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Evolutionary Multitask Ensemble Learning Model
for Hyperspectral Image Classification

Jiao Shi

Abstract—Recently, ensemble learning paradigm has shown
great potential to achieve better prediction performance in the
hyperspectral image classification. However, in the traditional
methods, each classifier independently searches for the optimal
spectral feature subspace in series and some important features
are searched repeatedly, which leads to high computing redun-
dancy and low effective utilization of features. In this article, an
evolutionary multitask ensemble learning model (EMT_EL) for
hyperspectral image classification is designed. First, the model
formulates the spectral feature subspaces generation into a mul-
titask optimization problem to concurrently search for optimal
feature subspaces for multiple classifiers, which would be capable
to select more informative and representative feature subspaces
effectively. Second, seeking the optimal feature subspace for one
base classifier can assist in the optima-seeking process for some
other base classifiers via sharing the useful features, which can
accelerate converge toward the direction of the optimal feature
subspace, avoid trapping in local optimal subspace and improve
searching capability. Third, randomization-enhanced genetic op-
erators are designed for effective and reasonable feature selection,
which can facilitate the exchange of information and improve
the joint searching efficiency of the feature subspace. Eventually,
the quality of generated spectral feature subspaces for each base
classifier is improved and the feature sharing can parse HSI data
by knowing which spectral features are important. Experimental
results demonstrate that the proposed method can generate the
appropriate feature subspace for each base classifier, thus it has
outstanding classification performance on the different hyperspec-
tral datasets.

Index Terms—Ensemble learning, evolutionary multitasking,
feature subspace, hyperspectral images.

I. INTRODUCTION

EMOTE sensing (RS) images contain a wealth of land-
R cover information [1], therefore, they occupy an important
position in earth observation. Hyperspectral imagery (HSI) is
a branch of remote sensing images. HSI obtains the spatial
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properties of the target concurrently with spectral represen-
tations, dozens or even hundreds of narrow bands are con-
cluded, which is the most distinctive feature of HSI. And finally
three-dimensional data cube based on the fusion of 2-D spatial
information and spectral information is formed. In recent years,
HSI has become an important tool for resource exploration,
environmental monitoring, and target recognition, to name
a few.

More recently, HSI plays a vital role in addressing the issue
of land-cover classification due to their multiple spectral bands,
abundant information, and high-resolution [2]-[5]. Although
HSI contains a great deal of continuous spectral bands, the
high redundancy between adjacent bands and high-dimensional
features have posed great challenges to the classification of
HSI [6], such as difficult storing data, numerous transferring
data, and complex calculating. In the HSI classification, it will
be prone to the curse of dimensionality if the number of features
exceeds special value [7], and the classification accuracy reduces
rather than has significant improvement. A great deal of previous
researches into HSI classification demonstrated that traditional
classification methods, for instance, support vector machines
(SVM) and K-Nearest Neighbor (KNN) [8]-[10], are likely to
involve small data scale, low processing speed, and take no full
advantages of HSI information. In particular, these methods are
difficult to meet the demand of current classification efficiency.

Ensemble learning has been well studied and widely applied
to the classification of hyperspectral data, because ensemble
methods have the potential to increase classification accuracy
and decrease the generalization error [11]-[15]. In order to
further improve the classification performance of ensemble
learning-based HSI classification methods, many extensions
have been researched. Random feature subspace-based stud-
ies [16]-[18] optimize parameters of multiple classifiers or
integrate some ascendant classifiers, which have presented more
effective and robust performances instead of training a single
classifier to classify hyperspectral images. However, few of
these methods comprehensively consider the useful and redun-
dant band information, which may lead to low robustness and
poor classification performance. The ensemble learning-based
feature selection methods with specific criteria are proposed to
resolve these issues [19]-[21], in which they train base clas-
sifiers on selected feature subspaces derived from the original
spectral space. Most of these methods transform the spectral
feature subspace selection into an evolutionary optimization.
Although they devote to maintaining significant information,
remove redundant information and reduce computational burden
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[22]-[25], the relatedness among multiple feature selection pro-
cesses has received little notice. Thus, some important features
are underutilized, low searching effectiveness and local optimal
are inevitable. Therefore, searching optimal spectral feature
subspaces play a key role in a successful ensemble learning
based HSI classification method.

In ensemble learning-based HSI classification mechanism,
majority voting is a simple and rapid voting strategy to inte-
grated multiple prediction results [26]. Nevertheless, the rela-
tive majority voting mechanism will randomly select a pseudo
label in a case that the predictions given by each classifier
are different from each other. Then a few isolated labels may
appear in the final HSI classification maps [27], [28]. Therefore,
some works have explored a strategy that identifies informative
and representative samples from the abundant unlabeled data,
then inducted unlabeled data into a very limited set of training
samples. These methods offer possibility to reduce the number
of noisy points and grow the training dataset in a systematic
way [14], [29]-[31]. However, many of these methods are likely
to have tedious process, complicated calculation, and relatively
low computational efficiency.

On the basis of the foregoing, it is necessary to design a
method which can take into full consideration of spectral infor-
mation, search for multiple optimal spectral feature subspaces
interactively and minimize the possibility of noisy map. In this
article, an evolutionary multitask ensemble learning (EMT_EL)
model for HSI classification is proposed to address aforemen-
tioned limitations. The main contributions of this article are
listed as follows.

1) The feature selection problem is modeled as a multitask
optimization (MTO) problem. Multiple tasks that search for
the optimal spectral feature subspaces are handled in paral-
lel. It is capable to select more informative and representative
feature subspaces effectively, the classification performance is
improved accordingly.

2) The significant spectral features sharing happens between
each classification method to assist each other, which will ac-
celerate converge toward the direction of the optimal feature
subspace, avoid trapping in local optimal subspace and improve
searching capability.

3) The randomization-enhanced genetic operators are de-
signed in the EMT_EL model, which can avoid the invalid and
repetitive spectral feature subspaces, facilitate the exchange of
information, and improve the joint searching efficiency of the
feature subspace.

4) The dynamic updated training set strategy is adopted in
which pseudo labels are assigned to raw data by semisupervised
label generation strategy and update the training set in terms
of the classification performances of base classifiers. Thereby,
it avoids the inconsistency and uncertainty of the predictions
among base classifiers in HSI classification.

The reminder of the article is organized as follows. Sec-
tion II introduces the related background. Section III concen-
trates mainly on the proposed classification optimization model
for HSI. The various experiments and discussions on three
datasets: Indian Pines, Pavia University, and Salinas are given in
Section IV. Section V concludes the article.
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Fig. 1. Diagram of ensemble learning based HSI classification.

II. BACKGROUND AND MOTIVATION
A. Problem Statement and Literature Review

One of traditional ensemble learning-based HSI classification
frameworks is to manipulate different feature subspace for each
classifier. In this type, spectral feature selection is an indispens-
able process of selecting feature subsets for diversifying the base
classifiers [32]-[35]. The diagram of this framework is shown
in Fig. 1, and the framework is described in detail as follows.

1) Data Description: As Fig. 1 Part I indicates, in the dataset
D, asmall part of samples D, with s dimendions (s < D)
as training set Dy, to build base classifiers, which is
performed to label the abundant unlabeled samples Dy;.

2) Generate Spectral Feature Subspace: As shown in
Fig. 1 Part II, multiple spectral feature subspaces in s-
dimensions for classifiers are sequentially generated by
feature selection [36]-[39]. Seeking the optimal spectral
feature subspace for one base classifier may assist in the
optima-seeking process for some other base classifiers,
however, this relatedness is seldom noticed in these tradi-
tional methods. Thus, some important features cannot be
shared among classifiers.

3) Combine the Predictions: As shown in Fig. 1 Part III, once
the spectral feature subspaces are obtained, we train the
classifiers on the subspaces and the predictions of base
classifiers are combined by the relative-majority-voting
scheme to generate the classification results R [40]. If
more than one class label get the most number of votes,
randomly select one. Thus, due to the uncertainty of class
labels in multiclass HSI classification, there would appear
a number of isolated class points whose class labels are
different from those surrounding pixels, as shown in Fig. 2.
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Fig. 2. Isolated class points in classification result.

B. Brief Introduction to Evolutionary Multitask Optimization

The evolutionary MTO algorithm focuses on the transmission
of complex developmental traits to offspring through the inter-
actions of genetic and cultural factor 7 (also called skill fac-
tor) [41]-[45]. The cultural factor of an individual indicates the
one task, amongst all other tasks in multifactorial optimization,
on which the individual is most effective. And 7 is viewed as a
computational representation of an individual’s cultural bias.

The MTO does notimpose any strict constraint on the intertask
relationship. Its efficiency is derived by implicit parallelism
offered by a population in a way that transfers the positive infor-
mation among tasks [41]. The index, t = 1,2,..., T, indicates
the task index and 7" is the number of tasks. A MTO can be
stated as the following:

minimize {Fy(21),...,Fy(2),...,Fr(xT)}

T € Qt &y

where x; is a feasible solution, F}(+) is the fitness of individuals
on tth task 7} and €2, is the search space of T;. The search space
of each task is the solution space which contains representations
of all possible feature subsets. The solution space of each task is
mapped to a unified space by a coding strategy, and correspond-
ing decoding operation would be carried out to obtain the final
spectral feature subspaces.

C. Motivation of the Proposed Method

As shown in Fig. 3, the motivation for designing the multitask

ensemble learning model for HSI classification is as follows.

1) Search for Spectral Feature Subsets in Parallel: Search-
ing for the corresponding optimal spectral feature sub-
spaces of multiple base classifiers in parallel can hardly
be achieved in the traditional HSI classification meth-
ods based on ensemble learning [46], [47]. Therefore,
the spectral feature subspaces generation problem can be
formulated as an MTO problem [41], which can select
concurrently different feature subsets from the original
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Fig. 3. Comparison of the proposed method and traditional approaches.

spectral feature space of HSI data according to differ-
ent base classifiers. An evolutionary multitask ensemble
learning model would make individuals evolved, which
provides an efficient way to find optimal spectral feature
subspaces. It will optimize multiple classifiers concur-
rently and improve the classification accuracy finally.

2) Share the Significant Spectral Features: When single task
optimization algorithms are used in HSI classification
based on ensemble learning, they individually seek the
optimal spectral feature subspace for each base classifier.
Thus some spectral features are searched repeatedly and
the classification result of the classifiers on the feature
subspaces is less than satisfactory [48], [49]. Therefore,
evolutionary multitask ensemble learning algorithm is de-
signed to take advantage of the relatedness between two or
more searching procedure in HSI classification [50], [51].
The proposed algorithm encourages the spectral features
which are significant to the interclass separability of HSI
data to be shared between each searching procedure of
each classifier, as noted by the red line in Fig. 3. There-
fore, to some extent, the design of this algorithm in HSI
classification will accelerate convergence to the optimal
feature subspaces, and the classification accuracy would
be improved. It can help us understand the HSI data by
knowing which features are important.

III. PROPOSED APPROACH

The proposed EMT_EL model for HSI classification, together
with designed generators, population evaluation under the inter-
action of individuals and dataset, dynamic training set selection
approach, is detailed in this section.

A. Proposed Overall Model

The proposed EMT_EL method can address 7' tasks that
seek optimal spectral feature subspaces for T classifiers. The
pseudocode of the proposed algorithm is shown in Algorithm 1,
and the overall frame is illustrated in Fig. 4.

1) Data Description: First, the HSI dataset D € RY*P has

N samples in D dimension, as presented in Part I of Fig. 4,
The D can be represented as

D:(Si,yi)aizlaQa"'aN
subjecttoy; € 1,2,..., M 2)
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herein, M is the total number of land cover classes,
s; = [st,sh,..., s represents a sample with D spec-
tral features, the features are numbered as d, where d =
1,2,..., D. First, the hyperspectral image dataset are
divided into two subsets: A small amount of samples are
selected as training set D\,,, and the rest is used as testing
set D .

2) Spectral Feature Subspaces Generation: Second, as Fig. 4
Part II shows, the population of individuals is initialized
and each individual represents the selected spectral fea-
ture subspace, then the feature subspaces are updated by
nonrandom or assortative mating, mutation operation, and
selective evaluation. In this process, some spectral features
which are significant for the separability of HSI data are
encouraged to be shared among 7" tasks, then 7" spectral
feature subspaces are generated in parallel.

3) Ensemble the Predictions: Third, as shown in Fig. 4 Part
M1, T classifiers f = {f1, f2, .., fr} are trained on these
selected spectral feature subspaces .S in s-dimension, then
T predictions from 7" classifiers are obtained. Next, the
classification results are obtained by relative-majority-
voting scheme, and unlabeled samples also get pseudo
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Algorithm 1: Proposed EMT_EL method.

1:

Input D: HSI dataset, T": The number of classifiers,
D: the number of spectral features, s: the number of
selected features, N,,: Population size, rmp,: Random
mating probability.

2:  Output Classification result.
3:  Step 1) Set related parameters.
4: Step 2) Select part of samples as training set Dyqin,
the rest is used as testing set D .
5:  Step 3) Initialize the population P.
6: Step 4) Cycling
7:  while (stopping conditions are not satisfied) do
8: i. Train base classifiers on the feature subspaces.
9: ii. Evaluate individuals with respect to classification
accuracy.
10: iii. Compute the skill factor 7 of each individual.
11: iv. //Evolution
12: for g = 1 t0 gmax
13: Mutation operation, crossover operation based
on 7 and rmp1, P¢ is generated.
14: Concatenate P and P to form Pj.
15: Evaluate individuals for selected tasks only.
16: Update the fitness ¢ and 7 of individuals in Pj.
17: Select the fittest individuals to form the next P.
18: end
19: v. The pseudo labels are obtained by voting scheme.
20: vi. Add some unlabeled samples Dy to Dy.
21:  end while
22: Step 5) Achieve the classification result
labels. The final ensemble classifier EC' for HSI classifi-
cation are designed as follows:
T
EC(Strain) = arg max Z Dtrain(ft (Strain) = y) 3)
y=¢ 1
where ¢ = {1,2,..., M}, Syain represents the samples in
training set D ip.
4) Dynamic Selection of Training Set: Fig. 4 Part IV il-

lustrates the dynamic selection of training set strategy
which is applied to construct the model. Unlabeled sam-
ples subset Dy, with unanimous labeling results from
T classifiers are selected and added to D,.;,, then these
samples are removed from D .

Repeat step 2)—4) until the maximum number of iterations.
Finally, The T’ classifiers will obtain better predictions and
the classification results will generate by relative majority
voting scheme.

B. Evolutionary Multitask Spectral Feature
Subspaces Generation

As Fig. 4 Part II shows, the spectral feature subspace of each
individual classifier can be optimally selected in designed evolu-
tionary multitask method. The proposed evolutionary multitask
ensemble learning model with designed generators: Population
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initialization, crossover, mutation operator as well as the evalu-
ation criteria of population individuals are detailed.

1) Population Initialization: First, an initial population of indi-
viduals is generated, and every individual represents a selected
feature subspace. The initialization of population is shown as
below.

Each sample in HSI has D; spectral features, thus the di-
mensionality of the tth task is D;. Accordingly, we define a
unified search space with dimensionality D equal to max;{D;}.
Binary representation is commonly used to describe solutions
in feature selection of HSI dataset. Therefore, in the population
initialization, every individual is endowed with a vector of D
binary variables. This vector constitutes the chromosome (the
complete genetic material) of that individual. The initialization
of N, individuals is shown in Fig. 5. For jth individual, a ran-
domly generated solution is allocated, which can be represented
as a vector

p;={p},p}.....00,....pP}.i=12....N, (4
where the variable p;-l equals to 1 if the correspondent feature
is selected; otherwise, it equals to 0. And particular attention is
paid that the number of values 1 equals to the established number
of features s. Then we compute the skill factor 7 = argmin; {r; }
of each individual on 7" tasks, where 7 is simply the index of the
individual in the list of population members sorted in ascending
order with respect to fitness value.

2) Crossover Operator: Second, the designed crossover op-
erator is analogous to their biological namesakes, which as with
the difference set based crossover operator proposed in [25].
However, a key feature of evolutionary multitask spectral fea-
ture subspaces generation is that two randomly selected parent
candidates must satisfy certain conditions to undergo crossover.
The principle is individuals prefer to mate with those belonging
to the same cultural background. Two randomly selected parent
candidates can freely undergo crossover if they possess the same
skill factor. Conversely, if their skill factors differ, crossover only
occurs as per a prescribed random mating probability, or else
mutation kicks in [41].

3) Mutation Operator: Third, mutation occurs when condi-
tions of crossover operation are not satisfied. In order to maintain
the number of selected spectral features number, the mutation
operator based on single-point mutation is designed. Taking
individual p; for example, Fig. 6 depicts the mechanism of
the redesigned mutation operator. When there is a mutation
in one or more of this chromosome bits, single-point mutation

< A
/P;:before [oJo1To] - [o]1]o] \
' |
I [oJo[1T0] - [0 1]0] |
| ! |
| Puafter [oJo]1]o] - [1]1]o] |
\ /

~__ _ _ _ _ _ _ Ddimension _ __ __ __ __ -

Fig. 6. Mutation operation.

mechanism cannot guarantee the number of selected spectrums
to be s. To tackle this problem, the single-point mutation oper-
ator with a restriction is designed. The chromosomes are first
manipulated by single-point mutation operator, assume N,,, bits
have mutated. Second, N,,, chromosome bits randomly selected
from remaining genes which without mutation are forced to
mutate in the opposite direction. The specialty of the redesigned
mutation operator is individual’s dimensions with value 1 and 0
remain unchanged, i.e., the number of value 1 is s and the total
dimensions of individuals is D.

4) Selective Evaluation Based on HSI Dataset: T' compo-
nent classifiers take the tasks that maximize their classifica-
tion accuracy on the selected spectral feature subspaces S =
{Sy,,..., 8¢} as the objective of the population evolution.
The dth dimension binary value of each population individual
chromosome determines whether the dth dimension feature of
all samples in HSI dataset D is selected.

Only labeled samples are available to evaluate the classi-
fication performance of each base classifier before unlabeled
samples obtain the pseudo labels. Unlabeled samples can obtain
pseudo labels from predictions of 7" classifiers by relative ma-
jority voting scheme. Next, the labeled samples and unlabeled
samples with highest confidence are added to D, and then the
classification accuracy of classifiers could be calculated. Details
are described as follows. The labeled samples and unlabeled
samples with pseudo labels in Dy, are divided into two subsets
Dy, and Dy, ineach task: Dy, is used to carry on the training
of the classifiers and D, is used to calculate the fitness of each
individual according to the selected feature subset. Assume F'y,
is the fitness of individuals. The fitness of p; on task T'; is
calculated as follows:

F} =1-Gyp,/Ng, (5)

where G, and Np, are the number of correctly classified
samples and the total number of samples in sz which meets the
restriction with an original spectral value feature subspace S'¢, .
T classifiers search for optimal feature subspaces at the same
time, thus the ultimate aim is to find a solution which describes
the selected spectral feature subspace Si(t for classifier f;

S?‘t = argmin {Fft(S}»t), .. .,Fft(Sxp)}

subject to Sjct € {pl,pg, e ,pr} . (6)

As a result, 7" different optimal spectral feature subspaces S
for T" classifiers can be generated.
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C. Dynamic Selection of Training Set
for Reducing Isolated Points

As shown in Fig. 4 Part IV, the dynamic training set selection
strategy is adopted in ensemble model for HSI classification to
provide the predictions, and the diagram is shown in Fig. 7. First,
depending on the classification results, the mth subset Dy, of
sample set with pseudo labels is selected, which is subject to the
condition that the unlabeled samples get unanimous labeling
results from 7" base classifiers are selected and added to the
Dyin and Dy is renewed simultaneously [52]. Repeat the
above steps until the maximum number of iterations M or all
samples with pseudo labels are added to Dy,;,. Specifically, in
the mth iteration, m = 1, 2, ..., M, the labeled sample set D i,
and sample set with pseudo labels D\ as follows:

Dtrain = Dtrain ) DUm
Dtest = Dtesl - DU,,,, . (7)

The great advantage of this strategy is obvious for HSI classifi-
cation to reduce the possibility of the isolated noises appearing
in final classification maps.

D. Computational Complexity of EMT_EL

An analysis of computational complexity of EMT_EL is
calculated. All the methods are implemented by MATLAB
R2017b and executed on the same computer which has 17-4790
CPU, 3.60Ghz, and 8 GB RAM. Much more computational
load is inevitably required for combining multiple optimal spec-
tral features and selecting unlabeled samples with the highest
confidence [53]. Thus, for each meta heuristic, the computa-
tional complexity is related to the number of variables and
number of iterations. The computational complexity of EMT is
O(l(D x T + Cof x T)), wherelis the number of generations,
D is number of variables, 1" is the number of solutions, and C'o f
is the cost of objective function. For ensemble learning with 7’
classifiers is O(T'). When the number of iterations is M, the
computational complexity of dynamic selection of training set
strategy is O(M). Therefore, the computational complexity of
EMT_EL is O(M(I(D x T? 4+ Cof x T?))).

IV. EXPERIMENTS

In this section, three HSI datasets are used in experiments
to test the performance of the proposed method. The original
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Fig. 8. Indian Pines image. (a) False-color image. (b) Reference image.

TABLE I
SIXTEEN REFERENCE CLASSES IN THE INDIAN PINES IMAGE

Class Samples
No Name #Train | #Test
1 Alfalfa 5 41
2 Corn-notill 137 1291
3 Corn-min 80 750
4 Corn 21 216
5 Grass-mowed 46 437
6 Grass-trees 69 661
7 Grass-pasture 3 25
8 Hay-windrowed 45 433
9 Oats 2 18
10 | Soybeans-notill 93 879
11 Soybeans-min 237 2218
12 Soybeans-clean 56 537
13 Wheat 20 185
14 Woods 123 1142
15 Buildings-grass 36 350
16 Stones-towers 8 85
Total 981 9268

spectrum value feature is used to describe the features of sam-
ples. The overall accuracy (OA), average accuracy (AA), and
Kappa coefficient measure (Kappa) are adopted to evaluate the
classification performance of the proposed method. In order to
obtain the statistical characteristics of the algorithm, each exper-
iment repeated 30 times with different initial random subspaces,
and simultaneously calculated the mean of OA, AA, and Kappa.

To verify the effectiveness of the proposed EMT_EL method,
experiments are conducted on three hyperspectral images: The
Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) In-
dian Pines image, the Reflective Optics System Imaging Spec-
trometer (ROSIS) University of Pavia image, and Salinas image.

Traditional HSI classification methods like SVM method [8],
random forest (RoF) method [54], random subspace ensemble
classifiers (RSE) [31], and simultaneous orthogonal matching
pursuit (SOMP) [55] method are compared as baselines. STO
feature selection-based SVM (PSO_SVM) [38] and ensemble
classifiers (STO_EL) [39], the bilateral filter with support vector
machine (BF_SVM) [56], the intrinsic image decomposition,
and support vector machine (SVM IID)-based method [57] are
used to approximately classify the HSI. In HSI classification,
the multiclass version of SVM with Gaussian kernel is used,
KNN where k£ = 3 and discriminator as three base classifiers for
the ensemble classifier, and the ensemble results are obtained
by the relative voting scheme of them. For the sparsity-based
algorithms, the sparsity level is chosen as 30, since the HSI data
consist of homogenous regions, a window of size 9 x 9 is used
in SOMP.
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TABLE II
CLASSIFICATION ACCURACY (%) FOR THE INDIAN PINES IMAGE. BEST RESULTS ARE REPORTED IN BOLD

Class SVM  RoF RSE SOMP PSO_SVM STO_EL BF SVM SVM_IID EMT_EL
1 45.65 7696  58.70 47.83 97.83 100.00 97.39 100.00 95.65
2 60.08 47.81 88.73 62.32 86.90 90.41 84.45 96.54 97.62
3 58.55 5292 6398 36.27 91.08 87.35 94.20 97.14 98.31
4 4093  67.72 7131 69.20 77.22 78.06 98.80 90.95 95.36
5 90.89 86.38  89.23 83.64 91.93 91.30 96.67 98.60 100.00
6 9493 9322 97.67 96.44 97.67 98.49 99.21 98.85 99.32
7 1071 77.69  96.43 57.14 85.71 92.86 94.62 92.28 100.00
8 99.58  93.77 100.00 100.00 99.79 98.95 99.48 100.00 100.00
9 10.00  24.00 45.00 10.00 80.00 80.00 100.00 85.61 100.00
10 63.89 62.18 80.14 44.75 80.04 88.79 91.43 94.51 95.68
11 88.35 5572 91.57 91.32 95.85 95.40 88.54 98.16 99.59
12 7133 49.61 66.27 47.22 91.57 89.88 95.06 96.93 96.29
13 96.10  97.39  98.05 92.20 97.56 98.05 99.37 99.44 100.00
14 98.34  89.36  98.50 98.34 99.84 98.81 96.17 99.67 99.92
15 76.68 5594  86.27 70.98 89.38 88.60 98.26 97.91 92.23
16 97.85 9826 94.62 100.00  94.62 95.70 99.78 98.08 98.92
OA 79.19  65.72  87.23 75.50 92.39 93.10 92.77 97.56 98.32
AA 68.99  70.50  82.90 69.23 91.06 92.04 95.84 96.54 98.06
Kappa | 79.07 61.09 87.20 75.36 92.38 92.79 91.3 97.19 98.32

In all evolutionary experiments that follow, a population of
100 individuals is evolved over 100 generations. In order to allow
sufficient intertask communication, both the random mating
probability and random mutation probability is 0.1. The s in
each subspace are initialized using 10-50% of features. Suppose
a small part of pixels are labeled, which can be used to construct
the dataset D 1, and the rest for dataset D;. The training samples
are randomly divided into two sets in the process of individ-
ual evaluation. The experiments are conducted on a personal
computer with 2-GHz Core2 Duo CPU and 4 GB-RAM using
MATLAB.

A. Experimental Results on Three Datasets

1) AVIRIS Indian Pines Dataset: First, the Indian Pines image
is used to evaluate the proposed method. The size of the Indian
Pines image is 145 x 145, and spatial resolution is 20 x 20 m.
The image has 220 bands across the spectral range from 0.2 to
2.4 pm, after removing 20 atmospheric, water absorption, and
noisy bands, 200 bands are used in our experiments. Fig. 8(a)
and (b) show the false-color image, and the image covers 16
ground-truth classes, respectively. As mentioned above, it has
200 spectral features per sample. In this experiment, around 10%
of the samples for each class are chosen randomly for training
(total 981 samples) and the remaining samples (9268 samples)
are used to test the method (see Table I). The quantitative
classification accuracy results are listed in Table II and the
classification maps of compared methods on the Indian Pines
image are visually shown in Fig. 9.

As Table II shows, in each class, the traditional classification
methods like SVM, RoF, RSE, and SOMP perform worse than
other classification methods, and it is obvious that these methods
are challenging to identify samples belonging to the ninth class
consisting of oats. This is partly due to quite similar spectral
characteristics, and the lack of training samples (20 samples
in total, and only two are used for training) is another pos-
sible cause. The OA of SVM method is 79.19%, yet the OA
of PSO_SVM, BF_SVM SVM_IID method have been greatly

improved, so it is proved that the performance of a single
classifier can be optimized under a certain method. Moreover,
compared with SVM classifier, the ensemble classifier based
on RSE method has higher classification accuracy. From the
comparison between RSE and STO_EL, we can clearly ob-
serve that the OA is increased to 93.10% from 87.23%. Above
all, the optimization algorithm and ensemble learning show
the advantages in improving the classification performance of
classifiers. By using the proposed method, the OA, AA, and
Kappa coefficient increased greatly. As shown in Table II, the
proposed method obtains an OA of 98.32%, an AA of 98.06%,
and a Kappa of 98.32%. Our method can achieve satisfying
classification performance on “Oats” and “Grass-P”, which
are challenging tasks for the traditional methods. As can be
observed from Fig. 9, the classification map of the proposed
methods can achieve a better classification result than some of
the classification methods which have a very noisy appearance.
This experiment reveals that the proposed method successfully
complete the implicit information transfer across multitasks and
the information of samples without class label is used to full
advantage.

2) ROSIS University of Pavia Dataset: The second HSI is
the University of Pavia images whose spatial resolution is 1.3-
m per pixel. It contains 610 x 340 pixels. After removing 12
noisy bands, there are 103 bands range from 0.43 to 0.86 pm for
classification. The false-color image and 9 ground-truth classes
are included in the reference image as shown in Fig. 10(a) and
(b), respectively. We choose around 160 samples from each class
randomly to construct the dataset D, (total 1440 samples, which
represents approximately 3.5% of the samples) and use the rest
(total 41336 samples) for validation (see Table III). Table IV
reports the OA, AA, Kappa coefficient, and the class-specific
accuracy of different methods. And corresponding classification
maps are presented in Fig. 11.

In this experiment, the BF_SVM method improves 13.58%
than SVM in term of OA and the PSO_SVM has a gain of 1.5%
over SVM. It shows that optimizing a single classifier can im-
prove the classification accuracy to a certain extent. The SOMP
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Fig. 9. Indian Pines image: The classification maps obtained by (a) SVM;
(b) RoF; (c) RSE; (d) SOMP; (e) PSO_SVM; (f) STO_EL; (g) BF_SVM; (h)
SVM_IID; (i) EMT_EL. (a) OA = 79.19. (b) OA = 65.72. (c) OA = 87.23.
(d) OA = 75.50. (e) OA = 92.39. (f) OA = 93.10. (g) OA = 92.77. (h) OA =
97.56. (i) OA = 98.32.

B Background
Alfalfa

B Meadows
Gravel

B Trees

I Metal sheets

B Bare soil

Ml Bitumen

B Bricks
Shadows

Fig. 10. Pavia-U image. (a) False-color image. (b) Reference image.

TABLE III
NINE REFERENCE CLASSES IN THE UNIVERSITY OF PAVIA IMAGE

Class Samples
No Name #Train #Test
1 Asphalt 160 6002
2 Meadows 160 16871
3 Gravel 160 1899
4 Trees 160 2772
5 Metal sheet 160 1220
6 Bare soil 160 4550
7 Bitumen 160 1204
8 Brick 160 3337
9 Shadows 160 857
Total 1440 41336

(€9) () ®

Fig. 11. Pavia-U image: The classification maps obtained by (a) SVM; (b)
RoF; (c) RSE; (d) SOMP; (e) PSO_SVM; (f) STO_EL; (g) BF_SVM; (h)
SVMLIID; (i) EMT_EL. (a) OA = 82.96. (b) OA = 85.98. (c) 81.33. (d) OA =
59.50. (e) OA = 84.43. (f) OA = 85.86. (g) OA = 91.59. (h) OA = 98.98. (i)
OA = 98.87.

method incorporates the spatial information to original spectral
information, but the overall accuracy is as low as 59.50%. The
RoF and RSE methods also have high classification accuracy.
However, comparing the results between the proposed method
and other classification methods, we can clearly observe that the
local continuity of pixels in local patches is greatly improved
from Fig. 11. Although the SVM_IID method outperforms our
proposed method with about 0.11% gain in terms of OA, the
accuracy of AA and Kappa values are lower than our proposed
method. And the classification results in Table IV presents that
the proposed method obtains the best result with an average
accuracy of 98.58%, a Kappa coefficient of 98.83%. The overall
accuracy of the proposed method is 98.87%, which is 13.01%
and 14.44% higher than STO_EL and PSO_SVM, respectively.
The proposed method offers competitive superiority, especially
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TABLE IV
CLASSIFICATION ACCURACY(%) FOR UNIVERSITY OF PAVIA IMAGE. BEST RESULTS ARE REPORTED IN BOLD

Class SVM RoF RSE SOMP PSO_SVM STO_EL BF_SVM SVM_IID EMT_EL
1 7549 8133 81.84  40.66 76.72 79.40 81.04 99.71 97.33
2 80.89 8547 7542  59.09 84.62 85.38 92.66 99.75 100.00
3 81.61 78.00 84.23  90.38 81.13 86.90 81.61 99.89 95.57
4 91.61 9529 9197  95.86 90.63 93.18 98.85 93.19 99.18
5 99.63 9935 99.63  100.00 99.63 99.63 99.97 100.00 100.00
6 8622 89.56 83.79 61.36 84.41 86.42 94.89 99.71 97.18
7 93.31 90.54  93.68  62.86 93.83 94.59 96.84 100.00 98.87
8 81.83  79.84 80.53 3995 81.12 80.64 93.90 97.21 99.13
9 100.00  99.97  99.89 17.42 100.00 99.89 99.98 96.21 100.00
OA 8296 8598 81.33  59.50 84.43 85.86 91.59 98.98 98.87
AA 87.84 8881 87.89  63.06 88.01 89.56 93.30 98.41 98.58
Kappa 8290 81.70 81.25 58.96 84.38 85.82 88.91 98.64 98.83
TABLE V
SIXTEEN REFERENCE CLASSES IN THE SALINAS IMAGE
) Class Samples
= ESEZ*; Z:‘; No Name #Train | #Test
B Fallow Letruced 1 Brocolil 20 1989
M Fallow r Lettuce5 2 Brocoli2 37 3689
Fallow_s M Lettuce6 3 Fallow 20 1956
Stubble B Lettuce7 4 Fallow_r 14 1380
Celery W Vinyard_u 5 Fallow_s 27 2651
Grapes W Vinyard_v 6 Stubble 39 3920
7 Celery 35 3544
8 Grapes 113 11158
9 Soil 62 6141
10 Corn-s 33 3245
@ ® 11 Lettuce-romaine-4wk 11 1057
Fig. 12.  Salinas image. (a) False-color image. (b) Reference image. g iz:tﬂig::ﬁﬁzzgz:gxt 199 1990078
14 Lettuce-romaine-7wk 11 1059
in identify samples belonging to the second class consisting of }g xf“yarg'“ Z; Z;gg
.. inyard-v
Meadows, the fifth class consisting of Metal sheets, and the Total 517 53533

ninth class consisting of Shadows. Information shared between
different classifiers avoids the spectral feature sets falling into
local optimizations and enlarges the training set, which can
improve the performance of classification.

3) AVIRIS Salinas Dataset: The third HSI in our experiments
is the Salinas image which was collected by the 224-band
AVIRIS sensor over Salinas Valley, California. The Salinas
scene data contains 512 x 217 pixels and it is characterized
by high spatial resolution (3.7 m). As with Indian Pines scene,
204 bands are used after the 20 water absorption bands are
discarded. It includes vegetables, bare soils, and vineyard fields.
The false color image is included in Fig. 12(a) and ground truth
map is included in Fig. 12(b), respectively. Around 1% samples
from each class are selected randomly for training, where the
remaining 99% for evaluate the method. The number of labeled
and unlabeled samples for each class is shown in Table V. The
classification accuracies of different methods evaluated by OA,
AA, and Kappa coefficient are listed in Table VI. In order to
visually display the results, the pixel-wise classification maps
are generated for the Salinas dataset shown in Fig. 13.

As shown in Table VI, similar to the cases of Indian Pines
and University of Pavia, SVM with an optimization-based tech-
niques perform better than traditional SVM. In this compari-
son, the improvement of PSO_SVM, BF_SVM, and SVM_IID
toward SVM demonstrates the advantage of optimization al-
gorithms when the size of labeled training set is very small.
The RSE and STO_EL methods outperform SVM with about

6.1% gain and 7.83% gain in terms of OA, AA, respectively.
Especially, the STO_EL method provides higher classification
performance than that of RSE and SVM, this result suggests
the superiority of evolutionary feature subspaces generation and
ensemble learning. By analyzing the experimental quantitative
results and classification maps, concludes that the proposed
method outperforms most of the other methods in terms of OA,
AA, and Kappa. The proposed method obtains an OA 0f 99.99%,
an AA 0f99.99%, and a Kappa of 99.99%. The proposed method
can achieve the best classification performance in each class of
the Salinas image. The classification results in Table VI and
Fig. 13 indicate that the proposed method can select better
spectral features to improve the final classification result. Every
part of the proposed algorithm is helpful to the classification of
HSI dataset.

B. Analysis of the Parameters

The parameters (the number of training samples J5, the num-
ber of iteration of renewing the training set d;, and the number
of the selected number of features §;) on HSI classification
performance are worthy of research. This article examines the
effect of the d, d;, and 07 in the proposed algorithms on Indian
Pines.
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TABLE VI
CLASSIFICATION ACCURACY (%) FOR SALINAS IMAGE. BEST RESULTS ARE REPORTED IN BOLD

Class SVM  RoF RSE  SOMP PSO_SVM STO_EL BF SVM SVM_IID EMT _EL

1 96.81 9743 96.67 100.00 96.91 97.31 98.09 100.00 100.00

2 96.05 99.29 9753  97.64 95.52 98.74 99.76 100.00 100.00

3 79.05 61.78 9297  74.90 98.38 96.61 99.80 99.80 100.00

4 99.00 9739 99.07  75.54 99.57 99.64 99.13 100.00 100.00
5 94.14  94.65 96.71 83.68 96.30 94.47 95.55 98.91 100.00
6 98.69 99.62 99.24  100.00 98.71 99.44 99.95 99.92 100.00

7 98.60 99.24 99.22  99.69 99.16 99.11 99.44 99.89 100.00

8 85.78 86.06 92.64  87.31 87.27 89.09 90.81 99.89 100.00

9 9553  99.15 98.13  99.98 97.07 96.39 98.86 99.71 100.00
10 68.88 79.88 83.77  90.24 92.53 89.96 90.85 99.72 99.97
11 6695 80.81 80.15 97.85 88.76 86.33 91.68 100.00 100.00
12 90.19 9649 98.18  53.19 99.69 99.64 99.32 100.00 100.00
13 68.45 98.90 98.03 13.97 97.82 98.69 98.24 98.68 100.00
14 86.73 8472 86.73  97.94 91.21 89.91 93.58 89.91 100.00
15 30.60 3649 41.06  52.53 52.85 49.6 55.88 99.24 99.94
16 68.29  82.17 7443  99.11 97.29 96.85 94.52 100.00 100.00
OA 80.81  83.89  86.91 84.62 88.87 88.64 94.09 99.59 99.99
AA 82.37 87.13  89.66  82.72 93.06 92.61 90.57 99.11 99.99
Kappa | 80.68 8196 8597  83.57 88.02 88.6 89.46 99.53 99.99

(8)

() @

Fig. 13.  Salinas image: The classification maps obtained by (a) SVM; (b) RoF;
(c) RSE; (d) SOMP; (e) PSO_SVM,; (f) STO_EL; (g) BF_SVM; (h) SVM_IID;
(i) EMT_EL. (a) OA = 80.81. (b) OA = 83.89. (c) OA = 86.91. (d) OA =
84.62. (e) OA = 88.87. (f) OA = 88.64. (g) OA = 94.09. (h) OA = 99.62.
(i) OA =99.99.

When this article uses the same training set and testing set,
that is about 10% samples from each class are chosen. The
classification result of OA, AA, and Kappa value is analyzed
in Fig. 14. One can observe from the experimental results
in Fig. 14(a) that for the proposed method, d; = 5, leads to
the highest classification performance at all selected §; values.
And the performance of the proposed method improves as J;
increases, the number of iteration §; with the rise of §; = 1 to
d; = 5, the OA value increased about 5%. This means that large
number of iteration can yield good classification results. The
appearance of significant increase partly because the information
in unlabeled data is used for classification. When the parameter
0; is more than 5, the classification accuracy of the proposed may
be better, but this process would take a long time to finish. As
shown in Fig. 14, the classification performance is good enough
when the parameter J; is 5. Therefore, more iterative processes
would rarely need.

Next, we demonstrate the effect of d5 on the performance
of the proposed algorithm. In the experiment, for a fixed §; =
1, the number of training samples J, (in percent) ranges from
1% to 10% per class, the change of three indices (OA, AA, and
Kappa) plotted on the entire test set for Indian Pines are shown in
Fig. 14(b). The horizontal axis indicates the number of training
samples and the vertical axis is the overall accuracy (%). For few
training samples J,, the classification map cannot be faithfully
approximated the ground-truth image. On the other hand, as J;
decreases toward the small size, a small amount of information
contained in the training set cannot obtain optimal parameters
setup, leading to a classification performance degradation. One
can also see that for sufficiently large number of training samples
05, with the increment of the number of training samples, OA,
AA, and Kappa increased accordingly as a whole. There would
certainly be a fall in classification accuracy, for instance, when
the number of training samples increased from 8% to 9%, the
Kappa value decreases.

According to the analysis of reality, in most cases, a
large number of labeled samples for training is difficult to
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Fig. 14.  Analysis of classification performance of parameters in 2-D and 3-D format on Indian Pines (the parameters include ¢; and ). (a) Accuracy with the
change of §;. (b) Accuracy with the change of §5. (c) Overall accuracy with the change of §; and 5. (d) Average accuracy with the change of §; and 5. (¢) Kappa
coefficient with the change of §; and J.

obtain. When the size of training set is not large enough, the 1

classification performance is increasing with d; growing, as

show in Fig. 14(c)—(e). In a high number of iteration, the 09¢

proposed method has the advantage of high classification

accuracy with the limitation in the number of training samples, ?0'8’

but the classification accuracy does not increase monotonously g o7l

with the increase of . That would lead to a decrease in the clas-

sification accuracy once more samples with pseudo labels with 06

incorrect classes information in the last classification result are __:__2:

selected. oSl |heKe
Finally, the correlation between the number of the selected 0o T},Se nfﬁ,beiﬁofsz?ect:; fe;fu,e;u‘;f 650

features ¢ y and the classification accuracy is tested. It is apparent
from Fig.15 that as the number of the selected features increases, — Fig. 15.  Analysis of the §; on Indian Pines.
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Fig. 16.  Comparison of different model on Indian Pines dataset. (a) OA. (b) AA. (C) Kappa.
TABLE VII

there will be an improvement of the classification accuracy in
general when the number of the selected features d is less than
30. However, an increase in J ¢ of limited training samples will
show no significant improvement and even a decrease in classi-
fication accuracy, this phenomenon is especially obvious when
07 exceeds 30. Taken together, these results suggest that there is
an appropriate § y which contains exactly all the information and
would not cause redundancy, thus the classification accuracy can
be guaranteed to some degree.

C. Analysis of the Quality of Selected Feature
Subspaces in EL_EMT

In order to highlight the advantage of evolutionary multitask
feature selection algorithm, Indian Pines dataset is chosen for
comparison. Around 3% of the samples for each class are
randomly selected for training and testing. The classification
accuracy of evolutionary multitask ensemble learning model
and other methods for hyperspectral image classification is
shown in Fig. 16. For Indian Pine dataset, EL_EMT gener-
ally attains better classification performance than the RSE and
STO_EL which is without evolutionary multitasking method.
Compared with STO_EL, the OA of EL_EMT improved from
81.77% to 82.56% approximately when the §; is 1. As can be
seen in Fig. 16, no matter how many iterations J; is selected,
EL_EMT always achieves higher or similar classification accu-
racy to the RSE method. This suggests the feature subspaces
generation benefits from multitask optimization, the coopera-
tion among tasks has a positive influence on the classification
performance.

COMPUTATIONAL TIME OF DIFFERENT METHODS (SECONDS)

Model
Computational Time

PSO_SVM
25.127624

STO_EL
94.133584

EMT_EL
350.334532

D. Analysis of Computational Efficiency

In order to assess the computational efficiency, the compu-
tational time is listed in the Table VII and the convergence
trends of computational objective functions are displayed in the
Table VII and Fig. 17. From the data in Table VII, it is found
that the proposed method takes longer computational time to
find optimal spectral feature subspaces than the traditional HSI
classification methods with evolutionary algorithm. From the
comparison among PSO_SVM, STO_EL, and EMT_EL, it can
see that STO_EL and EMT_EL cost more computational time
than PSO_SVM. This result can be explained, in part, by the fact
that training a base classifier spends less time than an ensemble
classifier does. The difference of computational time between
STO_EL and EMT_EL is likely to be related to the evaluation
of initial population on the multiple tasks and feature sharing in
the searching procedure.

However, although the computational time of the proposed
method is long, an ensemble classifier with high robustness
can be obtained in the proposed ensemble learning method and
each objective function converges to the optimal solution more
easily than other methods. As shown in Fig. 17, the convergence
trends of the multiple classifiers” objective functions illustrate
that the superiority on classification performance of the pro-
posed method is at the cost of the increasing computational
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Fig. 17.
Discriminator. (c¢) The third classifier: KNN.

time. Therefore, the computational efficiency of the proposed
method is relatively higher than some other methods in terms of
classification performance.

V. CONCLUSION

Traditional hyperspectral image classification methods based
on ensemble learning optimize multiple base classifiers sepa-
rately. However, little models pay attention to the correlation
among searching processes of optimal spectral feature sub-
spaces, which may cause some features to be searched repeat-
edly. Thus the effectiveness and quality of selected spectral
feature subspace are not high. In summary, a method which
can reduce many unnecessary search of features, avoid trapping
in local optimal subspace, and achieve good quality in the
classification performance is required. Therefore, in this article,
an EMT_EL model for HSI classification was presented. The
proposed model generated the optimal spectral feature subspace
for each base classifier in parallel and feature sharing happens
between each classifier to assist each other in searching pro-
cesses. The advantages of the proposed method are as follows.

1) The proposed model searches for an optimal spectral fea-
ture subspace for each base classifier in parallel. In the unified
search space, searching for feature subspaces for different base
classifiers not only improves the utilization efficiency of spectral
features but also selects more informative and representative
feature subspaces.

2) The significant spectral features are encouraged to be
shared among classification methods, which will accelerate

Convergence trends of classification error ration in EMT_EL and STO_EL for Indian Pines dataset. (a) The first classifier: SVM. (b) The second classifier:

convergence toward the direction of the optimal feature sub-
space, avoid trapping in local optimal subspace and improve
searching capability.

3) The randomization-enhanced genetic operators are de-
signed in evolutionary multitask ensemble learning model,
which can avoid the invalid and repetitive spectral feature sub-
spaces, facilitate the exchange of information, and improve the
joint searching efficiency of the feature subspace.

4) The dynamic updated training set strategy is adopted in
which pseudo labels are assigned to raw data by semisupervised
label generation strategy and update the training set in terms
of the classification performances of base classifiers. Thereby,
the inconsistency and uncertainty of the predictions among base
classifiers can be avoided, and a less noisy map is achieved
finally.

On real three hyperspectral images, the experimental re-
sults reveal outstanding transferability among classification
methods, which can avoid some features are searched repeat-
edly, converge to a better spectral feature subspace faster, and
achieve a higher classification accuracy. Moreover, the exper-
iment exhibits the noise reduction capacity of the proposed
method.

However, the classification superiority is presented at the
expense of computational burden, which leads to a long pro-
cessing time. It is mainly caused by the complexity of multitask
optimization mechanism, in which the feature sharing happens
in the searching, and initial population is evaluated on all tasks.
Thus, a proper balance between effectiveness and efficiency
would form the central focus in our future work.
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