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Abstract—Cloud computing has become a promising solution
to efficient processing of remotely sensed big data, due to its
high-performance and scalable computing capabilities. However,
existing cloud solutions generally involve the problems of low re-
source utilization and high energy consumption when processing
large-scale remote sensing datasets, affecting the quality-of-service
of the cloud system. Aiming at hyperspectral image classifica-
tion applications, this article proposes an energy-efficient cloud
implementation by employing a multiobjective task scheduling
algorithm. We first present a parallel computing mechanism for
a fusion-based classification method based on Apache Spark. With
the general classification flow represented by a workflow model,
we formulate a multiobjective scheduling framework that jointly
minimizes the total execution time as well as energy consumption.
We further develop an effective scheduling algorithm to solve the
multiobjective optimization problem and produce a set of Pareto-
optimal solutions, providing the tradeoff between computational
efficiency and energy efficiency. Experimental results demonstrate
that the multiobjective scheduling approach proposed in this work
can substantially reduce the execution time and energy consump-
tion for performing large-scale hyperspectral image classification
on Spark. In addition, our proposed algorithm can generate bet-
ter tradeoff solutions to the multiobjective scheduling problem as
compared to competing scheduling algorithms.

Index Terms—Energy consumption, hyperspectral image
classification, makespan, multiobjective optimization, task
scheduling.

I. INTRODUCTION

HYPERSPECTRAL remote sensing has been popularly
used in a variety earth observation fields such as envi-

ronment monitoring, object identification, and military defense

Manuscript received June 30, 2020; revised October 10, 2020; accepted
November 3, 2020. Date of publication November 10, 2020; date of current
version January 6, 2021. This work was supported in part by the National Natural
Science Foundation of China under Grant 61872185 and Grant 61772274, in
part by the Natural Science Foundation of Jiangsu Province of China under
Grant BK20180018, in part by the Fundamental Research Funds for the Central
Universities under Grant 30919011402 and Grant 30920021132, and in part
by the Jiangsu Planned Projects for Postdoctoral Research Funds under Grant
2019K025. (Corresponding authors: Yi Zhang; Heng Li.)

Jin Sun, Heng Li, Yi Zhang, Yang Xu, Yaoqin Zhu, Zebin Wu, and
Zhihui Wei are with the School of Computer Science and Engineering,
Nanjing University of Science and Technology, Nanjing 210094, China
(e-mail: sunj@njust.edu.cn; liheng@njust.edu.cn; yzhang@njust.edu.cn;
xuyangth90@gmail.com; zhuyaoqin@163.com; zebin.wu@gmail.com;
gswei@njust.edu.cn).

Qitao Zang is with the Hangzhou Hikvision Digital Technology Co., Ltd.,
Hangzhou 310051, China (e-mail: zangqitao@163.com).

Digital Object Identifier 10.1109/JSTARS.2020.3036896

[1]–[3]. Hyperspectral sensors can now simultaneously measure
hundreds of contiguous spectral bands with high spectral reso-
lution. Due to the large data volume and high computational
complexity of hyperspectral image applications, the processing
of hyperspectral data, which generally involves computation-
and data-intensive operations, naturally becomes a big data
problem [4]. Motivated by the increasing demand for hyper-
spectral big data analytics, there emerges many research studies
oriented toward the parallel implementation of hyperspectral im-
age applications on cloud computing architectures [5]–[7]. The
fundamental idea is to use the distributed file system to cope with
the storage of hyperspectral big data, and utilize the distributed
computing scheme to support the intensive computation during
the processing flow.

In this article, we intend to illustrate the use of cloud comput-
ing architectures to tackle the problem of large-scale hyperspec-
tral data processing. We focus on the problem of hyperspectral
image classification, which is one of the most important and
representative techniques for hyperspectral image interpretation.
Recently, spatial-spectral classification methods [8]–[11] have
demonstrated their advantages by exploiting spatial-contextual
information in combination with spectral information via a pre-
processing or postprocessing procedure. For instance, Lu et al.
[12] introduced a general fusion-based approach for hyperspec-
tral image classification that uses different types of features to
achieve highly discriminative information. Despite the promis-
ing discriminative capability, this category of classification
methods in general have very high computational complexity
due to their complicated processing flows, and would suffer from
extremely long computation time when processing large-scale
hyperspectral datasets. As hyperspectral data volume continues
to increase, computational efficiency is of greater importance to
processing massive hyperspectral data by using these advanced
techniques. Considering the heavy computational load from
hyperspectral applications as well as the scalable computing
capabilities provided by cloud computing, it is necessary to
develop cloud-based solutions to accelerate the processing of
large-scale hyperspectral datasets.

As revealed in a recent study, task scheduling strategies are
of great importance to improving the utilization rate of cloud
computing resources and in turn the computational efficiency
of remote sensing applications [13]. The underlying idea is to
characterize the application flow as a workflow model consisting
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of many subtasks, e.g., directed acyclic graph (DAG), and exploit
the parallelisms within and among tasks through an optimized
assignment of tasks onto computing resources. In this study,
the attention of task scheduling is limited to minimizing the
completion time of all tasks, which is formally defined as the
application’s makespan [14]. However, energy consumption is
another challenging problem and becomes more and more se-
vere in today’s cloud datacenters [15]–[17]. As reported in the
literature, the electricity demand by datacenters accounts for ap-
proximately one percent of all electricity consumed worldwide
[18]. Therefore, it is crucial to incorporate the energy efficiency
concern into task scheduling algorithms for executing the remote
sensing applications on cloud computing architectures.

In this article, we propose an energy-efficient cloud imple-
mentation of hyperspectral image classification by means of
a multiobjective task scheduling algorithm. We first present a
cloud implementation of a fusion-based classification method
based on Apache Spark. By employing the MapReduce dis-
tributed computing scheme [19], we develop the parallel com-
puting mechanisms for the N-FINDR hyperspectral image un-
mixing method [20] and the support vector machine (SVM)
classifier [21], which are two main operations during the clas-
sification process. With the general classification flow rep-
resented by a DAG model, we formulate a multiobjective
scheduling framework that jointly minimizes the total execu-
tion time as well as energy consumption by determining the
most appropriate task assignment solution. We further develop
an effective scheduling algorithm based on the immune al-
gorithm (IA) optimization framework [22], [23] to solve the
multiobjective optimization problem. The proposed multiob-
jective IA (MOIA) scheduling strategy is capable of produc-
ing a set of tradeoff solutions, providing the tradeoff between
computational efficiency and energy efficiency. Specifically,
the main contributions of this article can be summarized as
follows.

1) We develop a parallel implementation to accelerate
the N-FINDR unmixing method and the SVM classi-
fier in a fusion-based hyperspectral image classification
application on Apache Spark.

2) We formulate a multiobjective scheduling framework that
incorporates both the execution time and energy con-
sumption for processing the classification flow as the
optimization objectives.

3) We propose an effective algorithm MOIA to solve the
multiobjective scheduling problem and produce Pareto-
optimal solutions to achieve the joint optimization of
computational efficiency and energy efficiency.

We perform extensive experiments to justify the efficacy of
our proposed scheduling method. Experimental results demon-
strate that MOIA can substantially reduce the execution time
and energy consumption for hyperspectral image classification.
In addition, MOIA can generate high-quality tradeoff solutions
as compared to competing scheduling algorithms.

The reminder of this article is organized as follows. Sec-
tion II discusses related work. Section III presents the cloud
implementation of a fusion-based classifier for hyperspectral
image classification. Sections IV and V detail the formulation
of the multiobjective scheduling model and the proposed MOIA

algorithm, respectively. Section VI presents performance eval-
uation results. Finally, Section VII concludes this article.

II. RELATED WORK

This section provides a brief discussion about existing cloud-
based solutions to facilitating the processing of remotely sensed
big data on cloud computing architectures. In addition, since the
cloud implementation in this work is based on a task scheduling
strategy, we also briefly discuss those generally used scheduling
strategies that are closely related to the proposed multiobjective
scheduling algorithm.

A. Cloud-Based Remote Sensing Big Data Processing

With the development of remote sensing satellites and sensing
instruments, the amount of remotely sensed data is increasing
at an extremely fast velocity. The traditional single-machine
platform can no longer cope with the processing of large-scale
remote sensing datasets, due to the lack of storage and computing
capabilities. Cloud computing has the superior advantages of
distributed storage and scalable computing capabilities, and
therefore, provides an ideal platform for efficient processing of
remote sensing big data applications.

Quirita et al. [24] proposed a distributed framework for su-
pervised classification of remote sensing big data on a cloud
computing architecture. This framework consists of three ab-
straction layers and supports the definition and implementation
of applications by researchers in different fields. By allocating
storage and computing resources depending on the data volume,
this framework can effectively handle large-scale remote sensing
datasets. Pan and Zhang [25] developed a cloud system based
on Hadoop for remote sensing image analysis. On the one hand,
this system redefines the data structures that specifically fit into
the features of remote sensing images. On the other hand, this
systems integrates several Java programs that are implemented
based on the MapReduce scheme, such that the remote sensing
applications can be adapted to the cloud computing environ-
ment. Haut et al. [26] presented a cloud implementation of the
popular K-means algorithm for hyperspectral image analysis.
Taking the advantages of cloud computing architecture, this
implementation can process massive hyperspectral image data
sets efficiently.

The abovementioned approaches focus on solely exploiting
data-level parallelism by data partitioning, and therefore, cannot
tackle remote sensing applications with complicated workflow
structure, such as the fusion-based hyperspectral image classi-
fier studied in this work. Sun et al. [13] first proposed using
scheduling strategies to exploit task-level parallelism for en-
hancing the computational efficiency. However, this scheduling
strategy does not take into account the consideration of energy
consumption. In a distinct manner, the multiobjective scheduling
algorithm in this work attempts to minimize both the makespan
of hyperspectral image classification and the energy consumed
by the cloud computing resources simultaneously. The schedul-
ing solution obtained by our scheduling algorithm is beneficial
for achieving the overall quality-of-service of the cloud system.
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B. Task Scheduling in Cloud Computing Environments

Cloud computing can effectively solve the problem of massive
data processing by means of data partitioning and distributed
computing. In cloud computing environments, task scheduling
strategies are of vital importance to the performance of the
cloud system and have been intensively studied in the literature.
Task scheduling is to determine the optimal assignment of tasks
onto virtual machines (VMs), which are the essential processing
elements in cloud computing, with various scheduling objec-
tives including load balancing, makespan minimization, en-
ergy efficiency, etc. Task scheduling strategies can be generally
classified into two categories: batch scheduling algorithms and
metaheuristic scheduling algorithms. Batch schedulers arrange
all tasks in a certain order and allocate tasks in a sequential
order. Typical batch scheduling algorithms include first come
first service [27], short job first [28], and round robin. Although
this type of scheduling algorithms are easy to implement and
cost effective, they are in general incapable of remote sensing
applications due to the huge data volume and complicated pro-
cessing flow. Alternatively, metaheuristic algorithms are more
preferred for solving task scheduling problems in this scenario.

It is worth discussing several multiobjective scheduling al-
gorithms that rely on swarm intelligence algorithms, a category
of metaheuristic algorithms, to solve scheduling problems in
cloud computing environments. For instance, Gabi et al. [29]
proposed a multiobjective task scheduling algorithm based on
cat swarm optimization and simulated annealing algorithm. This
approach uses execution time, execution cost, and service quality
as indicators jointly to analyze the scheduling performance.
Zheng et al. [30] presented a multiobjective scheduling method
based on an improved differential evolution (DE) algorithm.
By setting adaptive parameters and redefining crossover and
selection operators, the improved DE algorithm can address the
limitation of slow convergence rate in traditional DE algorithms.
Alkayal et al. [31] proposed an multiobjective task scheduling
approach based upon the particle swarm optimization (PSO)
framework. The optimization objectives are to minimize waiting
time and to maximize system throughput. In this multiobjective
PSO algorithm, a new ranking strategy is incorporated to prior-
itize tasks when allocating tasks onto VMs.

In this article, by analyzing the workflow of the parallel
implementation of a fusion-based classification application, we
develop a IA-based multiobjective task scheduling algorithm
to jointly optimization the application’s makespan and energy
consumption. IA is a metaheuristic algorithm with advantages
in population diversity, robustness, and global convergence, and
thereby is suitable for solving the multiobjective scheduling
problem studied in this work with high-quality tradeoff solu-
tions.

III. CLOUD IMPLEMENTATION OF A FUSION-BASED

CLASSIFICATION METHOD

This section studies a fusion-based hyperspectral image clas-
sification method proposed by Lu et al. [12] and develops a cloud
implementation to support its distributed processing on Spark.
This method extracts multiple features from hyperspectral image
at subpixel level, pixel level, and super-pixel level, respectively.

The kernels of the obtained features at three different levels are
fused to form a composite kernel, which is incorporated with an
SVM classifier to classify each pixel of the hyperspectral image.
This fusion-based classifier takes full advantage of multiple fea-
tures at different levels, leading to high classification accuracy.
However, due to the large amount of hyperspectral data and
massive matrix calculation, heavy computation burden would
be incurred when applying this method to process large-scale
datasets.

In this article, we develop the following strategies to facil-
itate the distributed processing of this fusion-based classifier
on Spark. On the one hand, in the step of subpixel-level feature
extraction, we replace the original constrained energy minimiza-
tion algorithm [32] by the N-FINDR unmixing model. N-FINDR
is one of the most widely used unmixing algorithms in the
field of hyperspectral imagery. Its main idea is to calculate the
largest simplex volume in the feature space of hyperspectral
data. The endmembers on the vertices of the simplex volume
can be identified as the endmember set required for hyperspectral
image classification. N-FINDR is very effective in hyperspectral
image unmixing especially when the number of endmembers to
be extracted is determined. More importantly, the unmixing flow
of N-FINDR involves many operations that can be performed in
parallel and can be easily adapted for cloud implementation [33].
On the other hand, at model training phase, SVM algorithm is
in requirement of grid search and cross validation to determine
the optimal combination of hyperparameters. Considering that
there are many repeated and independent operations in this
procedure, we can implement parallel search relying on the
distributed computing scheme in cloud computing. It is worth
mentioning that, other unmixing methods and classifiers, such
as vertex component analysis [34], also can be incorporated into
this cloud implementation, as long as the computation load of
these methods can be divided and distributed across multiple
computing nodes to facilitate parallel processing.

A. Parallel Implementation of N-FINDR Unmixing Model

The N-FINDR unmixing model mainly consists of the
following three parts:

1) perform dimensionality reduction on the original hyper-
spectral data;

2) perform endmember extraction on the dimensionality-
reduced image data to obtain the endmember set;

3) calculate the corresponding abundance maps based on the
endmember set.

Fig. 1 summarizes the parallel processing flow of N-FINDR
unmixing on Spark. In what follows, we describe the implemen-
tation details for these three main procedures separately.

We use the principle component analysis (PCA) algorithm to
reduce the dimensionality of hyperspectral data. First, we use
Spark’s resilient distributed datasets (RDDs) [35] to generate
the RDD data DataRDD based on the original image matrix
Data. As illustrated in Fig. 1, each data partition is denoted
by DataX where X=1, 2, . . . ,K and K is the number of
partitions. On a Spark cluster consisting of a driver node and
a set of executor nodes, we perform a “map” operation on all
RDD partitions inDataRDD to obtainCovRDD at each executor
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Fig. 1. Parallel implementation of N-FINDR unmixing model on Spark.

node, and perform a “reduce” operation on the results submitted
by executor nodes to obtain the corresponding covariance matrix
Cov. We then calculate the feature vectorVm×L, in whichm and
L stand for the number of dimensions and the number of bands,
respectively, on the driver node and broadcast it to all executors.
Finally, we perform a “map” operation on DataRDD again to
obtain PCARDD, i.e., the hyperspectral data after dimensionality
reduction.

We randomly generate an array pos of size M to represent
the initial endmember position, where M is the number of
endmembers in the hyperspectral image. We then invoke the
Broadcast() function to broadcast the endmember posi-
tion pos. Once all executor nodes receive the information of
pos, MapReduce operations are performed on PCARDD, in
order to extract the pixel information stored in pos from the
dimensionality-reduced data. The initial endmember set E and
the corresponding simplex volume V are broadcast after they
have been determined. We use PCAX (X=1, 2, . . . ,K) to de-
note each partition of PCARDD, as shown in Fig. 1. The next step
is to iteratively perform an updating operation, during which the
pixel information inPCAXwill be included in the endmember set
E to obtain an updated set e and the corresponding largest sim-
plex volume v in set e. If v > V , the simplex volume V and the
endmember set E should be updated by an “collect” operation.
During each updating operation, the up-to-date simplex volume
V and endmember set E need to be submitted to the driver node
and will be broadcast again. When the iteration terminates, we
can obtain the final endmember set after N-FINDR unmixing on
the driver node, which is denoted by NFindrData.

Fig. 2. Parallel implementation of SVM parameter tuning on Spark.

To estimate the abundance maps, we follow the original
N-FINDR model [36] and apply unconstrained least squares
(UCLS) to unmix the pixels in the endmember set. To be specific,
we determine endmember abundance fractions by calculating
(ETE)−1ET × PCARDD where E is the endmember set (i.e.,
NFindrData). To avoid redundant computations on executor
nodes, we first calculate (EET )−1E on the driver node and
broadcast this preprocessing result, denoted by preUCLS, to
all executor nodes. We then perform a “map” operation on
PCARDD such that each executor node can execute a matrix
multiplication operation on the partitioned data PCAX. The final
result preUCLS× PCARDDT is the corresponding abundance
maps for the hyperspectral data, i.e., the subpixel-level features
SubpixelFeature.

B. Parallel Implementation of SVM Classifier

In the fusion-based classification method, SVM classifier is
used to predict the label of each hyperspectral image pixel into
a set of predefined classes. The most important step in SVM
is to determine the optimal model parameters at the training
stage, which have direct impact on the classification accuracy
at the prediction stage. Due to the high computational com-
plexity of parameter tuning, this step is very time-consuming
for large-scale hyperspectral datasets. Specifically, in this work,
we use the grid search method to investigate each combination
of the regularization coefficient C and the kernel parameter γ,
evaluate the classification accuracy by means of cross validation,
and determine the optimal parameter combination leading to the
highest accuracy.

We rely on the distributed computing scheme in cloud com-
puting to parallelize the parameter tuning procedure. Fig. 2
presents the parallel processing flow of SVM parameter tuning
on Spark. Considering that the two parameters C and γ can
be tuned independently, we partition the parameter matrix and
distribute the partitioned submatrices over all computing nodes.
Each executor node performs a grid search on the assigned sub-
matrix to determine the locally optimal parameter combination
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on this node. After all executor nodes finish the grid search
procedure, the driver node determines the globally optimal pa-
rameter combination among all locally optimal results submitted
by executor nodes. let a and b denote the numbers of candidate
values for parameters C and γ, respectively. The main steps of
the distributed tuning procedure are summarized as follows.

1) Broadcast the training set TrainSet to all k executor
nodes.

2) Partition the parameter matrix Hyper-Parameter into
k submatrices. Each executor node converts the submatrix
into a RDD dataset that is denoted by ParaX (X=
1, 2, . . . ,K). The converted RDD datasets on all executor
nodes form ParaRDD.

3) Use grid search and cross validation on each executor node
to determine the best parameter combination (Ci, Γj)
(i < a, j < b), which is denoted by LocalX.

4) Perform a “collect” operation on all RDD partitions of
LocalParaRDD, and select the best parameter combi-
nation in LocalParaRDD to generate the SVM model.

IV. SCHEDULING MODEL FORMULATION

This section formulates the multiobjective scheduling model
for joint optimization of computational efficiency and energy
efficiency of hyperspectral image classification on Spark. We
first present the DAG model for characterizing the workflow
of the parallel method implemented in Section III, which is
the input to the scheduling framework. We, then, present the
models for the application’s makespan, i.e., the completion time
of all tasks, and energy consumption, and finally presents the
formulation of the multiobjective scheduling model.

A. Workflow Model

Referring to the parallel implementation of hyperspectral
image classification, like other general-purpose applications,
the distributed processing flow can be regarded as a workflow
application that can be characterized by a DAG structure. For-
mally, a DAG can be represented by G=(T,E,W ), where
T ={T1, T2, . . ., Tn} represents the set of n tasks belonging to
a workflow application, E={eij |1 ≤ i ≤ n, 1 ≤ j ≤ n} rep-
resents the set of communication edges among tasks, and W =
{W1,W2, . . .,Wn} represents the amount of computational load
associated with each task. Constrained by the precedence rela-
tions specified by the communication edges, each task node in
the DAG structure has one or more predecessor and successor
nodes. For each communication edge connecting two task nodes,
the successor node cannot start its execution until the execution
of all its predecessor nodes has completed.

Fig. 3 illustrates the DAG model for the distributed processing
flow of the fusion-based classification algorithm. Based on this
DAG structure, we can formulate the multiobjective optimiza-
tion model for minimizing both task completion time and total
energy consumption, and employ an efficient task scheduling
algorithm to find an optimized solution of task assignment. Note
that “N-FINDR” and “SVM Training” are two parallelizable
tasks that can be processed in parallel on multiple computing
nodes. For these two tasks, the execution times and in turn

Fig. 3. DAG model for the cloud implementation of the fusion-based classifi-
cation algorithm

the corresponding energy consumptions are not fixed, but vary
depending on the number of computing nodes assigned for
processing them in parallel.

B. Makespan Model

Assume that the tasks to be allocated onto the computing
nodes are denoted by (t1, t2, . . ., ti), and the corresponding exe-
cution times or durations are (D1, D2, . . ., Di). Assume further
that there are j available computing nodes (v1, v2, . . ., vj). We

use T (m,n)
start and T

(m,n)
end to indicate the start time and completion

time of the nth task (1 ≤ n ≤ i) on the mth (1 ≤ m ≤ j) com-
puting node vm, respectively. In addition, we useTm

exec to indicate
vm’s total operation time for processing all tasks assigned to it.
Apparently, task tn’s start time T

(m,n)
start is constrained by the

precedence relations and can be calculated by

T
(m,n)
start =

{
0, if n = 1

max
{
max {Pred(tn)} , T (m,p)

end

}
, otherwise

(1)
where T

(m,p)
end (1 ≤ p ≤ n ≤ i) denotes the completion time of

a task that is also assigned to vm and is scheduled for execution
ahead of tn. Pred(tn) records the completion times of all tn’s
predecessor tasks. Obviously, the start time of the first task
T

(m,1)
start is 0, since it has no predecessor nodes. As indicated by

(1), the start time of a specific task is affected by its predecessor
tasks, as it has to wait until all its predecessor tasks have
completed execution before its execution can start. To conclude,
the actual task start time is dependent on not only the completion
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time of its prior task in the task queue, but also on the latest
completion time of its predecessor tasks. Once task start time
can be decided, task completion time T (m,n)

end can be accordingly
determined as

T
(m,n)
end = T

(m,n)
start +Dn. (2)

The completion time of all tasks, i.e., the makespan of the whole
application flow, is exactly the maximum value among all task
completion times, i.e.,

C = max
n=1,2,...,i

{
T

(m,n)
end

}
. (3)

Since task execution timeDn in (3) is a varying value depending
on the number of partitioned tasks it is divided into, different task
scheduling solutions would lead to various makespan values.

In addition, the total operation time of each computing node
Tm is the sum of task execution times over all tasks assigned to
this node, which is given by

Tm
exec =

∑
tk is assigned to vm

Dk. (4)

C. Energy Model

The energy consumption of the computing nodes on Spark
includes the static portion and the dynamic portion. The static
energy denotes the energy consumption when the computing
node is idle and not executing any computation tasks. In contrast,
the dynamic energy denotes the energy consumed for executing
tasks assigned to the computing node. Following the energy
model in [37] and [38], there is generally a linear correlation
between power consumption and CPU utilization. Accordingly,
the total energy consumption in the scheduling model can be
defined as

Etotal = Ps×
j∑

m=1

tsm +

j∑
m=1

Tm
exec × Pd× τm (5)

where Ps represents the static power per unit time (watts), Pd
represents the dynamic power per unit time (watts), Etotal is
the total energy consumption generated by the computing nodes
when all tasks have completed execution (joules), τm is the CPU
utilization of computing node, and tsm denotes the idle time of
the kth computing nodes during task execution, which can be
calculated as

tsm = C − Tm
exec. (6)

D. Scheduling Model

Before presenting the formulation of the scheduling model,
we provide the fundamental concepts of multiobjective opti-
mization. In a multiobjective optimization problem, there are
multiple optimization objectives that cannot both reach their
optimum values by an individual solution. Pareto-optimality is
introduced to ensure the best overall performance [39], [40].
A solution is called a Pareto-optimal solution (or nondomi-
nated solution) if there exists no other solutions such that at
least one optimization objective has a better value while the
remaining objective values are the same or better. In the space of
optimization objectives, the surface consisting of all the points

generated by all Pareto-optimal solutions is called the Pareto
frontier.

The multiobjective scheduling problem studied in this work
is to determine a set of Pareto-optimal scheduling solutions
such that the makespan of the hyperspectral image classification
on Spark and the total energy consumed by all computing
nodes. When allocating the tasks of the classification flow to the
computing nodes, we need to take into account the number of
available computing nodes and the precedence constraints upon
tasks. The optimization model for the multiobjective scheduling
problem is formulated in

min max
n=1,2,...,i

{
T

(m,n)
start +Dn

}
(7)

minPs×
j∑

m=1

(C − Tm
exec) +

j∑
m=1

Tm
exec × Pd× τm (8)

s.t. argmin{n|i− n}, 1 ≤ n ≤ j. (9)

V. MULTIOBJECTIVE IMMUNE ALGORITHM

This section presents our proposed MOIA algorithm that
employs the IA optimization framework to solving the mul-
tiobjective scheduling problem. IA is an intelligent optimiza-
tion algorithm, in which the optimization objective corresponds
to the antigen in the immune response, the feasible solution
corresponds to the antibody, and the quality of feasible solu-
tion corresponds to the affinity between antibody and antigen.
Specifically, IA first generates an initial antibody population,
and then updates the antibody population in an iterative manner
according to the affinity value of each antibody. The update
operations (immune operations) include antibody cloning, an-
tibody mutation, and immune inhibiting. When the termination
condition is satisfied, the optimal solution to the optimization
problem will be obtained. Fig. 4 illustrates the flowchart of
traditional IA algorithm. In what follows, we discuss in detail
these fundamental procedures in our proposed MOIA algorithm,
including the immune operators, solution encoding scheme,
fitness calculation, and crowding distance calculation methods.

A. Solution Encoding

The solution encoding scheme not only impacts most evolu-
tionary operators of IA, such as the crossover operator, mutation
operator, and cloning operator. But also exerts great influence
on IA’s solution exploration capability. In this work, we use a
binary string composed of binary symbols 0 and 1 to represent
the allocation of a specific task. The kernel issue in binary
encoding is how to represent the number of computing nodes
assigned for task execution as well as the states of the computing
nodes by the binary variables in the binary string. Due to the
limited computing resources in the cloud platform, there is a
maximum number of computing nodes that can be designated
for any task. We use a task sequence (t1, t2, . . . , ti) to denote
the binary strings for all tasks, and (v1, v2, . . . , vj) to denote the
set of computing nodes, in which j stands for the total number
of computing nodes available for task execution. The state of
each computing node is either 1 and 0, indicating whether it is
in operation or idle.
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Fig. 4. Flowchart of traditional IA algorithm

Since each task can execute on one or more computing nodes,
there could be 2j − 1 valid binary strings for a task that can be
executed in parallel, and j valid binary strings for a nonparal-
lelizable task. For example, with 8 computing nodes deployed,
tk = 11101011 (1≤k≤ i) is a valid string to represent the allo-
cation of a parallelizable task onto computing nodes, indicating
that computing nodes v1, v2, v3, v5, v7, and v8 are designated
for executing this task. We define the number of designated
computing nodes as the parallelism of a specific task (i.e., the
number of “1”s in the binary string). We can, then, determine task
execution time according to its parallelism. For a task that cannot
be executed in parallel, since it can only execute on a single
computing node, there would be one and only one “1” in the
corresponding binary string, and its parallelism is simply one.
The binary strings for all parallelizable and nonparallelizable
tasks form a task sequence (t1, t2, . . . , ti), which is considered
as a scheduling solution in this work. When the number of
computing nodes varies, we can adjust the length of the binary
string to comply with the new solution representation.

B. Fitness Calculation

In our MOIA framework, each task sequence consisting of
the binary strings for all tasks X=(t1, t2, . . . , ti) is regarded as
an immune antibody in the population. We use Algorithm 1 to
calculate the fitness value of an immune antibody. By decoding
each binary string in the given task sequence, we can determine
the parallelism and the execution time of the corresponding
task, and in turn can determine the total operation time and
complete time of each computing node. Finally, we can calculate

the makespan and total energy consumption by (3) and (5),
respectively, to evaluate the fitness of this particular scheduling
solution.

C. Crowding Distance Calculation

Crowding distance [41] is used to evaluate the individual
density around an individual antibody i in populationD, and can
be defined as the mean distance between this antibody individual
and other individuals on each objective function. Fig. 5 provides
an illustrative example of crowding distance for the biobjective
scenario. To be precise, the calculation the crowding distance
[41] is given by

I(d,D) =
k∑

i=1

Ii(d,D)

fmax
i − fmin

i

(10)

Ii(d,D) =⎧⎨
⎩

∞, if fi(d) = min
d′∈D

{fi(d′)} or max
d′∈D

{fi(d′)}
min

d′,d′′∈D:fi(d′′)<fi(d)<fi(d′)
{fi(d′)− fi(d

′′)} , otherwise

(11)
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Fig. 5. Diagram of crowding distance.

where the nondominated antibody d belongs to population D,
i.e., d ∈ D, and fmax

i and fmin
i represent the maximum and min-

imum value of the ith objective function, respectively. According
to the calculation method defined in (10) and (11), the crowding
distance of each nondominated individual d in population D
can be obtained. If I(d,D) > I(d′, D), d, d′ ∈ D, the crowding
distance of the individual d′ is lower than that of d.

D. Proposed MOIA

Based upon the aforementioned operators, we present the
details about the proposed MOIA algorithm. Let Gmax, nt, nd,
and nc denote the maximum number of iterations, the total
number of tasks, the population size and the size of cloned
population, respectively. The overall procedure of MOIA is
described in Algorithm 2. To ensure that all predecessor tasks
can be completed ahead of successor tasks, we sort all tasks
according to the ascending order of their earliest start times
(ESTs) and generate the initial task sequence (line 1). In our
scheduling problem, some tasks that can be executed in parallel
would have varying task durations. Accordingly, we estimate
each task’ EST according to its duration in the serial method.
The “while” loop is the main part of the proposed algorithm,
whereas the “for” loop indicates the evolutionary procedure of
the immune algorithm. Line 5 randomly generates a population,
and line 6 evaluates the initial population. Lines 10–13 construct
the nondominated set D, and lines 16 and 17 generate the
cloned population C. Lines 18 and 19 perform the crossover and
mutation operators on each individual in the cloned population
C with prespecified probability values, respectively, and line
20 updates the antibody population. Lines 23–28 update the
result set Res, which is a set of Pareto-optimal or nondominated
solutions, and line 29 uses a swapping operation to generate a
new task sequence that will be used in the next iteration. Line
26 returns the final results when the “while” loop terminates.

VI. PERFORMANCE EVALUATION

This section introduces the experimental environment for
performance evaluation, the information about the hyperspectral
datasets, and parameter settings for the scheduling algorithms to

be evaluated, followed by thorough evaluation results to justify
our proposed approach in terms of computational efficiency and
energy efficiency.

A. Experimental Setup

The proposed multiobjective scheduling algorithm was imple-
mented and evaluated on a cloud system built on a Spark cluster
consisting of one driver node and up to 32 executor nodes. The
driver node is built on a server with an eight-core CPU and
12 GB memory, and each executor node is equipped with two
cores operating at 1.87 GHz and 15 GB memory. All computing
nodes have installed Ubuntu 16.04 as the operating system. For
comparison purposes, we also implement the genetic algorithm
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TABLE I
CLASSIFICATION ACCURACIES BY USING THE SERIAL

METHOD AND CLOUD IMPLEMENTATION

and PSO to solve the multiobjective scheduling problem, and
name these two algorithms as MOGA and MOPSO. In addition,
for energy estimation, the static power and dynamic power of
each computing node is set as 100 and 1000 W, respectively.

We use the publicly available “University of Pavia” dataset
to evaluate the total execution time and energy consumption by
using the fusion-based classification method. The hyperspectral
image in this dataset contains 103 spectral bands, and each band
consists of 610 × 340 pixels. The spatial resolution is 1.3 m,
and the spectral coverage ranges from 0.43 to 0.86 μm. The data
size of the original hyperspectral image is 226 MB. There are
totally nine different land covers contained in this image scene.
We randomly select 60 samples from each of the nine prelabeled
categories to generate the training set for SVM classification. In
addition, to examine the scheduling performance for large-scale
hyperspectral data, we generate two additional hyperspectral
datasets of larger sizes by mosaicking the original “University
of Pavia” image. The data sizes of the moisacked images in the
two newly generated datasets are 452 MB (610×680× 103) and
904 MB (610 ×1360× 103), respectively.

In order to verify the effectiveness of scheduling algorithms,
some parameters are set identically, including the number of
computing nodes, the population size, and the maximum number
of iterations. The specific parameter settings are as follows:
the number of virtual machines is 8, population size is 200,
and the maximum number of iterations is 200. In addition, the
parameters relevant to our MOIA algorithm are set as follows:
crossover probability is 0.95, mutation probability is 0.2. For
MOGA algorithm, the parameter settings of crossover probabil-
ity and mutation probability are the same as those of MOIA. For
MOPSO algorithm, the individual cognition factor and social
communication factor are set as 1.5 and 1.5, respectively. The
constriction factor and inertia weight are 2 and 1, respectively. It
is worth emphasizing that, the algorithms used for evaluation and
comparison could be sensitive to their inherent parameters, in
terms of convergence rate and solution exploration capability.
In experiments, we start with parameter values that are sug-
gested in the literature, and fine-tune the parameters to their
most appropriate values that lead to best scheduling perfor-
mance. Moreover, since these algorithms are metaheuristic algo-
rithms that involve randomness, we perform each algorithm five
times independently and use the average result for performance
evaluation.

B. Evaluation Results

The first step is to examine the classification performance
of our cloud implementation of the fusion-based method.
Table I presents the classification accuracies obtained by using
the serial version and the cloud version with different numbers

Fig. 6. Parallel processing flow of N-FINDR unmixing model on Spark.

Fig. 7. Comparison of energy-makespan tradeoff solutions obtained by dif-
ferent algorithms with 8 computing nodes.

of computing nodes. The comparison results indicate that the
difference in classification accuracy between the serial version
and cloud version is negligible. In addition, the classification
accuracy is stable as the number of computing nodes changes.
Compared with the serial version, the accuracy loss by executing
the fusion-based classification flow in parallel on Spark is less
than 0.5%.

However, the cloud implementation can significantly improve
the computational efficiency of image classification by means
of distributed computing. Fig. 6 presents the speedups of N-
FINDR unmixing, SVM prediction, and the total classification
flow, respectively, over the serial version by deploying different
numbers of computing nodes. We can observe that as the number
of computing nodes grows, the speedup over the serial version
increases but becomes less significant, since more computing
nodes would lead to the quickly increasing communication
overhead. The speedup of the overall flow reaches 8.25× with
32 computing nodes deployed on the Spark cluster.
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Fig. 8. Pareto frontiers with different numbers of computing nodes. (a) 16 computing nodes (b) 32 computing nodes.

Having verified the classification accuracy and computational
efficiency of the cloud implementation, we further evaluate
the performance of our multiobjective task scheduling strategy.
Fig. 7 shows the Pareto frontiers obtained by the three algorithms
when the number of computing nodes is 8. The red points
represent the Pareto-optimal solution obtained by MOIA, and the
green points and blue points represent the Pareto-optimal solu-
tions obtained by MOPSO and MOGA, respectively. The x-axis
and y-axis represent the total execution time of hyperspectral
image classification (in seconds) and the energy consumption
by the computing nodes (in joules), respectively. We can ob-
serve that, compared with the two competing algorithms, our
proposed MOIA can produce a better Pareto frontier in terms of
computational efficiency and energy efficiency. In other words,
MOIA obtains a set of energy-makespan tradeoff solutions that
lead to shorter makespans or lower energy consumptions.

In order to further verify the performance of MOIA with
different numbers of computing nodes, we perform additional
experiments and present in Fig. 8 the Pareto frontiers with 16
and 32 computing nodes, respectively. The results justify the
high quality of the Pareto-optimal solutions (i.e., the energy-
makespan tradeoff solutions) in MOIA-generated Pareto fron-
tiers. By investigating the frontiers in Figs. 7 and 8, we observe
that there exist certain disconnected regions on the frontiers.
This observation is because that task reallocations defined in the
antibody individuals may possibly cause unevenly distributed
solutions in the energy-makespan space. In addition, as the
number of computing nodes increases, since the size of solution
space grows exponentially, the effect of task reallocation upon
the distribution of energy-makespan tradeoff solutions becomes
less obvious. One of our future work directions is to obtain
well-distributed Pareto frontiers by 1) increasing the antibody
population size to enhance MOIA’s solution exploration capa-
bility, and 2) incorporating advanced refinement strategies [42],
[43] to eliminate the disconnected regions on the obtained Pareto
frontier.

We also compare the evaluation results by using the proposed
MOIA with those by using the serial and parallel versions of
the classification method, with different numbers of computing
nodes deployed on Spark. For this reason, we calculate the aver-
age values of makespan and energy consumption for all Pareto-
optimal solutions, considering that the result obtained by the
multiobjective scheduling algorithm is a set of Pareto-optimal
solutions. The comparison results with 8, 16, and 32 computing
nodes are listed in Tables II– IV, respectively. Table II show that,
with 8 computing nodes, our proposed MOIA uses 148.27 s for
processing the fusion-based classification method and consumes
9.25 × 105J energy. In contrast, the serial algorithm consumes
658.91s and 6.59 × 105J, whereas the parallel implementation
on Spark consumes 175.35 s and 14.5 × 105J. In other words,
the parallel implementation without scheduling and the propose
MOIA outperform the serial algorithm by 73.39% and 77.50% in
terms of the computational efficiency, respectively. On the side
of energy consumption, compared with the serial algorithm, both
the parallel implementation and MOIA consume more energy
due to the distributed computing on multiple nodes. Specially,
the proposed IA is less energy-consuming than the Spark parallel
algorithm by 36.21%. Similar observations can be obtained from
Tables III and IV. We can conclude that compared with the
serial algorithm, the makespans by both the parallel method and
MOIA are significantly reduced, and MOIA outperforms the
parallel method in terms of computational efficiency. The reason
is that the parallel methods supports the parallel computing and
the computational load are distributed over multiple computing
nodes. Moreover, the MOIA scheduling algorithm determines
the Pareto-optimal scheduling solutions to further improve the
computational efficiency. On the other hand, the proposed MOIA
is also advantageous over the parallel implementation with lower
energy consumption for processing the classification flow. In
summary, our proposed MOIA outperforms the parallel method
in terms of both the computational efficiency and the amount of
energy consumption.
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TABLE II
SCHEDULING RESULTS BY DIFFERENT METHODS WITH 8 COMPUTING NODES

TABLE III
SCHEDULING RESULTS BY DIFFERENT METHODS WITH 16 COMPUTING NODES

TABLE IV
SCHEDULING RESULTS BY DIFFERENT METHODS WITH 32 COMPUTING NODES

Fig. 9. Comparison of energy-makespan tradeoff solutions by different scheduling algorithms for larger-scale hyperspectral datasets.

Finally, in order to validate the scalability of our MOIA
algorithm, we perform an additional set of experiments on the
two datasets generated by moisacking the original hyperspectral
image, which are of sizes 452 and 904 MB, respectively.
Fig. 9 shows the Pareto frontiers obtained by the three
scheduling algorithms used for comparison. The red, green,
and blue points denote the Pareto-optimal soluitons generated

by MOIA, MOPSO, and MOGA, respectively. We can observe
that for larger sizes of hyperspectral data, MOIA is still
capable of producing better energy-makespan tradeoff solution
as compared to the competing algorithms. To confirm this
observation in a quantitative manner, Table V further presents
the average energy consumptions and makespans of tradeoff
solutions obtained by different scheduling algorithms. The
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TABLE V
ENERGY CONSUMPTIONS AND MAKESPANS BY DIFFERENT SCHEDULING ALGORITHMS FOR LARGER-SCALE HYPERSPECTRAL DATASETS

energy consumptions by using MOIA are slightly lower than
those by using MOPSO and MOGA, but MOIA improves the
makespan of the classification application considerably. The
makespan reduction is up to 14.74% for the 452 MB dataset,
and is up to 11.40% for the 904 MB dataset. The comparison
results indicate that the proposed approach is effective as the
hyperspectral data volume grows.

VII. CONCLUSION

This article proposed an energy-efficient cloud implemen-
tation of hyperspectral image classification by developing a
multiobjective task scheduling algorithm. We first presented a
cloud implementation of a fusion-based classification method
based on Apache Spark. With the general classification flow
represented by a DAG model, we formulated a multiobjective
scheduling framework that jointly minimizes the total execution
time as well as energy consumption. We further developed an
effective MOIA scheduling algorithm to solve the multiobjective
scheduling problem. Experimental results demonstrated that
MOIA can generate high-quality tradeoff solutions that reduce
the execution time and energy consumption for hyperspectral
image classification.

To extend the applicability of the multiobjective scheduling
approach to other applications and to cloud environments, our
future work can be directed toward the following aspects. On the
one hand, our scheduling strategy can be easily adapted for other
representative hyperspectral image applications. As long as we
can characterize the application workflow by a DAG structure
and identify those tasks that can be decomposed and processed in
parallel, we can use the proposed multiobjective task algorithm
to co-optimize the execution time and energy consumption on a
cloud system. Specifically, if the following two conditions are
available: 1) the application flow can be decomposed into a set
of substasks with dependencies among them, and 2) the com-
putation load of certain tasks can be partitioned and allocated
onto multiple computing nodes, our approach can be applied
to achieve the co-optimization of computational efficiency and
energy efficiency. In addition, since the scheduling approach is
built upon a workflow model that characterizes the dependencies
and parallelism among application subtasks, we plan to study the
automatic profiling of application workflows to further enhance
the generality of the proposed scheduling approach.

On the other hand, in this article, we sought the optimal
scheduling solution for efficient processing of large-scale hy-
perspectral data in a private cloud environment. Therefore, the
scheduling framework takes into account only execution time
and energy consumption, which are the two main concerns of
private cloud providers. However, if the cloud users migrate

to public clouds or hybrid clouds for executing hyperspectral
applications, cloud usage cost would become the primary con-
cern. To cope with various cloud environments, the scheduling
framework has to be adapted by incorporating more optimization
concerns, e.g., cost minimization, load balancing, and resource
utilization. As a result, several operators in the multiobjective
scheduling algorithm, including fitness calculation and crowd-
ing distance calculation, also need to be redesigned to comply
with the new optimization model.
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