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Learning Point-Guided Localization for Detection in
Remote Sensing Images

Qing Song , Fan Yang , Lu Yang , Chun Liu , Mengjie Hu , and Lurui Xia

Abstract—Object detection in remote sensing images is chal-
lenging due to the dense distribution and arbitrary angle of the
objects. It is a consensus that the oriented bounding box (OBB)
is more suitable to represent the aerial objects. However, there
are some extreme cases in regression-based OBB detection that
make the regression target discontinuous, resulting in the poor
performance. In this article, an analysis of the formats of OBB
and the problems in its regression is presented, following with an
exploration of transform localization from regression to keypoint
estimation, which could be applied to avoid the problem of discon-
tinuous regression target. Our novel method is called Object-wise
Point-guided Localization Detector (OPLD). Continuously, a new
prediction of center-point is introduced to refine the results, as
the truncation problem caused by the cut graph. Lastly, in order
to figure the problem of inconsistency between the localization
quality and the classification score, both the endpoint scores and
the classification score are adopted weighting as a result score.
Experimental results are based on two widely used datasets, i.e.,
DOTA and HRSC2016. OPLD achieve 76.43% mAP and 78.35%
mAP in OBB and horizontal bounding boxes tasks of DOTA-v1.0,
which achieves state-of-the-art performance, respectively. Project
page at https://github.com/yf19970118/OPLD-Pytorch.

Index Terms—Convolutional neural network, deep learning,
oriented object detection, remote sensing.

I. INTRODUCTION

OBJECT detection is an essential task in computer vision,
which can be decoupled into object classification and

location. In recent years, many detectors based on deep convo-
lution neural networks have made great progress in the field of
natural images. According to the different localization methods,
it can be roughly divided into regression-based methods and
keypoint-based methods. The regression-based method [1]–[4]
obtains the starting point of regression through manual setting or
model detection, which can be the bounding box or the center-
point of the bounding box, one or more refinement through
the predicted offset will be implemented. The keypoint-based
method [5]–[7] detects all points on the entire image used to
represent the bounding box and then groups them to obtain the
final result.
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Unlike natural images that are usually taken from a horizontal
angle, remote sensing images are bird’s-eye views, and the
objects in the images are arbitrary oriented and may be clus-
tered. The horizontal bounding box (HBB) used by the general
detection cannot accurately calibrate the position of the object,
and when the object appears densely, the adjacent HBB will be
filtered by NMS [8]. Many works [9]–[12] have explored the
use of oriented bounding box (OBB) and have made significant
progress. Among these methods, regression-based detection is
the mainstream.

However, the regression-based OBB detector always suffers
from the regression targets discontinuity problem. The OBB
formats commonly used in the remote sensing field are rotated
bounding box (RBB) and quadrilateral bounding box (QBB),
which set up rules to uniquely determine an OBB for each set
of parameters, as shown in Fig. 1(a) and (b), respectively. Yet,
there are some extreme cases in these rules, in which a slight
change in angle may lead to a completely different expression.
If the boxes before and after the change are simulated as candi-
dates and match the same ground-truth, the completely different
expressions cause a sudden change in regression targets, which
is not conducive to the learning of the detector. Fig. 1(c) and (d)
shows unsatisfied detection in these extreme cases.

In this article, the regression targets discontinuity problems of
two mainstream OBB formats in a regression-based detector are
discussed. After that, a keypoint-based detection method [13] is
introduced. By directly detecting the skew box’s endpoints, the
original offset regression is transformed into a unique point-
guided keypoint estimation. The direct prediction of bound-
ing box endpoints on the whole image poses a problem of
difficult combination due to the obscure object features and
a large number of similar objects in remote sensing images.
With the help of region proposal network (RPN), we first
obtain the horizontal circumscribed rectangle of each object,
then classify and detect the keypoints inside the proposal. At
this time, each endpoint corresponds to an object uniquely,
avoiding point combination in the mainstream keypoint-based
detector. Our method is entirely dependent on the visible ap-
pearance of the object. For the truncation problem caused by
the prevailing image clipping of remote sensing images, an
extra center-point prediction is added for postprocessing. For
the inconsistency between the final score and location quality
caused by using classification confidence as the score of de-
tection results, the final score is corrected by the endpoint’s
location score. Through introducing a new pipeline with po-
tential solutions to the problems mentioned above, the method
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Fig. 1. Commonly used OBB formats in aerial objects detection and their
problems in regression-based methods. (a) RBB definition. (b) QBB definition.
(c) Extreme cases in RBB regression. (d) Extreme cases in QBB regression.

in this article has achieved satisfactory results in DOTA [14] and
HRSC2016 [15].

The major contributions of this study are as follows.
1) We introduce a detection pipeline that directly predicts

the endpoint of the quadrilateral. By converting the original
offset regression into unique point-guided keypoint estimation
for localization, our method avoids discontinuous regression
targets and achieves the state-of-the-art performance.

2) We add the center point prediction in the network and use
it for center-point postprocessing (CPP) to solve the endpoint
loss problem caused by remote sensing image cropping.

3) We use the average localization score of the OBB endpoints
to correct the classification score to obtain the final score, which
improves the correlation between classification confidence and
localization quality.

II. RELATED WORK

Current object detection consists of anchor-based and anchor-
free detector. Furthermore, the former can be divided into one
stage and two stages methods, and the latter one falls into
keypoint-based and center-based methods. The keypoint-based
detecter is based on keypoint estimation, while the others are
based on regression.

A. General Object Detection

Faster R-CNN [16] dominates the two-stage detector, which
can be divided into an RPN and a region-wise prediction network
(R-CNN). Since then, there have been many works that have
improved their performance in different ways. OHEM [17]
selects some RoIs with the largest loss as training samples to
optimize network parameters. HyperNet [18] and FPN [19]
integrates feature maps at different levels so that high-level
semantic information features and low-level detailed features
complement each other. Cascade R-CNN [3] reforms the tradi-
tional cascade connection, the output of each stage got optimized

corresponding different intersection of union (IoU) thresholds.
SNIP [20] introduces an image pyramid to obtain images of
different sizes, and only the gradient of the RoI corresponding to
the size of the training data of the pretraining model is returned.
Mask R-CNN [21] and Parsing R-CNN [22], [23] added an extra
task branch to enriching supervising information. TridentNet
[24] built three parallel branches with different receptive fields,
each branch is responsible for samples within a certain scale.
After the appearance of YOLOv2 [1] and SSD [25], the one-
stage detectors show their great advantage on the computational
efficiency. DSSD [26] upsamples feature maps and detects small
objects on lower layers to improve the performance for small
objects. RefineDet [27] put two-step regression into a one-stage
framework, generating more accurate refined anchors to improve
the detector performance. In recent years, the anchor-free de-
tector has become popular. The center-based method obtains
the initial regression state through the model rather than uses
hyperparameters to generate. GA-RPN [28] defines the pixels
in the center region of the object as positives to predict the
location, width, and height of proposals. FCOS [4] regards all
the locations inside the object bounding box as positives with
four distances to four borders and a novel centerness score to
detect objects.

Keypoint-based methods follow the standard keypoint es-
timation pipeline, that is, detecting all keypoints of different
objects and then grouping them. CornerNet [5] uses the upper
left and lower right corners of HBB to represent an object.
After detecting the upper left and lower right corners of all
objects in the image, it determines whether the two corners are
from the same object by embedding. CenterNet [6] adds extra
center-point prediction based on CornerNet. By judging whether
there is a center keypoint of the same category in the center area
of a pair of corner points, the box with an incorrect group is
filtered. ExtremeNet [7] uses four poles (left-most, top-most,
right-most, and bottom-most) and the center-point to represent
an object. Given four extreme points, if their geometric center is
predicted with the high response in the center map, then commits
the extreme points as a valid detection. Reppoints [29] represents
objects as a set of sample points and learns to arrange themselves.
There are often a large number of dense [30] and similar-looking
objects in remote sensing images, which brings great difficulty
to group keypoints. Our method uses the four endpoints of OBB
as key points, and the proposals generated by RPN ensure that
every four endpoints directly correspond to a particular object,
avoiding the problem of grouping.

B. Oriented Object Detection in Remote Sensing Images

In addition to horizontal object detection [31], [32], some
works have explored oriented object detection. The RBB or QBB
is often used to represent the object in the remote sensing image,
and the mainstream detector takes localization as a regression
task. FR-O [14] and ICN [33] use RPN [16] generation hori-
zontal proposals, directly regress the offset of OBB relative to
HBB, and the enormous gap makes performance unsatisfactory.
R-DFPN [34] refers to RRPN [9], generates a large number of
proposals with angle information, and then returns the offset
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of OBB relative to these oriented RoIs. Although regression is
simpler, the exponentially increasing proposals and the corre-
sponding skew IoU bring a huge calculation burden. RoI Trans-
former [10] proposes RoI learner that converts the horizontal
RoIs generated by RPN into oriented RoIs and then performs
feature extraction and refinement on it. Gliding Vertex [12] uses
QBB to represent objects, regressions the offset from the four
endpoints of QBB to the corresponding endpoints of its horizon-
tal circumscribed rectangle. Some works have also borrowed
ideas from semantic segmentation [35]. APE [36] generates
candidate bounding boxes from the shrunk segmentation map of
the OBB, which is the same as EAST [37]. Segmentation maps
with eight channels are predicted in the RPN stage to represent
rotated proposals for regression. Unlike the regression-based
method mentioned above. Our method directly predicts the four
endpoints of the quadrilateral, changing the localization from a
regression problem to a keypoint estimation problem.

C. Detection Score Correction

Previous works have proved that the classification score and
localization quality of the two-stage network are not strongly
related. Some works are devoted to correct the final detection
score. Tychsen-Smith et al. [38] regard the IoU between the
predicted box and ground truth as a classification task, and uses
the predicted IoU to correct the detection score. IoU-Net [39]
directly regresses IoU that is used for both score and bounding
box correction. SoftNMS [40] uses the IoU between predicted
boxes to corrects the box with a low score by replacing the orig-
inal score with a slightly lower score instead of directly setting
zero. CPM R-CNN [41] proposed a fused scoring network to
predict the IoU score and combined it with the classification
score. The methods mentioned above introduce a large amount
of calculation in the process of calculating IoU. Object-wise
Point-guided Localization Detector (OPLD) uses class agnostic
keypoints estimation to obtain endpoints of the OBB. High
response in the heatmap means that the corresponding position
is highly likely to be an endpoint. Therefore, the localization
quality of the box is measured by the mean response of four
endpoints inside, which can be combined with the classification
score to provide a more reasonable detection score.

III. METHOD

A. Motivation

The mainstream regression-based aerial object detector
matches a ground truth for each proposal during training and
encodes the offset between them as the supervision information
of regression. Whether RBB or QBB, there will be extreme cases
in this process, which cause the regression targets discontinuity
problem.

RBB is an oriented rectangle that can be determined by
(x, y, w, h, θ), its determination rules are shown in Fig. 1(a).
The center-point of RBB is the same as that of OBB. Take the
lowest point of OBB as the origin, rotate the horizontal axis
counterclockwise, the first side touched is w, the other side is h,
and the angle rotated is θ. To obtain more accurate prediction

Fig. 2. Discontinuity of regression target in regression-based detection. Given
a certain proposal (black box), we rotate it counterclockwise by an angle as its
target (blue box). The graph on the right shows the IoU of the two boxes and the
smooth L1 Loss calculated using the offsets between them.

results through larger weighting, the regression objectives of
RBB are as follows:

tx = 10× xg − xp

wp
, ty = 10× yg − yp

hp

tw = 5× log
wg

wp
, tw = 5× log

hg

hp

tθ = 5× (θg − θp) ∗ π
180

(1)

where x, y, w, h, θ denote the RBB’s center-point coordinates,
width, height, and angle, respectively. Variables xg and xp

correspond to ground-truth and proposal, respectively.
QBB is an irregular quadrilateral determined by four coor-

dinate vectors, and the first point is determined under specific
rules. Fig. 1(b) shows the starting point determination rule used
in DOTA [14], that is, the closest point to the top left corner is
the first point. In this article, the regression objectives of QBB
are as follows:

txi
= 10× xgi − xpi

wpi

, tyi
= 10× ygi − ypi

hpi

, i ∈ [0, 1, 2, 3].

(2)
To express the discontinuity of the regression target more

intuitively, we use smooth L1 loss that is commonly used in
bounding box regression to calculate the loss. In the case of
different rotation angles, the IoU between two boxes and the
resulting loss is shown in Fig. 2.

The extreme situation of RBB regression occurs when the
bounding box near the horizontal. When an OBB reaches the
level and continues to rotate counterclockwise, the box’s length
and width will be reversed, and the angle will change from 90◦

to 0◦. The extreme situation of QBB regression occurs at around
45◦. At this time, the distance between the two endpoints and
the upper left corner of the horizontal circumscribed rectangle
is almost identical. A slight change of the angle will confuse
the order of endpoints, resulting in the supervision points’ dis-
location. We rotate the box in Fig. 2 by 45◦ as a new proposal,
and use the same method to generate its targets. The change of
supervision information can be seen in Table I.

We believe that a detector should extract similar features for
similar objects. Considering that the starting point of QBB is
completely determined by the spatial information, we introduce
a direct prediction method of QBB endpoint based on keypoint
estimation.
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Fig. 3. Pipeline of our method. OPLD mainly consists of four parts: backbone with FPN for feature extraction, RPN for candidates proposals prediction,
classification branch for background filtering and the endpoint branch for generating heatmaps to locate the endpoints of OBB. “P ” and “C” represent the number
of endpoints to predict and the number of channels used to predict each point.

TABLE I
REGRESSION TARGET CHANGES DRAMATICALLY WHEN THE SUPERVISION

POINTS ARE MISPLACED

A positive angle represents a counterclockwise rotation.

B. Overall Pipeline

The pipeline of OPLD is shown in Fig. 3, which is a two-
stage detector. We employ a backbone with FPN [19] to extract
features of input images. Since the features of objects in bird’s-
eye view are not apparent and there may be a large number of
similar targets in remote sensing images, RPN [16] is adopted
to limit the region for keypoint estimation, which avoids the
grouping in mainstream keypoint-based detection. Considering
the computational burden brought by skew IoU calculation, what
will be predicted in RPN is horizontal enclosing rectangle of the
object rather than RBB in RRPN [9]. The proposals are sent to
the classification branch that is entirely consistent with faster
R-CNN [16] to obtain category and classification confidence.
After nonmaximum suppression (NMS), the positive proposals
that are predicted as objects are selected for keypoint estimation
in the subsequent branch.

The endpoint branch is a fully convolutional architecture that
can capture the spatial information explicitly. The RoI features
from RoI align [21] are converted into feature maps with the
shape of 14× 14× P × C by N convolution layers, where
P is the number of predicted points, and C is the number of
channels used to predict each point. After up-sampling by two
deconvolution layers, P heatmaps with a resolution of 56× 56
are obtained, which are category agnostic and correspond to
different endpoints. After softmax, the response hpij

∈ (0, 1)
represents the probability that the position(i, j) on the p heatmap
is p endpoint.

During training, the positive samples’ decision condition
of the endpoint branch is that the IoU between proposal and
ground-truth is greater than 0.5, which is consistent with the
classification branch. As shown in Fig. 4, a proposal (the blue
bounding box) cannot cover the matched OBB’s endpoints,
and the lack of supervision point leads to inefficient utilization

Fig. 4. To ensure the endpoints inside heatmap, the proposal (blue) will be
expanded to double the size (orange) before mapping.

of training samples. While in the inference stage, by simply
choosing the maximum response on the heatmap, we may obtain
a completely incorrect location due to the ground truth endpoint
is outside the proposal. To ensure that all endpoints can be
mapped on heatmap without introducing additional interference
information, the side length of the proposal is doubled before
mapping, while the region for RoI feature extraction is still the
same. Then, each heatmap has a corresponding supervision map,
the point (Ix, Iy) in origin image will be mapped to the point
(Hx, Hy) in supervision map by

Hx =
Ix − Px

wh
× 2wp

Hy =
Iy − Py

hh
× 2hp

(3)

where (Px, Py) is the position of the upper left corner of the
proposal in the input image, wh and hh are the width and height
of the supervision map, wp and hp are the width and height of
the proposal.

Following the abovementioned mapping, all target endpoints
of positive proposals will be covered by the corresponding region
of the supervision map. After getting endpoint (Hx, Hy), a
positive region was determined with r as the radius, and the
rest region was negative. We use BCE loss for optimization.
Therefore, the training objectiveness of the whole network is

Lall = λ1Lrpn + λ2Lcls + λ3Lendpoint (4)

Lendpoint = BCELoss(hg, h) (5)
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Fig. 5. Different midpoint of OBB. (a) Truncated OBB’s center-point is far
from the center-point of RBB. (b) Rotated circumscribed rectangle of truncated
OBB(white) is almost the same as RBB.

where hg represents the groud-truth heatmaps, h represents the
predicted heatmaps. Lrpn and Lcls are consistent with faster R-
CNN [16].

In the Inference stage, we select the pixel with the highest
confidence on each predicted heatmap and calculate the corre-
sponding location on the original image as the endpoint. We can
get the final detection by direct connecting the four endpoints.

C. Center-Point Postprocessing

Despite directly predict the endpoints of QBB is more flexible
and intuitive, it is also limited by the image boundary. In the
field of aerial object detection, oversized images are clipped into
patches before fed into the network. When an object is truncated
in the clipping process, its retention depends on the IoU. Only
those objects with small truncated parts are retained. Even so,
the approximate OBB of the remaining part will deform, and the
missing part of the appearance cannot be predicted in OPLD.

As shown in Fig 5, we find that the RBB center point (blue)
of the complete object, the center point (red, green) of the two
diagonal lines of QBB, and the center point (black) of the four
endpoints of QBB almost coincide. The distance between the
four points of the truncated object increases over the growth
of the truncation degree. In contrast, RBB’s center point can
more accurately express the center of the complete object, and
the rotated circumscribed rectangle of the incomplete QBB is
basically the same as that of the complete QBB.

Therefore, in addition to the four points of QBB, the RBB
center point is also added to the keypoint estimation. In the
inference stage, a small central region is obtained by taking the
predicted center point of the network as a benchmark and scaling
the width and height of the proposal. The determination rules
for the central region are

xtl = xctr − wp

2n

ytl = yctr − hp

2n

xbr = xctr +
wp

2n

ybr = yctr +
hp

2n

(6)

Fig. 6. Inconsistency between localization quality and classification score in
OPLD.

where (xtl, ytl)denote the coordinates of the top-left corner of the
central area, and (xbr, ybr) denote the coordinates of the bottom-
right corner of the area. (xctr, yctr) is the center point predicted
by the endpoints branch. wp and hp denote width and height
of the proposal. n is a constant that determines the scale of the
central area.

For proposals with an area less than 15 625,n= 10, otherwise
n= 15. If the center points of the two diagonals of the bounding
box are not in the region, it is considered that the box needs to be
corrected. The four endpoints of the result box are transformed
into its rotated circumscribed rectangle and then back to QBB
to obtain the final result.

D. Detection Score Correction

In OPLD, the classification score is derived from the horizon-
tal circumscribed rectangle, and the final result is the QBB inside
it, which further increases the gap between classification score
and localization quality. It may lead to the situation that detection
results with low localization quality but high classification scores
filter out the results with low classification confidence at the
final NMS, even though these results are more accurately in
localization, as shown in Fig. 6.

We use a straightforward weighted calculation to combine the
classification score with the localization quality. The response on
the heatmap output from the endpoint branch reflects the local-
ization confidence. In the case of higher confidence, the more
accurate the endpoint localization, and the more the number
of accurate endpoints, the more accurate the composite box is.
Therefore, the average responses at the four endpoints are used as
the localization quality of OBB. Since the endpoint predictions
are category agnostic, the classification scores obtained from the
classification branch are calculated together to obtain the final
detection score

scoredet = α× scorecls + β × mean(scoreendpoint) (7)

where scorecls is the confidence derived from the classification
branch, scoreendpoint is the maximum response value on each heat
map. To satisfy the definition of probability, α+ β = 1.

IV. EXPERIMENTS

Our experiment is based on Pytorch, implemented on a server
with four blocks of 12GB memory TITAN X (Pascal) GPU,
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and evaluated on DOTA [14] and HRSC2016 [15]. The ablation
study was conducted on DOTA, which is a challenging arbitrary
oriented object detection dataset.

A. Datasets and Protocols

1) DOTA: DOTA is one of the largest aerial object detection
datasets. It contains 2806 images of 800× 800 to 4000× 4000,
and 15 categories of 188 282 examples are annotated by a quadri-
lateral, including plane (PL), baseball diamond (BD), bridge
(BR), ground track field (GTF), small vehicle (SV), large vehicle
(LV), ship (SH), tennis court (TC), basketball court (BC), storage
tank (ST), soccer ball field (SBF), roundabout (RA), harbor
(HA), swimming pool (SP), helicopter (HC). The training set,
validation set, and test set account for 1/2, 1/6, and 1/3 of the
entire dataset. The results of DOTA are obtained by submitting
predictions to the official DOTA evaluation server.

Multiscale training and testing, data augmentations that are
widely used in the DOTA leaderboard are applied when d with
state-of-the-art detectors. We resize the original images at two
scales (0.5 and 1.0) before dividing the images into patches.
After resizing, we divide the resized images into 1024× 1024
patches with an overlap of 200 in both the training and infer-
ence stage. With all these processes, we obtain about 27 600
patches to train. Each image is randomly resized to one size
of {800, 912, 1024} and rotated an angle from an angle set
{0◦, 90◦, 180◦, 270◦} with a probability of 0.5 in training stage.

2) HRSC2016: HRSC2016 is a dataset for ship detection in
remote sensing images. It has 1061 images annotated with RBB,
including 436 images for training, 181 images for validation,
and 444 for testing. The image size ranges from 300× 300
to 1500× 900 pixels. These images are not oversized, so we
directly predict the four endpoints without the center point used
in postprocessing. We convert RBB to QBB by taking the point
closest to the given bow coordinate as the starting point. We use
random rotation as used in DOTA for training, and resize it to
(1024, 1333) in both the training and testing stage, where 1024
represents the short side of the image, and 1333 is the longest
side of the image. We use the standard VOC-style AP metrics
with an IoU threshold of 0.5 to evaluate.

B. Implement Detail

We use ResNet50/101 [42] based FPN [19] as the backbone,
which is pretrained on ImageNet [43]. For FPN, we use pyramid
levels {P2, P3, P4, P5, P6}, which have strides of {4, 8, 16, 32,
64} respect to the input image. There is no special design adopted
in RPN, different anchor aspect ratios {1:2, 1:1, 2:1} are adopted
at each level, five anchor scales of {322, 642, 1282, 2562, 5122}
are corresponding to five pyramid levels, so we get 15 anchors
over the pyramid. We apply RoIAlign to generate RoI features
and set the output resolution 7 in the classification branch and
14 in the endpoint branch. For supervision map generation, the
radius of the positive region is 3.

We use SGD with a weight decay of 0.0001 and a momentum
of 0.9 with a total of eight images per mini-batch (2 images per
GPU). We train 12 epochs in total with an initial learning rate

Fig. 7. Visualization of OPLD results, the red point is the starting point.

TABLE II
COMPARISON OF OPLD WITH RRPN IN SPEED

of 0.01 and decrease it by a factor of 0.1 at epoch 9 and 11. In
joint loss function, we set λ1 = 1, λ2 = 1, λ3 = 15.

In the inference stage, RPN produces 2000 RoIs for RoIAlign
and classification per image. Thereafter, we apply NMS with a
0.4 IoU threshold to select positive proposals, which send to
the endpoint branch for QBB prediction and uses Quadrilateral-
NMS with a threshold of 0.2 to produce the final result.

C. Baseline

Our baseline uses ResNet50-FPN without any data augmenta-
tion. As mentioned before, the regression-based OBB detection
suffers from the regression targets discontinuity problem, which
leads to unsatisfactory results in some cases. OPLD changes ob-
ject localization from regression to keypoint estimation, directly
predicting the QBB endpoint for each object.

For objects with special head features, such as vehicles and
airplanes, each point’s location can be easily found, as shown in
Fig. 7(a). For objects lacking head features, such as playgrounds
and swimming pools, following the QBB starting point determi-
nation rule used in DOTA, OPLD can also learn the starting point
expression derived from spatial features, as shown in Fig. 7(b).
Whether an object is horizontal or inclined at 45◦, our method
can detect it well.

To avoid the heavy calculation burden brought by Skew IoU
and NMS, we predicted the horizontal circumscribed rectangle
of the object in the RPN stage and then predicted the OBB
through the subsequent branches. Compared with the same
two-stage method but using oriented RoIs, as shown in Table II,
we have an advantage in speed.

However, the horizontal external rectangle of oriented objects
always contains some background, which also inevitably brings
it into RoI features. The use of these rectangles also brings two
typical failure cases. The first one occurs when a part with the
same appearance enters RoI, an endpoint may be detected as a
corresponding one of another object, as shown in Fig. 8(a). This
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TABLE III
DIFFERENT PARAMETERS ON DOTA-V1.0 DATASET

All result is based on ResNet50-FPN without data augmentation.

Fig. 8. Some typical failure predictions of our method. (a) Occurs when an
object with the same appearance is mixed in the RoI feature. (b) Occurs when
there are other small objects near the large object.

is consistent with the problems faced by mainstream methods
based on keypoint estimation. The use of RPN has helped us
alleviate this problem, but it has not been entirely resolved. The
other occurs when there are many objects near a large object.
We map the endpoints to the heatmap and determine the positive
region by a radius. The appearance of adjacent objects may
also be in this area, which makes the detector unable to learn
the endpoint position of the large target correctly, as shown in
Fig. 8(b).

D. Comparison With Different Parameters

In this section, we will do a series of comparative experiments
based on ResNet50-FPN without data augmentation to analyze
the influence of different parameter settings.

1) Radius of Positive Region: The training of the endpoint
branch in OPLD is guided by the supervision map discussed in
Section III-B. Taking the point mapped from the image as the
center and r is the radius, a circle is determined as a positive
region. The impact of the radius is summarized in Table III(a).
It is too strict for OPLD that only predicting the mapping point,
so a radius of the positive region is necessary. With the increase
of r, the performance of OPLD increases until the radius is 4.

2) Weight of Localization: When using joint loss as training
objectiveness, the weight of each loss determines the importance
of different tasks. Detection is a combination of classification
and location, so we set λ1 and λ2 to 1 by default and explore
different λ3 in Table. III(b). It is necessary to assign a high

weight to the localization task, but when it is high enough, the
performance is not so sensitive to this parameter.

E. Ablation Study

Ablation experiments were also performed. All models are
based on ResNet50-FPN without data augmentation to ensure
accuracy. As shown in Table IV, Our baseline gets 69.81 mAP
for OBB task, and achieves 71.37 mAP by using proposed CPP
and score-weighting (SW).

1) CPP: In the experiment, we found that the CPP not only
solve the object truncation problem but also correct some low-
quality detection results. To verify the effectiveness of CPP,
we also experimented with all the detection results conversion
processing. Table IV(b) shows the performance improvement of
the different postprocessing methods: the total postprocessing
improved AP50 by 0.40, while CPP improved by 0.61. The ad-
ditional improvement indicates that our central point judgment
condition is meaningful.

2) Score Correlation: Only taking the classification score as
the final score cannot adequately reflect the localization quality.
We use the average value of each endpoint’s response on the
heatmap as the localization quality of the OBB and get the
detection score by weighting the classification score to ensure
that both classification and localization are taken into account.
Table IV(c) shows the influence of different weight coefficients
on the detector.

The additional localization score makes the accuracy increase
significantly, and slight weight changes make no difference. If
we only consider the localization quality, there will be a signif-
icant decrease in detection performance because the endpoints
score does not contain the classification information at all.

F. Comparison With State-of-the-Art Detectors

We compare our proposed OPLD with the state-of-the-art
algorithms on two datasets DOTA [14] and HRSC2016 [15].

1) DOTA: We compare OPLD with the state-of-the-art meth-
ods on OBB and HBB tasks of DOTA dataset in Tables V and VI.
To ensure the fairness of comparison, we adopt ResNet101-FPN
as the backbone and compare it with the similar backbone
method. All data augmentations that we used are explained in
IV-A1. Our OPLD achieved 76.43 and 78.35 mAP in OBB and
HBB tasks, respectively. When comparing category by category,
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TABLE IV
ABLATION EXPERIMENTS ON DOTA-V1.0 DATASET

TABLE V
QUANTITATIVE COMPARISON OF OBB TASK ON DOTA-V1.0 DATASET

TABLE VI
QUANTITATIVE COMPARISON OF HBB TASK ON DOTA-V1.0 DATASET

TABLE VII
EVALUATION RESULTS OF THE OBB TASK ON THE HRSC2016 DATASET

OPLD is outstanding in bridge, ship, ground-track field, and
harbor. The first two categories have a high aspect ratio, which
makes the training of regression difficult to converge. In the pro-
posal generation stage, predicting the horizontal circumscribed
rectangle instead of the OBB greatly alleviates this problem.
The harbor is usually not a regular rectangle, so the predicted
quadrilateral boundary box can better fit it. However, the per-
formance on the soccer-ball field and helicopter is obviously
worse than the leading method. We found that many soccer-ball
fields are classified as ground track field, and helicopters are
classified as ships. The classifier of OPLD is not strong enough to
distinguish them. We thought that the weight in joint loss affects
the performance of the classifier. Besides, It is worth noting that
some of the compared methods, such as FADet and SCRDet,
use attention mechanism [57]–[59], and some of them, such as
mask OBB, use Inception module [60], [61]. These methods will

generally bring improvement, but we did not use them. Some
visualization results on OBB tasks can be found in Fig. 9.

2) HRSC2016: The results on HRSC2016 are shown in Ta-
ble VII. We use ResNet50-FPN as the backbone to maintaining
the fairness of comparison. This dataset gives the OBB annota-
tions in the form of RBB and the position of the bow. It should
be noted that the bow position is visually determined and is
usually not at the endpoint of the bounding box. In the process
of converting RBB to QBB, we find that both the left and right
bow endpoints may be the starting point when we choose the
point closest to the bow as the starting point, which is very
detrimental to our method. We use OpenCV’s order, and the
results are much better, but still not good enough. OPLD is not
much improved compared to other methods, but considering the
aforementioned problems, this result is still acceptable. Some
visualization results on the HRSC2016 can be found in Fig. 10.
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Fig. 9. Visualization of detection results using OPLD on OBB task of DOTA. The threshold for visualization is 0.4. The corresponding colors of different types
of objects are shown in the figure.

Fig. 10. Visualization of detection results using OPLD on OBB task of
HRSC2016. Ships of different appearances are counted as one category.

V. CONCLUSION

In this article, we analyze the regression targets discontinuity
problem in the regression-based detection in remote sensing
images and propose OPLD, which transforms localization from
a regression problem to a keypoint estimation problem. Besides,
we also used CPP to solve the problem of limited expression of
QBB, and found that it can slightly improve the detection results
of poor localization quality in experiments; for the problems of
low correlation between the quality of localization and detec-
tion caused by using classification score as the final score in

mainstream methods, we use a simple SW but got a significant
improvement. The experimental results based on DOTA and
HRSC2016, state-of-the-art performance on DOTA prove the
effectiveness of our method in oriented aerial object detection.
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