PyTorch library. Experiments were carried out on a workstation
with an Intel Xeon Silver CPU 4210R 20-Core (2.40GHz) with
128 GB of RAM and a NVIDIA TITAN RTX 24G GPU.

In order to simulate real-world scenarios, we randomly se-
lected 100 samples per category from each dataset to create the
training and validation sets, respectively, and used all the residual
samples for testing. The training set was used for training or
fine-tuning pretrained models, and the validation set was used
for choosing hyper-parameters (e.g., training epochs). It is worth
mentioning that we did not follow the standard paradigm for
method evaluation, which splits all data into training-validation-
test set at certain rates. In our setting, the data distributions of
training samples and test samples may be different. The main
purpose of this is to verify the effectiveness of the proposed
pretraining scheme under small-sample conditions.

B. Model Configuration

In this section, we evaluate the performance of three SITS-
BERT variants to derive sequence-level representations. To ver-
ify whether the pretraining scheme is effective, we also trained
each SITS-BERT variant from scratch using only labeled data
(we refer to such models as “non-pre-trained” models). The three
variants are described as follows.

1) SITS-BERT using the [CLS] token: In this case, the fine-
tuned hidden representation of the [CLS] token was re-
garded as a representation of the entire input time series.
We refer to such competitor as “SITS-BERTCLS.”

2) SITS-BERT using average pooling: In this case, the hidden
representations of all the observations in a time series
were averaged and used for classification. We refer to such
competitor as “SITS-BERTAVG.”

3) SITS-BERT using max pooling: In this case, the maximum
value for the hidden representations along the time dimen-
sion was computed and used for classification. We refer
to such competitor as “SITS-BERTMAX.”

The classification results are shown in Table II, and the
confusion matrices are given in the Supplementary Materials.
We observe that for all variants, the pretrained models remark-
ably outperform their randomly initialized versions (except for
SITS-BERTAVG in the third dataset). Specifically, the proposed

TABLE II
CLASSIFICATION ACCURACY COMPARISON OF DIFFERENT SITS-BERT

VARIANTS ON THE THREE DATASETS

pretraining scheme leads to an averaged accuracy increment of
2.97%, 1.88%, 2.58% for OA, 0.034, 0.023, 0.045 for Kappa
coefficient, and 0.030, 0.029, 0.068 for AA on each dataset, re-
spectively. The accuracy improvement on the latter two datasets
indicates that unsupervised pretraining does produce positive
transfer, that is, the representations learned from large-scale un-
labeled data can be transferred to new context, thereby improves
the performance of the model on label-scarce downstream tasks.
We also find that SITS-BERTMAX exceeds other variants in
term of OA and Kappa coefficient, while SITS-BERTCLS yields
higher AA than SITS-BERTMAX in the latter two datasets, show-
ing that SITS-BERTMAX is more advantageous for handling
imbalanced classification problems.

C. Method Comparison

In this section, we compare the performance of SITS-BERT
with other algorithms for the SITS classification. We used SITS-
BERTMAX as the default model configuration. The term “SITS-
BERT” hereinafter refers to the pretrained SITS-BERTMAX. All
other deep learning models were trained from scratch for 300
epochs with a learning rate of 2e−4 and a batch size of 128.
The classification accuracy assessment for the three datasets are
displayed in Table III, and the confusion matrices are given in
the Supplementary Materials.

A major finding is that both CNN and RNN networks yield
comparable or even worse results than traditional methods
(SVM and RF), while the non-pre-trained SITS-BERT performs
slightly better than traditional methods on the latter two datasets.
Apart from the proposed model, RF performs best overall, rank-
ing first on the latter two datasets. This suggests that for small
datasets, sophisticated deep learning models have no substantial
advantages over traditional machine learning methods in SITS
classification tasks. This is likely due to the serious overfit-
ting problem that occurs when training deep neural networks
on insufficient labeled samples, even though transformer and

YUAN AND LIN: SELF-SUPERVISED PRETRAINING OF TRANSFORMERS FOR SATELLITE IMAGE TIME SERIES CLASSIFICATION 483

TABLE III
CLASSIFICATION ACCURACY COMPARISON OF DIFFERENT METHODS ON THE

THREE DATASETS

CNN-1D seem to be more robust to overfitting compared to
LSTM-based networks.

In general, SITS-BERT outperforms other competitors re-
markably in terms of all indicators. Specifically, compared with
the RF baseline, SITS-BERT increases OA by 5.27%, 2.38%,
3.35%, Kappa coefficient by 0.061, 0.029, 0.053, and AA by
0.056, 0.018, 0.026 on each dataset, respectively. The results
highlight that the risk of overfitting utilizing deep neural net-
works can be largely reduced by starting from a pretrained
model. Moreover, according to the confusion matrices, SITS-
BERT exhibits a notably lower rate of misclassifications for
complicated and heterogeneous categories compared to other
methods. For instance, in the first dataset, pistachios is easily
confused with evergreen forest; the proposed method achieves
a 20 points gain in the producer’s accuracy with respect to the
second best method (SVM). In the third dataset, while cropland
has extremely high intraclass variability, the proposed method
also achieves nine points of gain with respect to the second best
method (RF).

To better visualize the classification results of different meth-
ods, we selected a 3000 × 3000 area of interest (ROI) in each
study area for testing. The classification results are shown in
Figs. 9–11. It can be seen that for crop classification tasks, the
results obtained by SITS-BERT are more consistent with the
reference data and the salt and pepper effect is negligible. For
the land cover mapping task, apart from SITS-BERT, all deep
learning methods exhibit a high confusion between cropland and
grassland. The large misclassifications of the two categories (i.e.,
cropland and grassland) may come from errors in the reference
data, which underlines the fact that the pretrained model exhibits
relatively higher robustness to noisy labels.

D. Effect of the Pretraining Scheme on Other Models

The proposed pretraining scheme may be widely effective
for a number of deep learning models. In this section, we

TABLE IV
CLASSIFICATION ACCURACY OF PRETRAINED AND NON-PRE-TRAINED

BI-LSTM NETWORKS ON THE THREE DATASETS

validate its ability on CNN-1D and Bi-LSTM. For CNN-1D, we
utilized zero-padding to keep the sequence length unchanged.
Both models were pretrained on the same pretraining dataset and
then fine-tuned on each target dataset. The same pretraining/fine-
tuning configurations used for SITS-BERT were adopted. The
accuracy assessment is shown in Table IV, and the confusion
matrices are given in the Supplementary Materials.

We observe that for all datasets, the classification accuracy
of pretrained models is improved from their non-pre-trained
versions. In particular, the pretraining scheme brings an averaged
increment of 2.58% OA and 5.42% OA to CNN-1D and Bi-
LSTM, respectively. The results demonstrate that the proposed
pretraining scheme also works for CNNs and RNNs for SITS
classification.

In addition, we observe that the performance gain of Bi-LSTM
is larger than that of CNN-1D on all datasets, indicating that
the proposed pretraining scheme seems to be more effective for
transformers and LSTM-based networks than for CNNs. This
may be attributed to transformer and LSTM’s ability in capturing
long-term dependencies between observations. In detail, LSTM
encodes the whole time series by receiving each observation
once a timestep, and utilizes internal gates to control the update
of the memory content. Transformer reads the entire time series
at once and calculates dependencies between each observation
and all other observations through the self-attention mechanism.
In contrast, CNN can only capture observation dependencies
within the width of its filters. In other words, it can only
model contextual information within a local neighborhood. This
character makes it inferior to transformers and LSTM-based
networks for temporal feature extraction.

E. Influence of the Number of Labeled Samples

It is well known that the number of training samples can
affect classification performance, but its influence on pretrained
models is unknown. In this section, we fine-tuned the pretrained
CNN-1D, Bi-LSTM, and SITS-BERT with different numbers of
labeled samples, varied from 50 to 500 per category, and took RF
(300 trees) as a baseline for comparison. The results are depicted
in Fig. 12.

We observe that all the pretrained deep learning models sig-
nificantly outperform RF and the non-pre-trained model, among

484 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

Fig. 9. Crop classification results of different methods in the first study area (California). (1) Ground truth. (2) SVM. (3) Random forest (RF). (4) Long-short
term memory (LSTM). (5) Bidirectional LSTM (Bi-LSTM). (6) Non-pre-trained SITS-BERT. (7) SITS-BERT.

Fig. 10. Crop classification results of different methods in the second study area (Missouri). (1) Ground truth. (2) SVM. (3) RF. (4) LSTM. (5) Bi-LSTM. (6)
Non-pre-trained SITS-BERT. (7) SITS-BERT.

YUAN AND LIN: SELF-SUPERVISED PRETRAINING OF TRANSFORMERS FOR SATELLITE IMAGE TIME SERIES CLASSIFICATION 485

Fig. 11. Land cover classification results of different methods in the third study area (Beijing). (1) Ground truth. (2) SVM. (3) RF. (4) LSTM. (5) Bi-LSTM. (6)
Non-pre-trained SITS-BERT. (7) SITS-BERT.

Fig. 12. Classification accuracy of SITS-BERT and the RF baseline using
varied training samples. Evaluation metrics in each row from left to right: Overall
accuracy (OA), Kappa coefficient, and average accuracy (AA).

which SITS-BERT surpasses all other competitors in all datasets.
It is worth noting that the accuracy of SITS-BERT fine-tuned
on only 50 labeled samples per category is comparable with
the accuracy of RF trained on ten times more samples for the
first and second datasets. Specifically, the best OA yielded by

RF are 93.33% and 97.58% on the first and second dataset,
respectively, while the worst OA yielded by SITS-BERT are
93.26% and 98.24%. Two main conclusions can be drawn: first,
the experiments confirm and clarify the effectiveness of self-
supervised pretraining using varied numbers of labeled samples;
and second, the transformer architecture has advantages over
CNNs and RNNs for satellite time series classification.

In contrast, although the non-pre-trained SITS-BERT per-
forms slightly better than RF on the first two datasets, it performs
much worse on the third dataset. In addition, it is not guaranteed
that the accuracy of non-pre-trained SITS-BERT will improve
as the number of training samples increases, indicating that
randomly initialized deep neural networks give much more
unstable results.

F. Computational Efficiency

In practice, SITS classification methods need to be applied
to millions of satellite time series. Therefore, the computational
efficiency of deep learning models should be taken into consid-
eration. In this section, we compare the computation speeds of
several deep learning models. The results are given in Table V.

According to the results, CNN-1D is the fastest, followed
by LSTM-based models, and SITS-BERT is the slowest on a
single GPU. Specifically, the computation speed of CNN-1D is
about 19% faster than SITS-BERT. For Bi-LSTM, which has
shown competitive performance in our previous experiments,
it is also 5% faster than SITS-BERT. Fortunately, an advantage
of transformer is that the computation can be parallelized

486 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

TABLE V
COMPUTATION SPEED (TIME SERIES PER SECOND) OF DIFFERENT METHODS

on multiple GPUs. Thanks to the self-attention mechanism
in transformers, the attention weights for all positions in a
sequence can be calculated simultaneously, whereas a recurrent
layer should be computed successively after the output of the
previous layer is obtained [28]. Therefore, SITS-BERT is better
suited for massive parallel computations on modern machine
learning acceleration hardware.

VIII. CONCLUSION

In this article, we proposed a simple but powerful self-
supervised pretraining scheme for the SITS classification. The
aim was to leverage large volumes of unlabeled SITS data
to learn robust and transferable spectral-temporal features to
facilitate label-scarce downstream tasks. We also introduced
a transformer-based neural network architecture, named SITS-
BERT, for the SITS classification.

The evaluation on three benchmark datasets have revealed
that the proposed pretraining scheme is generally effective
for several deep learning models, i.e., CNN, Bi-LSTM, and
transformer. The experiments support our hypothesis that the
representations learned from large-scale unlabeled data can
produce positive transfer, thereby improves the performance
and generalization ability of deep learning models on a specific
SITS classification task. In addition, the results also demonstrate
that the transformer network exceeds CNNs and RNNs for
SITS classification.

We would like to emphasize that the pretraining data we used
in this article are far from enough to fully exploit the potential
of transformers. Nevertheless, the proposed approach is easily
scaled to far larger datasets with very low costs, since no human-
annotated labels are required during the pretraining stage.

Since the main purpose of this article was to validate the
effectiveness of self-supervised learning for SITS, we put em-
phasis on the characteristics of spectral profiles of individual
pixels while ignored the spatial correlation information between
pixels. In the future, it will be of interest to incorporate spatial
information into our framework to learn more discriminant
features.

REFERENCES

[1] D. Ienco, R. Interdonato, R. Gaetano, and M. D. H.. Tong, “Combining
Sentinel-1 and Sentinel-2 satellite image time series for land cover map-
ping via a multi-source deep learning architecture,” ISPRS J. Photogramm.
Remote Sens., vol. 158, pp. 11–22, Dec. 2019.

[2] P. Jonsson and L. Eklundh, “Seasonality extraction by function fitting to
time-series of satellite sensor data,” IEEE Trans. Geosci. Remote Sens.,
vol. 40, no. 8, pp. 1824–1832, Aug. 2002.

[3] C. Gómez, J. C. White, and M. A. Wulder, “Optical remotely sensed time
series data for land cover classification: A review,” ISPRS J. Photogramm.
Remote Sens., vol. 116, pp. 55–72, 2016.

[4] S. Rapinel, C. Mony, L. Lecoq, B. Clement, A. Thomas, and L. Hubert-
Moy, “Evaluation of Sentinel-2 time-series for mapping floodplain grass-
land plant communities,” Remote Sens. Environ., vol. 223, pp. 115–129,
Mar. 15 2019.

[5] M. J. Lambert, P. C. S. Traore, X. Blaes, P. Baret, and P. Defourny, “Esti-
mating smallholder crops production at village level from Sentinel-2 time
series in Mali’s cotton belt,” Remote Sens. Environ., vol. 216, pp. 647–657,
Oct. 2018.

[6] E. Grabska, P. Hostert, D. Pflugmacher, and K. Ostapowicz, “Forest stand
species mapping using the Sentinel-2 time series,” Remote Sens., vol. 11,
no. 10, May 2019, Art. no. 1197.

[7] J. Inglada, A. Vincent, M. Arias, B. Tardy, D. Morin, and I. Rodes,
“Operational high resolution land cover map production at the country
scale using satellite image time series,” Remote Sens., vol. 9, no. 1,
Jan. 2017, Art. no. 95.

[8] W. T. Yang, Y. Q. Wang, S. Sun, Y. J. Wang, and C. Ma, “Using Sentinel-2
time series to detect slope movement before the Jinsha river landslide,”
Landslides, vol. 16, no. 7, pp. 1313–1324, Jul. 2019.

[9] M. Sudmanns, D. Tiede, L. Wendt, and A. Baraldi, “Automatic ex-post
flood assessment using long time series of optical earth observation im-
ages,” GI_Forum., vol. 1, pp. 217–227, 2017.

[10] Y. Yuan et al., “A new framework for modelling and monitoring the
conversion of cultivated land to built-up land based on a hierarchical
hidden semi-Markov model using satellite image time series,” Remote
Sens., vol. 11, no. 2, Jan. 2019, Art. no. 210.

[11] M. Immitzer, F. Vuolo, and C. Atzberger, “First experience with Sentinel-2
data for crop and tree species classifications in central Europe,” Remote
Sens., vol. 8, no. 3, Mar. 2016, Art. no. 166.

[12] E. Kamir, F. Waldner, and Z. Hochman, “Estimating wheat yields in Aus-
tralia using climate records, satellite image time series and machine learn-
ing methods,” ISPRS J. Photogramm. Remote Sens., vol. 160, pp. 124–135,
Feb. 2020.

[13] C. Pelletier, S. Valero, J. Inglada, N. Champion, and G. Dedieu, “Assessing
the robustness of random forests to map land cover with high resolution
satellite image time series over large areas,” Remote Sens. Environ.,
vol. 187, pp. 156–168, 2016.

[14] Q. Hu et al., “How do temporal and spectral features matter in crop clas-
sification in Heilongjiang province, China?,” J. Integrative Agriculture,
vol. 16, no. 2, pp. 324–336, 2017.

[15] L. H. Nguyen, D. R. Joshi, D. E. Clay, and G. M. Henebry, “Characterizing
land cover/land use from multiple years of landsat and MODIS time
series: A novel approach using land surface phenology modeling and
random forest classifier,” Remote Sens. Environ., vol. 238, Mar. 2020, Art.
no. 111017.

[16] R. Hang, Q. Liu, D. Hong, and P. Ghamisi, “Cascaded recurrent neural
networks for hyperspectral image classification,” IEEE Trans. Geosci.
Remote Sens., vol. 57, no. 8, pp. 5384–5394, 2019.

[17] D. Hong, L. Gao, J. Yao, B. Zhang, A. Plaza, and J. Chanussot, “Graph con-
volutional networks for hyperspectral image classification,” IEEE Trans.
Geosci. Remote Sens., to be published, doi: 10.1109/TGRS.2020.3015157.

[18] D. Hong et al., “More diverse means better: Multimodal deep learning
meets remote-sensing imagery classification,” IEEE Trans. Geosci. Re-
mote Sens., to be published, doi: 10.1109/TGRS.2020.3016820.

[19] L. H. Zhong, L. N. Hu, and H. Zhou, “Deep learning based multi-temporal
crop classification,” Remote Sens. Environ., vol. 221, pp. 430–443,
Feb. 2019.

[20] N. Kussul, M. Lavreniuk, S. Skakun, and A. Shelestov, “Deep learning
classification of land cover and crop types using remote sensing data,”
IEEE Geosci. Remote Sens. Lett., vol. 14, no. 5, pp. 778–782, May 2017.

[21] C. Pelletier, G. I. Webb, and F. Petitjean, “Temporal convolutional neural
network for the classification of satellite image time series,” Remote Sens.,
vol. 11, no. 5, Mar. 2019, Art. no. 523.

[22] D. Ienco, R. Gaetano, C. Dupaquier, and P. Maurel, “Land cover clas-
sification via multitemporal spatial data by deep recurrent neural net-
works,” IEEE Geosci. Remote Sens. Lett., vol. 14, no. 10, pp. 1685–1689,
Oct. 2017.

[23] M. Rußwurm and M. Korner, “Temporal vegetation modelling using
long short-term memory networks for crop identification from medium-
resolution multi-spectral satellite images,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., Jul 2017, pp. 11–19.

[24] P. Benedetti, D. Ienco, R. Gaetano, K. Ose, R. G. Pensa, and S. Dupuy,
“M3Fusion: A deep learning architecture for multiscale multimodal mul-
titemporal satellite data fusion,” IEEE J. Sel. Topics Appl. Earth Observ.
Remote Sens., vol. 11, no. 12, pp. 4939–4949, 2018.

[25] R. Interdonato, D. Ienco, R. Gaetano, and K. Ose, “DuPLO: A DUal view
point deep learning architecture for time series classification,” ISPRS J.
Photogramm. Remote Sens., vol. 149, pp. 91–104, Mar. 2019.

https://dx.doi.org/10.1109/TGRS.2020.3015157
https://dx.doi.org/10.1109/TGRS.2020.3016820

YUAN AND LIN: SELF-SUPERVISED PRETRAINING OF TRANSFORMERS FOR SATELLITE IMAGE TIME SERIES CLASSIFICATION 487

[26] M. Rußwurm and M. Körner, “Multi-temporal land cover classification
with sequential recurrent encoders,” ISPRS Int. J. Geoinf., vol. 7, no. 4,
2018, Art. no. 129.

[27] V. S. Garnot, L. Landrieu, S. Giordano, and N. Chehata, “Time-space
tradeoff in deep learning models for crop classification on satellite multi-
spectral image time series,” in Proc. IEEE Int. Geosci. Remote Sens. Symp.,
Jul. 2019, pp. 6247–6250.

[28] A. Vaswani et al., “Attention is all you need,” in Proc. Neural Inf. Process.
Syst., Dec. 2017, pp. 5998–6008.

[29] V. S. F. Garnot, L. Landrieu, S. Giordano, and N. Chehata, “Satellite
image time series classification with pixel-set encoders and temporal
self-attention,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun
2020, pp. 12325–12334.

[30] M. Rußwurm and M. Körner, “Self-attention for raw optical satellite
time series classification,” 2019. [Online]. Available: https://arxiv.org/abs/
1910.10536

[31] H. Bazzi, D. Ienco, N. Baghdadi, M. Zribi, and V. Demarez, “Distilling
before refine: Spatio-temporal transfer learning for mapping irrigated areas
using Sentinel-1 time series,” IEEE Geosci. Remote Sens. Lett., vol. 17,
no. 11, pp. 1909–1913, Nov. 2020.

[32] D. Ienco, Y. J. Eudes Gbodjo, R. Interdonato, and R. Gaetano, “Attentive
weakly supervised land cover mapping for object-based satellite image
time series data with spatial interpretation,” 2020. [Online]. Available:
https://arxiv.org/abs/2004.14672

[33] R. Raina, A. Battle, H. Lee, B. Packer, and A. Y. Ng, “Self-taught learning:
Transfer learning from unlabeled data,” in Proc. IEEE Int. Conf. Mach.
Learn., Jun. 2007, pp. 759–766.

[34] L. Jing and Y. Tian, “Self-supervised visual feature learning with deep
neural networks: A survey,” IEEE Trans. Pattern Anal. Mach. Intell., to
be published, doi: 10.1109/TPAMI.2020.2992393.

[35] R. Zhang, P. Isola, and A. A. Efros, “Colorful image colorization,” in Proc.
Eur. Conf. Comput. Vis., Oct 2016, pp. 649–666.

[36] M. Noroozi and P. Favaro, “Unsupervised learning of visual representa-
tions by solving jigsaw puzzles,” in Proc. Eur. Conf. Comput. Vis., Oct.
2016, pp. 69–84.

[37] M. Caron, P. Bojanowski, A. Joulin, and M. Douze, “Deep clustering for
unsupervised learning of visual features,” in Proc. Eur. Conf. Comput. Vis.,
Sep. 2018, pp. 132–149.

[38] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple framework for
contrastive learning of visual representations,” 2020. [Online]. Available:
https://arxiv.org/abs/2002.05709

[39] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training
of deep bidirectional transformers for language understanding,” 2018.
[Online]. Available: https://arxiv.org/abs/1810.04805

[40] Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. R. Salakhutdinov, and
Q. V. Le, “XLNet: Generalized autoregressive pretraining for lan-
guage understanding,” in Proc. Neural Inf. Process. Syst., Dec. 2019,
pp. 5753–5763.

[41] Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, and R. Soricut,
“ALBERT: A lite BERT for self-supervised learning of language repre-
sentations,” 2019. [Online]. Available: https://arxiv.org/abs/1909.11942

[42] A. Elshamli, G. W. Taylor, A. Berg, and S. Areibi, “Domain adaptation
using representation learning for the classification of remote sensing
images,” IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens., vol. 10,
no. 9, pp. 4198–4209, Sep. 2017.

[43] X. Tang, X. Zhang, F. Liu, and L. Jiao, “Unsupervised deep feature
learning for remote sensing image retrieval,” Remote Sens., vol. 10, no. 8,
Aug. 2018, Art. no. 1243.

[44] Y. T. Tao, M. Z. Xu, F. Zhang, B. Du, and L. P. Zhang, “Unsupervised-
restricted deconvolutional neural network for very high resolution remote-
sensing image classification,” IEEE Trans. Geosci. Remote Sens., vol. 55,
no. 12, pp. 6805–6823, Dec. 2017.

[45] X. Q. Lu, X. T. Zheng, and Y. Yuan, “Remote sensing scene classification
by unsupervised representation learning,” IEEE Trans. Geosci. Remote
Sens., vol. 55, no. 9, pp. 5148–5157, Sep. 2017.

[46] X. Wang, K. Tan, Q. Du, Y. Chen, and P. J. Du, “CVA2E: A conditional
variational autoencoder with an adversarial training process for hyperspec-
tral imagery classification,” IEEE Trans. Geosci. Remote Sens., vol. 58,
no. 8, pp. 5676–5692, Aug. 2020.

[47] X. Ma, Y. Lin, Z. Nie, and H. Ma, “Structural damage identification
based on unsupervised feature-extraction via variational Auto-encoder,”
Measurement, vol. 160, Aug 2020, Art. no. 107811.

[48] D. Y. Lin, K. Fu, Y. Wang, G. L. Xu, and X. Sun, “MARTA GANs:
Unsupervised representation learning for remote sensing image classifi-
cation,” IEEE Geosci. Remote Sens. Lett., vol. 14, no. 11, pp. 2092–2096,
Nov. 2017.

[49] R. Hang, F. Zhou, Q. Liu, and P. Ghamisi, “Classification of hyperspec-
tral images via multitask generative adversarial networks,” IEEE Trans.
Geosci. Remote Sens., to be published.

[50] S. Wang, D. Quan, X. Liang, M. Ning, Y. Guo, and L. Jiao, “A deep learning
framework for remote sensing image registration,” ISPRS J. Photogramm.
Remote Sens., vol. 145, pp. 148–164, 2018.

[51] H. Dong, W. Ma, Y. Wu, J. Zhang, and L. Jiao, “Self-supervised rep-
resentation learning for remote sensing image change detection based
on temporal prediction,” Remote Sens., vol. 12, no. 11, Jun. 2020, Art.
no. 1868.

[52] S. Vincenzi et al., “The color out of space: Learning self-supervised
representations for earth observation imagery,” 2020. [Online]. Available:
https://arxiv.org/abs/2006.12119

[53] J. He, L. Zhao, H. Yang, M. Zhang, and W. Li, “HSI-BERT: Hyperspec-
tral image classification using the bidirectional encoder representation
from transformers,” IEEE Trans. Geosci. Remote Sens., vol. 58, no. 1,
pp. 165–178, Jan. 2020.

[54] X. Shen, B. Liu, Y. Zhou, J. Zhao, and M. Liu, “Remote sensing image cap-
tioning via variational autoencoder and reinforcement learning,” Knowl.
Based Syst., vol. 203, 2020, Art. no. 105920.

[55] K. He, X. Zhang, S. Ren, and J. Sun, “Identity mappings in deep residual
networks,” 2016. [Online]. Available: https://arxiv.org/abs/1603.05027

[56] J. Lei Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,” 2016.
[Online]. Available: https://arxiv.org/abs/1607.06450

[57] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, “Extracting and
composing robust features with denoising autoencoders,” in Proc. IEEE
Int. Conf. Mach. Learn., Jul. 2008, pp. 1096–1103.

[58] B. G. Baldwin, “Origins of plant diversity in the California floristic
province,” Annu. Rev. Ecol. Evol. Syst., vol. 45, no. 1, pp. 347–369, 2014.

[59] L. Zhong, T. Hawkins, G. Biging, and P. Gong, “A phenology-based
approach to map crop types in the San Joaquin Valley, California,” Int.
J. Remote Sens., vol. 32, no. 22, pp. 7777–7804, Nov 2011.

[60] USDA National Agricultural Statistics Service Cropland Data Layer. 2019.
Published crop-specific data layer. USDA-NASS, Washington, DC, USA.
Accessed May 2020. [Online]. Available: https://nassgeodata.gmu.edu/
CropScape/

[61] W. Liu, S. Gopal, and E. F. Wood, “Uncertainty and confidence in land
cover classification using a hybrid classifier approach,” Photogramm. Eng.
Remote Sens., vol. 70, no. 8, pp. 963–971, Aug. 2004.

[62] P. Gong et al., “Stable classification with limited sample: Transferring a
30-m resolution sample set collected in 2015 to mapping 10-m resolution
global land cover in 2017,” Sci. Bull., vol. 64, no. 6, pp. 370–373, 2019.

[63] A. Chakhar, D. Ortega-Terol, D. Hernandez-Lopez, R. Ballesteros, J. E.
Ortega, and M. A. Moreno, “Assessing the accuracy of multiple classifi-
cation algorithms for crop classification using Landsat-8 and Sentinel-2
data,” Remote Sens., vol. 12, no. 11, Jun. 2020, Art. no. 1735.

[64] L. Lin, “Satellite image time series classification and change detection
based on recurrent neural network model,” Doctor Eng. China, Univ.
Chinese Acad. Sci., 2018.

[65] H. Wang, X. Zhao, X. Zhang, D. Wu, and X. Du, “Long time series land
cover classification in China from 1982 to 2015 based on Bi-LSTM deep
learning,” Remote Sens., vol. 11, no. 14, 2019, Art. no. 1639.

[66] M. Schuster and K. K. Paliwal, “Bidirectional recurrent neural networks,”
IEEE Trans. Signal Process., vol. 45, no. 11, pp. 2673–2681, Nov 1997.

Yuan Yuan (Member, IEEE) received the B.S. de-
gree in geography from Nanjing University, Nanjing,
China, in 2011 and the Ph.D. degree in signal and in-
formation processing from Institute of Remote Sens-
ing and Digital Earth, Chinese Academy of Sciences,
Beijing, China, in 2016.

She is currently working at Nanjing University of
Posts and Telecommunications, Department of Sur-
veying and Geoinformatics. Her research interests
include remote sensing time series analysis, change
detection, and deep learning.

Lei Lin received the B.S. degree in geographic in-
formation system from Shandong Agricultural Uni-
versity, Taian, China, in 2013, the Ph.D. degree in
signal and information processing from Institute of
Remote Sensing and Digital Earth, Chinese Academy
of Sciences, Beijing, China, in 2018.

He is currently working at Qihoo Technology Cor-
poration. His research interests include time series
analysis and natural language processing.

https://arxiv.org/abs/1910.10536
https://arxiv.org/abs/2004.14672
https://dx.doi.org/10.1109/TPAMI.2020.2992393
https://arxiv.org/abs/2002.05709
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1909.11942
https://arxiv.org/abs/2006.12119
https://arxiv.org/abs/1603.05027
https://arxiv.org/abs/1607.06450
https://nassgeodata.gmu.edu/CropScape/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

