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Abstract—Change detection (CD) is a hot issue in the research
of remote sensing technology. Hyperspectral images (HSIs) greatly
promote the development of CD technology because of their high
resolution in the spectral domain. However, some traditional CD
methods currently applied to low-dimensional and multispectral
images cannot adapt to the complex high-dimensional features
of the HSIs. In addition, the spectral measurements of the HSI
contain a lot of noise and redundancy, which greatly contaminates
spectral-only information for CD. In order to fully extract the dis-
criminant features of HSI to improve the accuracy of CD, this arti-
cle proposes a three-directions spectral–spatial convolution neural
network (TDSSC). A novel method for three-direction decomposi-
tion of hyperspectral change tensors is proposed—change tensor is
decomposed along the spectral direction and two spatial directions
to get a single tensor containing the spectral information and
two kinds of tensors containing the spectral–spatial information.
TDSSC uses 1-D convolution to extract spectral features from the
spectral direction as well as reducing the tensor dimension, which
helps the latter network to be lightweight and significantly improves
the speed of change detection. Also, it uses 2-D convolution to
extract spectral–spatial features from two spatial directions of the
reduced tensor, and to extract features from different directions to
improve the accuracy and Kappa value of CD. The experimental
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results of three real hyperspectral datasets show that TDSSC is
superior to most existing CD methods.

Index Terms—Change detection (CD), hyperspectral image
(HSI), spectral–spatial combination, three directions convolution
neural network.

I. INTRODUCTION

R EMOTE sensing satellite hyperspectral image (HSI) is
a dataset that contains spatial information and abundant

spectral information. It has become an important data source for
object observation because it contains more spectral information
than multispectral images (MSI). Change detection (CD) using
multiperiod remote sensing satellite image technology has im-
portant application value in land cover analysis [1], ecosystem
monitoring [2], portraying urban change [3], and so forth. The
task of remote sensing image CD includes the following—
to judge whether changes have occurred, to determine where
changes have occurred, and to identify the types of changes.
These tasks and their combinations correspond to commonly
used CD types for remote sensing images [4]—anomaly CD
[5]–[9], binary CD [10]–[15], multiclass CD [16], [17], and
time-series CD [18], [19].

The CD of remote sensing images can generally be di-
vided into four steps [20]—data acquisition, data preprocessing,
change detection, and results output. The algorithm of CD is the
core of determining the CD result. In the problem of single-band
and multispectral CD, many researchers have proposed a variety
of detection algorithms, such as change vector analysis, principal
component analysis, iterative multivariate change detection, and
so on. The main starting point of these methods is to extract
the characteristics of spectral change vectors by algebraic op-
eration, image transformation, and statistical analysis. In low-
dimensional space, these methods have achieved high accuracy.
However, the MSI CD algorithm for low-dimensional space is
not ideal for high-dimensional HSI CD tasks [21], [22]. In addi-
tion, due to the high resolution of HSI, the spectral information
of the two adjacent bands is usually highly correlated [4], which
inevitably results in data redundancy. Therefore, how to analyze
and process HSI data and extract useful information from a large
amount of redundant data has become an important topic in the
study of HSI CD.

In order to solve the problem of high-dimensional space and
the large amount of data redundancy, deep learning has become
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an effective solution. Deep learning facilitates the processing of
complex hyperspectral data by effectively extracting the abstract
features of the data while reducing the dimensions of the data.
The use of a convolution neural network makes it possible to use
the spectral information of pixel points and their neighboring
pixels in the process of CD, which largely avoids the limitation
of using only the spectral information corresponding to a single
pixel point. With in-depth research, deep learning has achieved
fruitful results in the field of HSI processing. For example, a
3-D convolution neural network is constructed to extract both
spectral and spatial features of the HSI for a better performance
of HSI classification [23]; a three-layer convolution neural net-
work is constructed by enlarging the MSI and taking the pan
sharpening image as input to obtain a higher resolution MSI
[24]; and a recurrent neural network is used to learn the transfer
rules for land cover CD [25], and so on.

Due to the instrumental errors of the hyperspectral imager
itself and atmospheric scattering during data collection, the
collected HSI data contain a lot of noise. If only the spectral
information corresponding to a pixel is used when detecting
whether a pixel changes, the CD process will be affected by noise
and the detection performance will be greatly decreased [26].
Therefore, in addition to deeply exploiting spectral information,
some advanced deep learning CD methods usually exploit cer-
tain spatial features as an aid to improve the accuracy, that is,
“spectral–spatial combination.” Spectral–spatial combination is
the key of the method for processing and analyzing HSI by fus-
ing spectral and spatial information. These methods have been
widely used in the classification of hyperspectral imagery [23].

Based on the above-mentioned problems, this article develops
a three directions spectral–spatial convolution neural network
(TDSSC) for HSI CD problems. First, the difference map of the
bitemporal HSI data is used as input of TDSSC. To make full use
of the rich HSI spectral information, the change tensor is then
decomposed in three directions to obtain the tensor containing
spectral information and the tensor containing both spectral and
spatial information, and the spectral and spectral–spatial features
are extracted by 1-D and 2-D convolutions, respectively. After
that, all the features are fused and binary classifications are
made to extract the changing areas according to the classification
results.

TDSSC uses the theory of deep learning to process high-
dimensional change tensors from different directions. The main
advantages are numerous. The convolution network along the
spectral direction extracts rich spectral features while reduc-
ing the dimensions of the tensor, which greatly reduces the
parameters of the entire network and effectively improves the
performance of CD. The convolution network along the two
spatial directions provides spectral–spatial features from differ-
ent directions of tensors, exploiting spectral features and spatial
features of the cross section as supplements. It realizes the joint
exploitation of spatial information and spectral information,
improving the CD accuracy and stability. Compared with the
3-D convolutional neural network (3DCNN), TDSSC is more
flexible and can exploit information with different settings in
different directions. TDSSC can flexibly adjust the configuration
of three-directional convolution according to the HSI to suit

different complex situations. Experiments on real datasets show
that the TDSSC method proposed in this article has better
detection results in the task of HSI CD.

The remainder of this article is divided into four sections.
Section II reviews the related research on remote sensing image
CD, especially hyperspectral CD. Section III elaborates the
proposed TDSSC in detail. Section IV describes our experiments
and compares and evaluates some existing CD algorithms, and
Section V summarizes this article.

II. RELATED WORK

Binary CD is a common type of remote sensing image CD.
Its purpose is to classify multitemporal remote sensing images’
pixels into the changed and the unchanged. The relevant CD
methods are summarized below.

A. Traditional Method

If the spectral information of remote sensing image in two
temporals corresponding to one pixel changes greatly, that
suggests that this pixel has changed. Therefore, change vector
analysis (CVA) [27] is a common method and usually applied for
CD. CVA determines whether a pixel changes by calculating its
spectral change vector in two temporals and getting its magni-
tude and direction of change. There have also been many studies
on the promotion and improvement of CVA, such as that by
Bovolo and Bruzzone [28], who introduced a formal definition
framework for CVA methods in polar coordinate systems to
solve the unsupervised CD problem.

Due to a large amount of data redundancy in HSI data, it is a
natural idea to reduce the dimensionality of the data, and the loss
of information caused by this dimensionality reduction should be
as small as possible. Principal component analysis (PCA) [29] is
a widely used data dimension reduction method, which can map
the original features linearly into a specified dimension, cause
the mapped features to retain the information of the original fea-
tures to the maximum extent, and achieve the effect of dimension
reduction. Canonical correlation analysis (CCA) [30] in multi-
variate statistical analysis is also a method of data dimension
reduction. CCA transforms two sets of high-dimensional data
into two 1-D vectors with the largest correlation coefficient. The
multivariate alteration detection (MAD) [31] method is based on
CCA. MAD calculates the value of the MAD variable by solving
the parameters in the optimization problem to determine whether
each pixel has changed. After that, Nielsen [32] proposed an
iteratively reweighted multivariate CD method (IR-MAD) based
on the MAD. Each pixel is given a weight to participate in the
calculation during the iteration. After the iteration is completed,
the weight is used as the criterion to determine whether the pixel
changes.

There is also a simple supervised classification strategy for CD
of remote sensing images. Bovolo et al.’s [33] CD framework
classifies two temporals remote sensing images pixel by pixel. If
a pixel’s classification results are different, it can be established
that the pixel has changed. Nemmour and Chibani [34] proposed
a CD method based on a multisupport vector machine that uses
a similar strategy.
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It can be seen that traditional CD methods extract the fea-
tures of spectral change vectors by algebraic operation, im-
age transformation, and statistical analysis of spectral change
vectors, which can be easily implemented in low-dimensional
space with high accuracy. In high-dimensional space, however,
some algebraic processing becomes difficult. For example, in
many methods, the inversion of a matrix is often difficult and
may cause a loss of precision in high-dimensional situations.
Therefore, deep learning has become an important method to
solve this problem.

In addition, the methods based on fractional Fourier entropy
and fractional Fourier transform provide some interesting ideas
for HSI CD without deep learning. Tao et al. [35] first pro-
posed the fractional Fourier method to obtain features in an
intermediate domain between the original reflectance spectrum
and its Fourier transform with complementary strengths by
space–frequency representations, which has emerged as a new
branch in hyperspectral target anomaly detection.

B. Deep Learning Method

As mentioned in Section I, deep learning is an important
method for processing high-dimensional data and has important
applications in remote sensing image classification and change
detection. Zhao et al. [36] used deep learning to extract unsuper-
vised features from the differentiated images, and made some
adjustments to the results using supervised preclassification.

As also mentioned in Section I, the process of extracting
features using spectral information alone is susceptible to noise,
so, many of the existing advanced methods use deep learning to
exploit spectral features while also exploiting other features of
the HSI for the purpose of improving accuracy. The GETNET
framework proposed by Wang et al. [37] incorporates the results
of linear and nonlinear HSI unmixing into the mixed affinity
matrix. The end element abundance of information at the sub-
pixel level is fully utilized, effectively improving the accuracy of
hyperspectral CD. Huang et al. [38] established the information
model called TFS-Cube for the change of the underlying fea-
tures of HSI, made full use of the change information gained
thereby, and used the support tensor machine instead of the
back-propagation (BP) network for supervised learning, which
improved the performance of the detection of HSI CD. Chen
et al. [39] proposed a spectral–spatial regularization low-rank
sparse decomposition model, LRSDASS, which decomposes
the spectral change vectors into low-rank data, abnormal sparse
values, and noise in order to extract clean features.

In addition, the exploitation of spatial information has also
achieved good results in CD. Ran et al. [40] proposed a one-class
sparse representation classifier (OCSRC) based on spectral–
spatial combination. The Gabor filter, adaptive weighted filter,
and cooperative representation filter were extracted from the
original HSI by convolution to combine the information of
neighboring pixels. Karmon et al. proposed a fused spectral–
spatial eigenvector and applied it to a CD model based on maxi-
mum likelihood correlation coefficient to generate test statistics
to describe the change [41]. Therefore, for HSI, in addition
to spectral features, using deep learning to exploit spatial and

other features is an important research direction to improve the
accuracy of CD.

III. PROPOSED METHOD

The CD process of the TDSSC we proposed is shown in
Fig. 1. For two HSI datasets with different time temporals in
the same region, the difference operation is performed on the
HSIs to get the hyperspectral change image after removing
bands with low signal-to-noise ratio (SNR). Each pixel in the
change image corresponds to a spectral change vector. In order
to determine whether a pixel has changed, the tensor formed by
the hyperspectral change vector of the pixel and its neighboring
pixels is used as the input of the model. The model is divided
into two parts. The first part uses the input tensor to reduce
the dimension through a convolution neural network to obtain
a tensor with a lower spectral dimension to use as the input of
the second part. In the second part, the reduced dimension tensor
block is input into a convolution neural network along two spatial
directions to further extract spatial and spectral information,
and then, the results of the convolution neural network in two
directions and the results of the first part are fused into tensor
clusters as the extracted spatial–spectral features. In the third
part, after the tensor cluster is pooled, randomly dropped out,
and flattened, it is then classified into two categories. The CD
result graph is yielded after each pixel is detected.

A. Image Difference

A common practice is image difference operation when show-
ing the change situation of the two temporals HSI data [4]

ID = I2 − I1 (1)

where I1 and I2 are different temporals HSIs, ID is the hyper-
spectral change image. In TDSSC, we use the image difference
operation with absolute value

ID = |I2 − I1| . (2)

There are two advantages of this image difference method.
First, the difference results are all nonnegative numbers, which
will bring convenience to the storage and subsequent processing
of the results. Second, it focuses on the change magnitude of two
spectral vector elements to generate a binary result for change
and nonchange.

B. Extract Tensor’s Spectral–Spatial Features With Three
Directions Convolution Neural Network

Fig. 2 shows the network structure to determine whether a
pixel has changed or not. We extract the change tensor of this
pixel and its neighbors in ID to form a change tensor block of
b× b× L, where b is the size of the neighborhood and L is the
number of bands. We use a 1-D convolution network to reduce
the dimension of the tensor to the specified dimension k and
extract the spectral characteristics of the tensor. The reduced-
dimension b× b× k tensors are input into a 2-D convolution
network along two spatial directions to extract spectral–spatial
features at different directions. The two features are fused and
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Fig. 1. Overview of CD process of TDSSC.

Fig. 2. Structure of the three-directions convolution neural networks for change tensor.

then pooled into the fully connected layer for classification. For
convenience, we use 3-D convolution to implement the three
directions convolution neural network.

1) Three-Directional Decomposition of Change Tensor:
Fig. 3 shows the way of three-directional decomposition of
an HSI change tensor. Consider an HSI change tensor with a
size of b× b× p, where b is the spatial dimension and p is the
spectral dimension. The tensor is decomposed in the spectral
direction and two spatial directions as follows—in the spectral

direction, the tensor is decomposed into b× b tensors with a
size of 1× 1× p, which contain the spectral information of
the change tensor; in each spatial direction, b tensors are sliced
along the corresponding spatial direction, which combine spatial
information with spectral information and are rarely explored.
The spectral–spatial information obtained from slicing a tensor
in two spatial directions, which combines the spectral informa-
tion with spatial information, is a rarely noticed tensor feature.
It is worth noting that although neighboring data are used in
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Fig. 3. Way of three-directional decomposition of HSI change tensor.

the spectral direction, we do not use 2-D convolution networks
to extract spatial information in the spectral direction. This
design is based on our observation that the spatial information
extracted by 2-D convolution networks in the spectral direction
does not improve the accuracy and may cause some side effects.
Compared with HSI, the spatial information along the spectral
direction is largely missing from the change image, and there are
a large number of scattered areas in the change image, and the
characteristics of these scattered areas are often eliminated in the
operation of multilayer convolution network, which is reflected
in the result of change detection that changes in scatter areas are
difficult to detect, resulting in reduced detection accuracy.

2) Extraction of Spectral Features and Tensor Dimension
Reduction: The difference of spectral information of a pixel is
the main basis for judging whether the pixel has changed. One-
dimensional convolution can classify and extract the spectral
information of a single pixel [42], so we use a number of 3-D
convolution kernels with the size of 1 × 1 × s to extract the
spectral features of the change tensor in the spectral direction.
The spectral features of the change tensor can be extracted in
the spectral direction by using several 3-D convolution kernels
with a size of 1× 1× s. At the same time, the convolution of
1× 1× s can reduce the spectral dimension of the tensor block.
Each convolution kernel of 1× 1× s represents a dimension
reduction method, and the parameters in each convolution kernel
are automatically learned by the neural network. Therefore, the
convolution neural network of 1× 1× s convolution kernel can
extract the spectral features of b× b× L tensor and reduce the
tensor to b× b× k, where k is the spectral dimension after
dimension reduction. This can save computing and storage re-
sources effectively, and greatly reduce the number of parameters
to be learned in the later network, which significantly improves
the performance of change detection.

In order to speed up the convergence and reduce the re-
source consumption of the model, except for the first convo-
lution operation, we carried out batch normalization [43]. Batch
normalization can effectively avoid the problem of gradient
disappearance and speed up the convergence of the model by

forcing the distribution of input values back to the standard
normal distribution.

After batch normalization, a nonlinear factor is applied to the
convolution method through the PReLU activation function [44].
The expression for the PReLU activation function is as follows:

PReLU (xi) =

{
xi if xi > 0
aixi if xi ≤ 0

(3)

where xi represents the input of channel i and ai is a parameter
which can be automatically learned from BP network. The
updating expression is as follows:

Δai ← μΔai + lr
∂ε

∂ai
(4)

where μ is momentum, ε is objective function, and lr is learning
rate. Although the PReLU function introduces new learning
parameters in the network based on the ReLU function [45],
compared with the speed of model convergence, the cost of new
learning parameters can be ignored.

3) Extract Spectral–Spatial Features From Different Direc-
tions: After dimensionality reduction, the tensor block contains
spectral features, but as mentioned in Section I, only using
spectral features for CD is susceptible to noise, and the lack
of spatial features mining, both of which make the accuracy of
CD difficult to improve. Section I mentions that slicing tensors
in spatial direction to combine spatial and spectral information
and 2-D convolution is a good way to extract both features [42].
First, transform the reduced dimension b× b× k tensor into
b× k× b and k× b× b tensor blocks, and then, the spectral–
spatial features of these two tensor blocks are extracted by a
spatial convolution neural network composed of a convolution
kernel with the size 3× 3× 1. Due to the contribution of the two
spatial directions’ convolution neural networks to the extraction
of spectral–spatial features being approximately the same, the
structure of the two networks is consistent in principle. After
two permuted tensor blocks pass through the convolution neural
network, a total of 2m tensors whose sizes are b× b× k can
be obtained, where m is the number of convolution kernels. By
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Fig. 4. Datasets in this article. (a) Farmland imagery on May 3, 2006. (b) Farmland imagery on April 23, 2006. (c) River imagery on May 3, 2013. (d) River
imagery on December 31, 2013. (e) USA imagery on May 1, 2004. (f) USA imagery on May 8, 2007.

fusing the tensor block with spectral features information from
before, we can get 2m+ 1 tensors, whose size is b× b× k with
spatial features and spectral features for CD. In this part, batch
normalization and the PReLU activation function are still used,
and its function can be seen in detail in Section I.

The convolution of the two spatial directions combines the
information of each band and space. Different convolution ker-
nels are used to mine different spectral–spatial features, which
results in high flexibility. The number of convolution kernels
and convolution layers can be adjusted freely according to the
features of HSI data.

C. CD Based on Fusion Features

The tensor cluster that combines spatial and spectral features
is pooled, randomly dropped out, and flattened, then converted
into vectors and input the fully connected layer to get the
probability that the pixel belongs to the unchanged and changed
pixel, and then binarized to determine their change situation.
After each pixel completes the CD, it can draw the image of
the change area and use the formula to calculate the relevant
evaluation parameters to evaluate the CD effect.

Since we treat CD as a binary classification problem, in
TDSSC, we use cross entropy loss function to perform a softmax
regression.

The details framework of TDSSC is shown in Algorithm 1.

IV. EXPERIMENTS

In this section, we will first introduce the HSI datasets used in
the experiment, then introduce the evaluation indicators of the
selected method, and finally, give the experiment’s results and
our analysis.

A. Datasets in the Experiments

In the experiment of this article, three groups of HSI data are
used, the “Farmland” dataset and the “River” dataset are taken
from [37], both of which are collected from Earth Observing-1
(EO-1) Hyperion. The spectral range of EO-1 is 0.4–2.5μm, the

Algorithm 1: Framework of TDSSC for HSI CD.
Input:
1) Two HSIs of the same region at different time

temporals with ground truth.
2) The number of training samples Nt, the number of

validation samples Nv , the spatial size of input change
tensors w, the number of epochs Ne.

Step 1: Achieve the change image of two HSIs by image
difference operation.

Step 2: Extract the change tensors separately with the
available pixels at the center. The size of the
change tensor is w× w× L, where L is the
number of bands in HSIs.

Step 3: Randomly select Nt tensors as the training set
Gtrain, randomly select Nv tensors as the
validation set Gvalidation, and the remaining
change tensors are set as the testing set Gtest.

Step 4: Use Gtrain, Gvalidation, and the corresponding
label sets Ltrain, Lvalidation as the input to the
network.

Step 5: The gradient descent method is used to optimize
iteratively to obtain the optimal model. If the
validation loss does not decrease for Ne

consecutive epochs, the training is aborted and
the last model that reduced the validation loss is
set as the optimal model.

Step 6: Put Gtest into the trained model to predict the
change detection results.

Output:
1) Change map
2) OA, Kappa

spectral resolution is about 10 nm, and the spatial resolution is
about 30 m, including 242 bands in total. However, due to the
impact of internal and external noise during the imaging process,
some spectral information of the band will be destroyed. The
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“USA" dataset is from [46], and its data are also collected from
Hyperion sensor.

The first dataset “Farmland” is an HSI of a farmland near
Yancheng City, Jiangsu Province, on May 3, 2006 [see Fig. 4(a)]
and April 23, 2007 [see Fig. 4(b)] with a size of 450 × 140
pixels. After noise elimination, 155 bands remain. Training
effect is closely related to the number of samples used for
training. In order to facilitate the comparison and evaluation
of the model, we select about 20.95% of the total pixels as the
training data according to the training sample setting method in
[37], including 4400 changed pixels and 8800 unchanged pixels.
As mentioned in [37], the ratio of changed pixels in the Farmland
dataset is higher than those in other experimental datasets, so we
choose more training samples.

The second dataset “River,” a dataset and ground truth map, is
also established by [37]. The dataset is selected from two HSIs
of a river in Jiangsu Province on May 3, 2013 [see Fig. 4(c)] and
December 31, 2013 [see Fig. 4(d)], with a size of 463 × 241
pixels. From 242 bands, 198 bands with high signal-to-noise
ratio (SNR) are selected. In order to facilitate comparison and
evaluation, about 3.37% pixels are selected as training data,
including 1250 changed pixels and 2500 unchanged pixels.

The third dataset “USA” shows the situation of an irrigated
farmland in the USA on May 1, 2004 [see Fig. 4(e)] and May
8, 2007 [see Fig. 4(f)]. With the size of 307 × 241 pixels, 154
bands with high SNR are selected. The land cover types include
soil, irrigation area, river, building, cultivated land type, and
grassland. Referring to the setting in [46], we select about 9.77%
of pixels as training data, including 3313 changed pixels and
3919 unchanged pixels.

B. Algorithm Evaluation Measures

The method to evaluate the effect of a CD algorithm is to
compare the predicted results of the model with the ground truth
map and calculate the accuracy of the algorithm. We use the two
indexes of overall accuracy (OA) and the kappa coefficient to
evaluate the CD effect of the algorithm. In order to calculate OA
and kappa values, we need to count the prediction of each pixel of
the model—number of changed pixels correctly classified as TP
(true positive); number of unchanged pixels correctly classified
as TN (true negative); number of changed pixels incorrectly
classified as FP (false positive); number of unchanged pixels
incorrectly classified as FN (false negative). Let K equal the
total number of all the pixels, then we have

K = TP+ TN+ FP + FN. (5)

OA is used to measure the correct classification pixel propor-
tion of the algorithm. The formula is

OA =
TP+ TN

K
. (6)

Kappa coefficient measures the consistency between the pre-
diction results of the algorithm and the ground truth map, and
the formula is as follows:

Kappa =
OA− pe
1− pe

(7)

where the formula of pe is

pe =
(TP + FP) (TP + FN)

K2
+

(TN + FP) (TN + FN)

K2
.

(8)

C. Experiment Results and Analysis

In this article, the change of HSI is pixel-level change. We
improve the accuracy of CD by fusing the extracted change
tensor with the combined spectral and spectral–spatial features
obtained along the spectral direction and two spatial direc-
tions, respectively. We compare TDSSC with other common CD
methods, including CVA [27], PCA-CVA [29], support vector
machine (SVM) [34], patch-based CNN, and GETNET [37]
to illustrate the effectiveness and advantages of TDSSC. We
choose these algorithms because they cover the techniques and
strategies commonly used in CD, such as algebraic operations,
image transformation, and deep learning.

We have implemented TDSSC using Keras with Tensorflow
as backend. TDSSC does not need the model of pretraining. The
training batch size is 512, the optimizer selects Adam, and its pa-
rameter is the default parameter. In each convolution operation,
we introduce L2 regularization to avoid overfitting as much as
possible, in which the regularization parameter λ = 0.0001. In
addition, early stopping is introduced in the model to reduce
overfitting. We determine if training needs to be aborted by
monitoring the accuracy of the model on the validation set.
Considering that there are some random factors in the algorithm
of deep learning, such as a dropout layer, in order to evaluate
the methods of deep learning objectively, each deep learning
method runs four times on each dataset, with its average value
and standard deviation as the measurement standard. In addition,
to explore the role of spectral–spatial features in TDSSC, we
remove the convolution neural networks of two spatial directions
in TDSSC. That is, directly detect change after dimensionality
reduction and extraction of spectral features. We make it another
method in our experiment.

In TDSSC, the spatial dimension b of the extracted change
tensor and the spectral dimension k after dimension reduction
are two important parameters. The reasonable selection of the
values of the parameters b and k will help to fully extract the
spectral features and lay the foundation for the later application
of spatial directions convolution neural network to mine the
spectral–spatial features. We traverse the combination of b and k
in a reasonable range for TDSSC (without spatial convolution).
For each dataset, we choose the combination that produces
the largest OA as the combination of b and k corresponding
to the dataset. Considering the performance and stability of
TDSSC, in this experiment, the value of b is chosen from set
{3, 5, 7, 9}, and the value of k is chosen from the following set:
{k|15 ≤ k ≤ 120, k = 5p, p ∈ N}.

1) Experiment on the Farmland Dataset: The Farmland
dataset mainly describes the change of cultivated land. First,
b and k which are suitable for the Farmland dataset are
selected according to the CD results of TDSSC (without
spatial convolution). Fig. 5 shows the CD OA of different
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Fig. 5. CD OA of different parameter combinations on Farmland.

Fig. 6. CD result of different methods on Farmland dataset. (a) CVA. (b) PCA-
CVA. (c) SVM. (d) CNN. (e) GETNET. (f) TDSSC (without spatial convolution).
(g) TDSSC. (h) Ground truth.

Fig. 7. CD OA of different parameter combinations on River.

parameter combinations. In Farmland’s experiment, we choose
the parameter combination of b = 9, k = 105.

Fig. 6(a)–(g) shows the CD results of each experimental
method on Farmland. From the ground truth Fig. 6(h), it can
be seen that most of the changes in the Farmland dataset are
concentrated and have regular shapes, and the pixel propor-
tion of the changed and unchanged pixels is also relatively
balanced. Therefore, both the traditional CD method and the
CD method based on deep learning have a good performance in
this dataset. In terms of the OA and kappa coefficient, TDSSC
significantly improves the accuracy of CD. In the method of
using a neural network, the lack of spatial information mining
by CNN leads the classification effect to be easily affected by

Fig. 8. CD result of different methods on River dataset. (a) CVA. (b) PCA-
CVA. (c) SVM. (d) CNN. (e) GETNET. (f) TDSSC (without spatial convolution).
(g) TDSSC. (h) Ground truth.

Fig. 9. CD OA of different parameter combinations in USA.

Fig. 10. CD result of different methods in the USA dataset. (a) CVA. (b) PCA-
CVA. (c) SVM. (d) CNN. (e) GETNET. (f) TDSSC (without spatial convolution).
(g) TDSSC. (h) Ground truth.

much HSI redundancy and noise. GETNET and TDSSC can
better extract the features of HSI. Compared with GETNET, our
method can more fully extract the spectral and spatial features.
In this experiment, we notice that the spectral–spatial features
used in TDSSC can improve the accuracy of CD in a limited way,
which is related to the change of the dataset itself. The change
of Farmland is more concentrated, the extracted change tensor
contains the information of neighboring pixels, and the number
of training samples is sufficient. The convolution neural network
in the spectral direction can provide enough change features,
so the increase of spectral–spatial features can bring mostly
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Fig. 11. OA and kappa coefficient line graphs of TDSSC (without spatial convolution), TDSSC (without spectral convolution), and TDSSC on Farmland dataset.

TABLE I
OA AND KAPPA COEFFICIENTS OF TDSSC AND OTHER ADVANCED CD METHODS ON THREE DATASETS

confirmatory information, which is helpful for the improvement
of robustness and kappa value.

2) Experiment on the River Dataset: Some solid materials in
the river and the changes of topography are the main changes
of the River dataset. Similarly, b and k, which are suitable
for River dataset, are selected according to the CD results of
TDSSC (without spatial convolution). Fig. 7 shows the CD OA
of different parameter combinations. In River’s experiment, we
choose the parameter combination of b = 3, k = 115.

Fig. 8(a)–(g) shows the CD results of each experimental
method on River. Compared with the Farmland dataset, the River
dataset is much more difficult. First of all, the proportion of the
changed to unchanged pixels is quite different, less than 1:10.
Second, from the ground truth map Fig. 8(h), it can be seen that a
large number of changes are scattered, and the multilayer convo-
lution operation may cause the features of these changed pixels
to be eliminated. In addition, the dataset is complex and diverse,
and the number of selected training samples is small, which ne-
cessitates a higher level of deep learning algorithm requirement.
From the experimental results, the kappa coefficient is generally
reduced due to the great difference between the positive and
negative samples in the dataset. However, TDSSC still has the

best results, and the spectral–spatial features greatly improve the
evaluation index, which shows that the spectral–spatial features
make up for the weakness of the spectral features vulnerable to
noise, and improve the consistency of CD.

3) Experiment on USA Dataset: The USA dataset mainly
describes the changes of some land in irrigated farmland. Pa-
rameters b and k, which are suitable for the USA dataset, are
selected according to the CD results of TDSSC (without spatial
convolution). Fig. 9 shows the CD OA of different parameter
combinations. In Farmland’s experiment, we choose the param-
eter combination of b = 3, k = 110.

Fig. 10(a)–(g) shows the CD results of each experimen-
tal method on the USA dataset. From the ground truth map
Fig. 10(h), the change of the dataset is more complex, the shape
of the change area is mainly circular, and it contains a large
number of irregular areas, curves, and scattered points, which
is a relatively comprehensive and quite difficult CD task. From
the experimental results, the scattered area above and the river
edge below are the difficulties that affect the change accuracy.
The traditional CD method is not sensitive to irregular areas,
curves, and scattered points, which is still the main reason for its
low accuracy. There are some problems in the processing of the
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Fig. 12. OA and kappa coefficient line graphs of TDSSC (without spatial convolution), TDSSC (without spectral convolution), and TDSSC on River dataset.

Fig. 13. OA and kappa coefficient line graphs of TDSSC (without spatial convolution), TDSSC (without spectral convolution), and TDSSC on USA dataset.

river edge with GETNET. TDSSC can deal with the above two
difficulties well while still achieving the best results in accuracy
and consistency. This proves once again that TDSSC can extract
the features of change tensor more fully.

The experimental results of different methods in the three
groups of experimental data are shown in Table I.

4) Ablation Experiments: We evaluated the role of various
components of TDSSC by ablation experiments. TDSSC con-
tains one convolution network along the spectral direction and
two convolution networks along the spatial direction. Consider-
ing that the two convolution networks in the spectral direction
have the same status, we will consider them as part of the dis-
cussion. To investigate the performance of each part in different
sample sizes, we compared the results of TDSSC (without spatial
directional convolution), TDSSC (without spectral directional
convolution), and TDSSC in different training sample sizes. We
calculated the ratio of the number of pixels in each dataset, and
selected the same proportion of training samples. In the same
proportion of training samples, the training samples of the two
methods are the same. The proportion of the selected samples is
divided into the following ten levels: 1%, 5%, 10%, 15%, 20%,
30%, 40%, 50%, 60%, and 70%, covering all scenarios in a range
of training samples. In the case of fewer samples, the number of
parameter updates may be too low if the batch value is too large,
so the batch setting of the three methods in this experiment is
128, and the rest of the settings are unchanged.

Figs. 11–13 show the effect of these three methods on the
three groups of experimental data. From the results, the fu-
sion of spectral–spatial features can increase OA by 0.1%–
0.3% on average, and kappa coefficient by 0.4%–1.5%. This
shows that TDSSC can adapt to various training samples. These

improvements are most obvious on the River dataset and less
so on the Farmland dataset, which has a lot to do with the
dataset itself. If a dataset is the same as the Farmland in terms
of changing area rules, few scattered areas, and small data
noise, then the spectral features are almost enough to provide
all the changing features, and the spectral–spatial features are
in more of a confirmatory role; conversely, in the datasets with
complex and diverse changes, many scattered change areas, and
large data noise, the features of spectral–spatial combination can
supplement and repair the missing and disturbed features in the
spectral features.

It is interesting to note that, although the spectral–spatial
features learned by convolutions in two spatial directions are
ancillary, in ablation experiments, it can be seen that only the
spectral–spatial features are better than the complete TDSSC in
only a very few samples, indicating that the spatial joint features
are less susceptible to noise.

V. CONCLUSION

In this article, we propose a three-directions spectral–spatial
convolution neural network called TDSSC. We decompose
the change tensor along the spectral direction and two spatial
directions, respectively, and obtain the tensor containing spectral
information and the slice tensor containing the combination of
spectral and spatial information. TDSSC uses a 1-D convolution
network to extract the spectral features of change tensors, while
reducing the dimension of change tensors to the specified space,
which makes the whole network lightweight and significantly
improves the speed of CD. 2-D convolution extracts the
spectral–spatial features of change tensors after dimension
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reduction, which combines spatial and spectral information to
minimize the impact of noise. TDSSC can extract the features
of a hyperspectral change tensor by building a convolution
neural network of three directions, improve the accuracy and
consistency of CD, and at the same time, it is more flexible than
other methods. According to the change features of different
datasets, the network structure can be adjusted appropriately
to obtain better results. Experiments are carried out on real
HSI datasets, and the results are compared with those of
several advanced CD methods. The OA and kappa value of the
detection results of the method in this article have achieved
the best detection results on three datasets. The results show
that the proposed method can effectively improve the accuracy
of hyperspectral CD because it deeply explores the difference
image from spectral and spatial directions from different angles
and fully excavates the depth of “spectral–spatial” features.

In our future work, the application of the superpixel in TDSSC
may be explored. Superpixels is anticipated to perform better
in the task of extracting spatial information from change im-
ages than the fixed windows used in traditional convolutional
networks.
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