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A Bayesian Approach for Interpolating Clear-Sky
MODIS Land Surface Temperatures on Areas With

Extensive Missing Data
Yuhong Chen , Zhuotong Nan , Shuping Zhao, and Yi Xu

Abstract—The MODIS land surface temperature (LST) prod-
ucts contain large areas of missing data due to cloud contamination.
Interpolating clear-sky equivalent LSTs on those areas is a first
step in a stepwise approach toward fully recovering missing data.
A previous study (viz. the Yu method) has implemented an effec-
tive clear-sky interpolation method, especially targeting large-area
missing data. The Yu method postulates several global reference
LST images that contain over 90% of valid pixels and that are
assumed to have a close statistical relationship to the interpolated
images. However, in practice, such reference images are rarely
available throughout a one-year cycle, and the time gaps between
the available reference images and the interpolated images are
often huge, resulting in compromised interpolation accuracy. In
this study, we intended to address those weaknesses and propose
a novel clear-sky interpolation approach. The proposed approach
uses multiple temporally proximate images as reference images,
with which multiple initial estimates are made by an empirically
orthogonal function method and then fused by a Bayesian approach
to achieve a best estimate. The proposed approach was compared
through two experiments to the Yu method and two other widely
used methods, i.e., harmonic analysis of time series and co-kriging.
Both experiments demonstrate the superiority of the proposed
approach over those established methods, as evidenced by higher
spatial correlation coefficients (0.90–0.94) and lower root-mean-
square errors (1.19–3.64 °C) it achieved when measured against
the original data that were intentionally removed.

Index Terms—Bayesian approach, data fusion, data
interpolation, empirical orthogonal function (EOF), land surface
temperature (LST), similarity theory.

I. INTRODUCTION

LAND surface temperature (LST) is a key variable for
monitoring surface energy budget, determined by the land
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surface–atmosphere interactions and the energy fluxes between
the atmosphere and the ground. It is widely used in a variety of
studies including climate change, hydrological cycle, vegetation
monitoring, and ecosystem assessment [1]–[3]. The LST prod-
ucts from the moderate resolution imaging spectroradiometer
(MODIS) onboard the Terra and Aqua satellites have become
one of the most commonly used LST products due to their high
spatial and temporal resolutions [4], [5]. However, the MODIS
LST products contain a large portion of missing data as a result
of cloud contamination, high aerosol content, sensor failure, and
quality control. On average, approximately 35% of the global
surface is obscured by clouds at any one time [6]. The average
cloud coverage amounts to more than 50% on the Qinghai-Tibet
Plateau (QTP) [7], [8].

Many techniques have been developed to fill up missing values
in the MODIS LST products, such as combining microwave data
[9]–[12], deriving missing data from the surface energy balance
(SEB) equation [13]–[15], and adopting stepwise strategies
[16]–[20]. Microwave methods take advantage of microwave
measurements under cloudy conditions, but are generally limited
by the coarse resolution of passive microwave data and the large
uncertainties associated with the data that are induced by the
interference of inhomogeneous underlying surface conditions
[21], [22]. The SEB methods are physically explicit, but their
applicability is highly dependent on the availability of meteoro-
logical observations, such as air temperature, specific humidity,
and wind speed [15]. Stepwise approaches have been developed
in recent years to ease the mission in a way, breaking the full
process into separate steps: 1) estimating clear-sky equivalent
LST values assuming no cloud effects on the missing pixels
and 2) imposing cloud-effects on those equivalent LSTs on the
cloud obscured pixels. As such, the tasks become more specific
to tackle the challenges met in each step. For example, Zhang
et al. [16] estimated clear-sky LSTs from a diurnal evolution
of LST model and recovered cloud-affected values by assuming
that cloud effects can be approximated by the differences in
net shortwave solar radiation and thermal inertia. Yu et al. [18]
developed a two-step method in which clear-sky LSTs were
estimated following the similarity theory and then corrected for
the cloud-covered pixels considering surface energy balance.
Zeng et al. [17] first used a multitemporal interpolation method
to compute clear-sky LST values, and then in the next step,
corrected for cloud effects based on a surface energy balance
approach. In the work of Yang et al. [20], the harmonic analysis
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of time series (HANTS) algorithm and Poisson image editing
method were used to solve clear-sky LST values, and the cloud
effects were accounted using a revised neighboring-pixel ap-
proach. The final accuracy depends on both the performance of
interpolating clear-sky equivalent LSTs in the first step and bias
removal of cloud effects in the next correction steps. Therefore,
it is crucial to accurately interpolate clear-sky equivalent LSTs
for the cloud-affected pixels in any stepwise approach toward
fully recovering the missing data.

In addition, interpolating clear-sky LSTs can be meaningful in
recovering nighttime missing LSTs. Unlike daytime, the cloud
effects on the LSTs during nighttime are marginal since there
are no incoming solar radiations at night [18]. Therefore, inter-
polated clear-sky LSTs can be accepted as being accurate under
nighttime cloud conditions. Despite that clear-sky equivalent
LSTs may differ in value from real cloudy-sky LSTs, they also
have the potential to provide broadly consistent spatial and
temporal patterns of LST [23], [24], and they can be useful
in some applications, such as mapping permafrost [25], [26],
drought monitoring [27], numerical weather prediction [28], and
urban heat islands [29], where high accuracies of LST are often
not demanding.

In previous studies, many methods have been developed for
interpolating clear-sky LSTs assuming no cloud effects. They
can be roughly classified into three categories—spatial inter-
polation methods [30], [31], temporal interpolation methods
[32]–[35], and spatiotemporal interpolation methods [7], [36],
[37]. The first category methods spatially interpolate the missing
LST data using geostatistical methods and regression methods,
such as inverse distance weighting (IDW) [38], regression krig-
ing (RK) [39], and co-kriging (CoK) [40]. In this category, the
predictor variables are critical to obtaining satisfactory accura-
cies, such as using digital elevation model (DEM) [31] and nor-
malized differential vegetation index (NDVI) [41]. The second
category methods rely on mathematical fitting to temporal LST
variations. A commonly used method is to extract the missing
MODIS LST values from an established diurnal temperature
cycle curve [42], [43]. HANTS is also an often-used method
falling within this category [33], [44]. However, the first and
second categories usually lack for effectiveness in the face of
large-area missing data. Spatial interpolation methods rely on
the information from spatially neighboring pixels. Their perfor-
mance greatly weakens when severe data losses are present in
the neighborhood. For temporal interpolation methods, narrow
time gaps between two available values are very important
for interpolation accuracy. Unfortunately, the absence of LST
observations on the QTP frequently continues for a long period,
severely degrading its performance.

The third category methods maximize the use of both spatial
and temporal neighborhood information and are theoretically
more suitable in interpolating large-area missing data. Yu et al.
[7] developed a viable approach for infilling massive data voids
on the QTP. The Yu method is based on a similarity concept, as-
suming that each interpolated pixel is linked to a corresponding
similar pixel set in space, in which all members have valid LST
values and share high similarities with the interpolated pixel in
terms of temperature change over two MODIS overpass times.
When a similar pixel set is identified for an interpolated pixel,

a linear statistical relationship can be inferred using the LST
values on the similar pixels that are known on both the interpo-
lated and the reference image. The relationship is then used for
interpolating the missing value on the interpolated image when
the corresponding LST value on the reference image is known.
The experimental applications to the QTP indicate that the Yu
method outperformed conventional geostatistical methods when
dealing with large-area missing data. Nevertheless, it postulates
the existence of a certain number of global reference images,
which should possess a high fraction (e.g., >90%) of valid
pixels and a statistically close relation to the interpolated image.
Unfortunately, such global reference images are rarely available
in a one-year cycle on the QTP, and even if available, there are
often long intervals between the qualified reference images and
the interpolated image. The long intervals weaken the statistical
ties between the interpolated image and the reference images
and consequently, lower the interpolation accuracy. In practice,
similar pixels as defined in the Yu method will have the highest
similarity over two temporally proximate LST images in terms
of temperature change. Proximate images thus could be ideal
reference image candidates. But when using proximate images
as reference images, the first obstacle is that for many interpo-
lated pixels, the corresponding LST values remain unavailable
on the proximate images as long as clouds are present, while
as being qualified reference images, they should be known. As
such, it is almost impossible to find a valid reference image
from proximate images where all interpolated pixels are known.
In addition, there are chances for abrupt temperature changes
to occur between the view times of the proximate image and
the interpolated image. Thus, the use of a single proximate
image as a reference image would risk losing interpolation
quality. A possible solution to deal with those obstacles is
to use multiple proximate images preceding and succeeding
the interpolated image, instead of a single one, as reference
images.

In the present work, we extended the previous work of Yu
et al. [7] by using multiple proximate images as reference images
and introducing a Bayesian approach to fuse initially estimated
values as a best estimate for the clear-sky equivalent LST.

II. METHOD

A. Proposed Approach

The proposed approach extends the methodology developed
by Yu et al. [7], basing the same similarity concept. It assumes
that each interpolated pixel has a corresponding similar pixel set
in space, in which all set members share high similarities with
the interpolated pixel in terms of temperature change over time.
A reference image is defined as the image where the interpolated
pixel and similar pixels have known LST observations. The
similar pixel set can be created by measuring all known pixels
on both the interpolated and the reference images and removing
the pixels unsatisfying certain similarity criteria. The members
of the similar pixel set are thus known on both the interpolated
image and the reference image. A statistical relationship can be
inferred from pairs of known LSTs of the similar pixels on both
images and then applied to estimate the unknown LST of the
interpolated pixel on the interpolated image.
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Fig. 1. Approach framework for interpolating large-area missing LST data. t: day number of an interpolated image; i: the number of candidate neighboring
images; j: the number of qualified reference images (Ref. image); p: the interpolated pixel; k: a threshold of property distance, less than which the pixels measured
will be selected as similar pixels for the pixel p. DINEOF: data interpolating empirical orthogonal function.

The improvements of this approach over the Yu method lie on
two aspects: 1) rather than seeking universal reference images
where all interpolated pixels are known, which is hard to be
satisfied, as implemented in the original Yu method, we use
temporally neighboring images as reference images for each
interpolated pixel. Several images proximate to the interpolated
image that have an adequate number of similar pixels are iden-
tified as reference images for the interpolated pixel and 2) with
those proximate reference images, multiple estimates are thus
made for the unknown LST of the interpolated pixel. A best
estimate is then achieved through a Bayesian fusion approach
so as to improve the interpolation accuracy as well as to minimize
the effects of occurrence of abrupt temperature changes on the
reference images.

The workflow comprises the following four steps (see Fig. 1).
1) Determining reference images and similar pixel sets.
2) Initially interpolating missing LST values using the data

interpolating empirical orthogonal function (DINEOF)
method.

3) Obtaining best estimates by a Bayesian data fusion ap-
proach.

4) Iterating steps 1)–3) for all pixels to be interpolated and
evaluating the performance.

1) Determining Reference Images and Similar Pixel Sets:
For each pixel to be interpolated, the images proximate in time to
the interpolated image are checked and they can be determined
as reference images if two criteria are met. First, the candidate
image has a valid LST value on the interpolated pixel; and
second, the candidate image holds a relatively high proportion
of valid pixels. Multiple proximate reference images can be
identified for each interpolated pixel by searching through a short
time window (e.g.,15 days) centered on the interpolated image.
The pixels to be interpolated may have different combinations
of reference images.

To determine the similar pixels to the interpolated pixel,
primary factors controlling the characteristics of temperature
change over time are first singled out. We choose terrain factors
(DEM, slope, and aspect), vegetation indices (NDVI), and ther-
mal condition factors (solar radiation and LST) as attributes to
evaluate the similarities between the interpolated pixel and the
remaining pixels. Solar radiation is ignored when processing
nighttime images. The simple Euclidean distance equation is
prescribed as the similarity function. All pixels with known LST

values on both the reference image and the interpolated image
are measured in terms of similarity and ranked in ascending order
of similarity distance. The pixels with the highest similarities
(similarity distance < k) constitute a similar pixel set for this
interpolated pixel (1). Because an interpolated pixel can be as-
sociated with multiple reference images, we can create multiple
similar pixel sets for a single interpolated pixel corresponding
to the reference images

P = min
(
g
(
Sp, SI

))
(1)

where P is the similar pixel set; g is the Euclidean distance
equation; Sp and SI denote all attributes of the pixel p and the
remaining valid pixels I, respectively.

2) Initially Interpolating Missing LST Values Using the DI-
NEOF Method: The DINEOF method decomposes a matrix
containing spatial data into a set of empirical orthogonal func-
tions (EOFs). The most dominant EOFs are later used to create
a new matrix, which contains an estimate for the missing value
[45]. We use the DINEOF method to make initial estimates for
each interpolated pixel. A similarity matrix is composed of the
paired LST values of the similar pixels and the interpolated pixel
from both the interpolated image and the reference image. The
singular value decomposition (SVD) technique, as expressed
in the following, is adopted to compute EOFs of the similarity
matrix [46]:

M = USV T (2)

where M is the similarity matrix, with a dimension of m rows by
n columns; U and V are matrices representing spatial EOFs (m×
r, r ≤ min (m, n)) and temporal EOFs (n × r), respectively; S is
a diagonal matrix (r × r) whose elements are the singular values
of the original matrix. The importance of EOFs is determined
by the corresponding singular values.

For each similar pixel set corresponding to each associated
reference image, the following DINEOF steps are performed to
obtain an initial estimate of the missing LST value.

a) Constructing a similarity matrix: Given a similar pixel
set P associated with an interpolated pixel p, the corresponding
similarity matrix (M) holds the paired LST values of both p and
all members of P from the interpolated and reference images,
with a dimension of m × 2. The number of rows (m) is equal to
the length of P plus one. Two columns represent the LST values
on the interpolated image and the one for the reference image,
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respectively. The unknown LST of p on the interpolated image
is initialized to zero.

b) Computing and decomposing residual matrix: The
residual matrix R is computed by removing the columnwise
means from all elements of the similarity matrix except the
unknown element. Then, the SVD is applied to decompose the
residual matrix. As a result, the spatial EOFs (U), temporal EOFs
(V), and the singular matrix (S) are generated.

c) Estimating the unknown value: The most dominant spa-
tial and temporal EOFs from the residual matrix are used in
this study to rebuild a new residual matrix R′. A new similarity
matrix M ′ is then reconstructed by adding the means back to
the columns of R′. The initial estimate of p can be found at
M ′(1, 1).

3) Obtaining Best Estimates by a Bayesian Data Fusion
Approach: The DINEOF method computes multiple initial esti-
mates of LST for a single interpolated pixel corresponding to its
associated similar pixel sets. A Bayesian data fusion approach
[47] is used to find a best estimate for the interpolated pixel
by fusing those multiple initial estimates. The prior probability
distribution of the belief is first defined and the initial estimates
are used as observations to determine the likelihood function. A
posterior conditional probability density function of the current
state, given all previous observations, is calculated following
Bayes’ theorem. The best estimate is then obtained through a
maximum a posteriori (MAP) method. We assume that X is
an unknown state variable, and X obeys a prior distribution
of a known form fx(x). The observations, denoted by Zj are
described by a likelihood function fzj |x(zj |x). The posterior
distribution fx|zj (x|zj) of X can be calculated by

fx|zj (x|zj) =
fx (x) fzj |x(zj |x)

∫ fx (x′) fzj |x(zj |x′)dx′ . (3)

The MAP is used for inference. It selects a value X̂MAP

within the range of the possible values of X so that the posterior
distribution is maximized (4). When there are multiple obser-
vations Zj = {z1, z2,…,zj}, the posterior distribution (3) can be
written as (5) in the following:

X̂MAP = argmax
(
fx|zj (x|zj)

) ∝ fx (x) fzj |x(zj |x) (4)

fx|zj (x|z1, z2 . . . zj)

=
fx (x) fz1|x (z1|x) fz2|x (z2|x) . . . fzj |x(zj |x)

∫ fx (x′) fz1|x (z1|x′) fz2|x (z2|x′) . . . fzj |x(zj |x′)dx′ . (5)

Assume j initial estimates have been made in response to j
similar pixel sets (see Fig. 1). When j>= 2, the j initial estimates
are fused by the Bayesian approach to achieve a best estimate
as the final interpolated value. Otherwise, the final interpolated
value is assigned with the unique initial estimate (j = 1) or as
null (j = 0). Let X be the unknown true on the interpolated pixel
and j initial estimates be the observations. For all interpolated
pixels, the following steps are repeated to obtain best estimates.

a) Identifying the prior distribution: The members of the
similar pixel set share characteristics of temperature change
similar to the interpolated pixel. Therefore, the LST values of
those similar pixels from all j sets on the interpolated image

can be used to describe the prior distribution of the unknown X
following a Gaussian distribution

fx (x) =
1

σ0

√
2π

e

{
−(x−z0)2

2σ0
2

}
(6)

where z0 represents the mean and the center of the Gaussian
distribution and σ0

2 is the variance. z0 and σ0
2 can be estimated

by the known LST values from all similar pixels of j sets on the
interpolated image.

b) Determining the likelihood function: The j estimates
by the DINEOF method carry varying degrees of uncertainties.
Each initial estimate zj assumingly corresponds to a Gaussian
distribution and is centered in the distribution [47] (7). Since
zj is estimated by a process of decomposing and reconstructing
a similarity matrix through the DINEOF method, the loss of
accuracy in this process can be used to measure the uncertainty
associated with zj, denoted as the variance σj

2. We measure
the differences of the similarity matrix before and after the
reconstruction. The varianceσj

2 is determined by the differences
occurring in the column that represents the reference image

fzj |x (zjx) =
1

σj

√
2π

e

{
−(x−zj)

2

2σj
2

}
. (7)

c) Calculating the posterior function and the best estimate
using MAP: Bayes’ theorem is used to calculate the posterior
distribution of the unknown LST on p (5). The posterior distribu-
tion for multiple observations can be rewritten as (8)–(10). The
MAP is then employed to obtain the maximum of the posterior
distribution (11) and the best estimate of the unknown LST is
given by (12) in the following:

fx|zj (x|z0, z1 . . . zj) =
(
c · exp

{
−

j∑
i = 0

(x− zi)
2

2σi
2

})
/d

(8)

c =
1∏j

i=0

(√
2πσi

) (9)

d = ∫
(
c · exp

{
−

j∑
i=0

(x′ − zi)
2

2σi
2

})
dx′ (10)

X̂MAP = argmax

(
c · exp

{
−

j∑
i=0

(x− zi)
2

2σi
2

})
(11)

X̂MAP =

∑j
i=0 xi/σi

2∑j
i=0 1/σi

2
. (12)

B. Performance Evaluation

1) Study Area and Data: We chose the Qinghai-Tibet Plateau
(QTP) as the study region to evaluate the proposed ap-
proach. The plateau is bounded with 26 °00′∼39°47′N and
73°19′∼104°47′E, with an area of over 2.6 million km2. It
is the highest plateau in the world, with an average elevation
of over 4000 m above sea level and has attracted increasing
research interests worldwide, especially in the context of climate
change [48], [49]. MODIS LST products, as an important data
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Fig. 2. Schematic procedure on fabricating data voids for the second experiment. The interpolation methods can be evaluated by comparing the interpolation
results against the original values prior to removal.

source for QTP research, suffer severe data losses on the QTP
due to cloud cover [7], making the QTP an ideal place to
test interpolation methods. The experimental LST data are the
MODIS/Terra MOD11A1 product at a 1-km spatial resolution.
The Terra satellite crosses the equator at 10:30 and 22:30 local
time per day. The MOD13A2 NDVI product (16 days and 1 km)
from Terra was used to represent the vegetation conditions. DEM
was obtained from the Shuttle Radar Topography Mission (90 m)
and then, bilinearly resampled to 1 km to match the MODIS LST
data. The terrain features such as slope and aspect were derived
from the DEM. Clear-sky solar radiation was simply estimated
from the incident angle, which depends on the time of year,
latitude, elevation, slope, and aspect, plus diffuse and reflected
radiation [50].

2) Experiment Design: Two experiments were designed to
evaluate the proposed approach. One experiment aims to test the
performance with real data voids that occurred on the QTP. The
real data voids are results of cloud contamination, differing from
clear-sky equivalent LSTs. Hence, we focused on visual inspec-
tion of spatial patterns and checked how interpolation methods
work in real applications. The other tests the performance with
fabricated data voids, in which the values before removal are re-
garded as “truth” and those clear-sky interpolation methods can
be exhaustively tested for performance. In the first experiment,
we selected the same two LST images as used in the literature
[7] for the convenience of comparing with the Yu method (i.e.,
the daytime image of the tenth day and the nighttime image of
the 183rd day of 2005, representing two typical cases in cold
and warm seasons, respectively). The fractions of missing data
in the two images are 56% and 73%, respectively. In the second

experiment, we first excluded the MODIS/Terra LST images in
2010 that are in severe loss of data (i.e., the fraction of invalid
pixels > 80%), and then, randomly selected several images
from the rest to represent different seasonal conditions and
different overpass timings. A consistent patch that has minimal
loss of LST observations was identified from these images as
an experimental area, which covers an area of approximately
0.56 × 106 km2. The images arbitrarily selected in 2010 consist
of the daytime images of the 9th, 142nd, and 255th days and
the nighttime images of the 9th, 141st, and 255th days. In the
identified patches on those images, one-third of the total area was
removed to create artificial data holes, as illustrated in Fig. 2.
Since the true LST values are known in the hollow areas, the
performance of the methods can be assessed against the true
values. The reference images used in the two experiments are
listed in Table I. The proximate reference images may vary by
interpolated pixel, so only the most frequently used reference
images are listed. The global reference images for the Yu method
in the first experiment were identical to the ones in the literature
[7], and in the second experiment, they were identified following
the exact same rules recommended in the literature [7].

We selected some representative interpolation methods for
comparison with the proposed approach. Included are a spa-
tiotemporal method—the Yu method; a temporal method—
HANTS; and a spatial method—CoK. The HANTS algorithm
was originally proposed for smoothing and gap-filling veg-
etation index (NDVI) images, and has been widely used to
interpolate missing values in the LST products [32], [33]. It
applies a least squares curve fitting procedure based on harmonic
components. To perform HANTS, five parameters should be
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TABLE I
REFERENCE IMAGES ASSOCIATED WITH THE INTERPOLATED IMAGES FOR THE PROPOSED APPROACH AND THE YU METHOD USED IN THE TWO EXPERIMENTS

Fig. 3. Interpolated Terra/LST nighttime images for the tenth day of 2005 on the QTP using different methods. (a) Original image, (b) the proposed approach, (c)
the Yu method, (d) harmonic analysis of time series (HANTS), and (e) co-Kriging (CoK) with the DEM as its covariate. The Qinghai Lake boundaries are marked
on (a). The valid portions on (d) are modified due to the algorithm of HANTS.

set—the number of frequency (NOF), the high/low suppression
flag (SF), the valid data range, the fit error tolerance (FET), and
the degree of overdeterminedness (DOD) [51]. In this study,
HANTS was applied to the LST values on each pixel on an
annual basis, and the daytime and nighttime images were fitted
separately. NOF was set to two, referring to the literature [33].
SF was set low because the cloud cover tends to lower the
LST. The valid data range was −60 to 70 °C. FFT and DOD
were set to 5 and 12 °C, respectively. In the previous literature
[7], several often-used geostatistical methods, including IDW,
OK, and regression kriging, have been tested incompetent in
interpolating the large-area missing data. We instead chose
CoK as a representative of geostatistical methods, with DEM
as its covariate in wake of its importance in controlling the
temperature on the QTP. The evaluation metrics include spatial
correlation (SR) (13), root-mean-square error (RMSE) (14),

mean absolute error (MAE) (15), and bias (16), given as
follows:

SR =

∑n
i=1

(
LSTi − LSTi

) (
LSTr − LSTr

)
√∑n

i=1

(
LSTi − LSTi

)2√∑n
i=1

(
LSTr − LSTr

)2
(13)

RMSE =

√
1

n

∑n

i=1
(LSTi − LSTr)

2 (14)

MAE =
1

n

n∑
i = 1

|(LSTi − LSTr)| (15)

Bias =
1

n

n∑
i = 1

(LSTi − LSTr) (16)
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Fig. 4. Interpolated Terra/LST daytime images for the 183rd day of 2005 on the QTP using different methods. (a) Original image, (b) the proposed approach, (c)
the Yu method, (d) HANTS, (e) CoK. Rectangle envelops partial Qaidam basin. The valid portions on (d) are modified due to the algorithm of HANTS.

Fig. 5. Comparison of the results of the proposed approach and the Yu method on 100 000 randomly selected invalid pixels from the Terra/LST images of the (a)
tenth nighttime and (b) 183rd daytime of 2005 on the QTP. The solid line indicates a 1:1 line.

where n is the number of interpolated pixels; LSTi and LSTr are
the interpolated and the preremoval LST values, respectively.
LSTi and LSTr indicate their means.

III. RESULTS AND DISCUSSION

A. Performance for the Real Data Void Case

Figs. 3 and 4 show the interpolation results of a representative
nighttime LST image (10th night) and a representative daytime
LST image (183rd day) in 2005 on QTP, respectively, produced
by the proposed approach, the Yu method, HANTS, and CoK.
CoK results [see Figs. 3(e) and 4(e)] exhibit many strange pat-
terns, especially in the northwest and southern QTP on the night-
time image and in the central zone of QTP on the daytime image.
Those artifacts expose a critical weakness in CoK, as shown with

the QTP examples, for interpolating extensive missing data even
if the DEM is used as a covariant. This can be explained by the
fact that the CoK inherently depends on the information from
spatially neighboring pixels, which are unfortunately severely
lost in the case of large-area missing data. The use of DEM
as covariant cannot eliminate this inherent weakness. Together
with the tests demonstrated in the previous study [7], it can be
reasonably concluded that conventional geostatistical methods
are usually not applicable to the situation facing extensive data
losses.

The results of the proposed approach [see Figs. 3(b) and
4(b)], the Yu method [see Figs. 3(c) and 4(c)], and HANTS [see
Figs. 3(d) and 4(d)] appear much better in terms of spatial pattern
and textural transition than the CoK. The three methods can
well capture some unique temperature patterns on the QTP. The
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Fig. 6. Maps showing the differences between the interpolated daytime LST images and the preremoval true data in the fabricated data void experiment. Shown
are the extents of the fabricated patches on the QTP. The columns are the different days of 2010. The rows indicate interpolation methods.

surface temperature over the Qinghai Lake, which is the biggest
saltwater lake in China, is prone to be warmer than its land sur-
roundings in winter and colder in summer due to the differences
in specific heat between water and soils. In the winter image
(see Fig. 3), surface temperatures happened to be missing over
the lake area. The three methods succeeded in capturing winter
characteristics over the lake, while the CoK [see Fig. 3(e)] failed.
For HANTS, it reconstructed all information so that the valid
values were also modified. It would cause obvious problems on
some occasions. As shown in Fig. 4(d), summer temperatures
over the Qaidam basin (marked with rectangles) would be much
warmer than adjacent regions on the QTP due to much lower
elevations in the basin. HANTS failed to describe this contrast
in the Qaidam basin although it was able to explain a broad
pattern of temperature distribution across the entire plateau. It
is attributed to the fitting process used in HANTS, which is
inadequate in recovering sudden changes in temperature [33].

The spatial patterns displayed on the two 2005 Terra LST
images by the proposed approach and the Yu method were quite
similar. To further examine their performance, we randomly se-
lected 100 000 invalid pixels from the two images and compared
their interpolated LST values by the two methods (see Fig. 5).
Overall, the results obtained by the two methods were well
correlated, with an SR of 0.88 on the winter nighttime image
and 0.86 on the summer daytime image. The values of RMSE
were 3.36 and 4.80 °C, and MAE 2.33 and 3.50 °C, respectively.
The comparison simply indicates that despite the high spatial
correlation they had, there were considerable discrepancies be-
tween the results yielded by the two methods.

B. Performance for the Fabricated Data Void Case

We plotted difference maps by subtracting the original values
in the identified patches from the interpolated values as shown
in Figs. 6 and 7. Warm colors denote overestimations made in
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Fig. 7. Maps showing the differences between the interpolated nighttime LST images and the preremoval true data in the fabricated data void experiment. Same
notations as Fig. 6 are applied.

the interpolation, whereas cool colors underestimations. The
lower high-saturated colors on the difference maps, the better
the performance of the investigated methods. In general, all
methods yielded better results for the nighttime images (see
Fig. 7) than the daytime images (see Fig. 6) as indicated by
overall less high-saturated colors in Fig. 7. In the daytime cases
(see Fig. 6), the proposed approach yielded the best interpolation
results (row 1 of Fig. 6), whereas the CoK was unsurprisingly the
worst, with plenty of strange geometries on the maps (row 4 of
Fig. 6). While all methods consistently performed better on the
ninth day of 2010 than other days, they varied considerably in
interpolating the other two daytime images (142nd and 255th). In
particular, HANTS seriously underestimated the LST values on
the 142nd and 255th daytime images. So did the Yu method for
the 142nd daytime image (see Fig. 6). In the nighttime cases (see

Fig. 7), by visual inspection, the proposed approach outmatched
the peer methods, with light colors prevailing throughout those
difference maps (row 1 of Fig. 7). The Yu method, although
not as good as the proposed approach, also showed strength in
interpolating large-area missing data (row 2 of Fig. 7). Con-
versely, HANTS and the CoK have given rise to considerable
discrepancies in the nighttime results.

The quantitative metrics including SR, RMSE, MAE, and bias
are shown in Fig. 8. It demonstrates the remarkable superiority
of the proposed approach over the peer methods in interpolating
clear-sky LST in terms of any metrics. For the proposed ap-
proach, the SR coefficients measured against the true data exceed
0.9 without exception, the highest among the others. The RMSE
and the MAE were below 3.7 and 3.0 °C for daytime images,
and both below 2.0 °C for nighttime images, respectively. The
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Fig. 8. Measured accuracies for the different methods applied to the selected LST images of 2010 on the QTP. RMSE: root mean square error; MAE: mean
absolute error; and SR: spatial correlation coefficient. d: daytime; n: nighttime.

Yu method came next. The CoK was shown to have generally
poorest performance with the lowest SR and largest RMSE
values. When interpolating the daytime images, the RMSEs of
the CoK exceeded 5.0 °C, up to 8.0 °C for the 142nd daytime
image of 2010. HANTS is not good at interpolating large-area

missing data and often produced large RMSE, MAE, and bias,
despite broadly acceptable SR values.

Both the proposed approach and the Yu method showed
significant improvements over HANTS and the CoK in respect
of evaluation metrics. The improvements are intimately related
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Fig. 9. Scatterplots of the results interpolated by the proposed approach versus the true data in the fabricated data void experiment. A random selection of 10,000
pixels from the LST images of 2010 were plotted. (a) the 9th day, (b) the 142nd day, (c) the 255th day, (d) the 9th night, (e) the 141st night, and (f) the 255th night.

to the use of both spatial and temporal information, instead
of mere spatial or temporal information as used in CoK and
HANTS, respectively. The Yu method also yielded favorable SR
values ranging from 0.67 to 0.92, and small RMSEs (<3.2 °C)
for nighttime images. However, when dealing with daytime
images, the Yu method is likely to induce large biases. For
example, the RMSE was 6.9 °C for the 142nd daytime image
of 2010 (see Fig. 6). The daytime LST values are affected by
more factors than the nighttime LSTs, and therefore, are hard
to be accurately interpolated. The compromising performance
of the Yu method is highly related to the large time gap be-
tween the interpolated image and the reference image used. As
listed in Table I, the global reference image for interpolating
the 142nd daytime image is the 212th daytime image, with
a time interval as long as 70 days. The weakness of the Yu
method, as demonstrated in this example, has been successfully
overcome by the proposed method. The proposed approach
reduced the RMSE value by about 3.3 °C for the 142nd daytime
image.

We further investigated the performance of the proposed
approach on a pixel level. The interpolated results of a random
selection of 10 000 invalid pixels from those 2010 Terra LST
images are shown in Fig. 9. The interpolated results were gen-
erally more accurate for nighttime images than daytime images.
The plots for the three nighttime images [see Fig. 9(d)–(f)] and
cold-season daytime image [see Fig. 9(a)] were close to the
1:1 line, indicating that particularly better agreements can be
achieved by the proposed approach for the nighttime images and
cold-season images. The SR coefficients for nighttime images
were consistently higher than daytime images. Nighttime LSTs
and cold-season daytime LSTs are subject to less influencing
variables than warm-season daytime LSTs. Therefore, both the
proposed approach and the Yu method are able to work better
for those specific timings.

C. Improvement by Data Fusing

The improvements of using data fusion over individual initial
estimates made by the DINEOF are shown in Fig. 10, where
in almost all cases, the metric accuracies for the fused results
were obviously improved. It proves the effectiveness of the
use of data fusion in improving interpolation accuracies. The
accuracies of the initial estimates varied by image. Most of
them had comparable accuracies but some might considerably
differ from the others. For example, the fourth initial estimate
for the ninth daytime image of 2010 seriously deviated from
the other three initial estimates and had an even slightly better
agreement with the true data than the fused LST estimate in
terms of SR. By examining the original data in the fabricated
patch, abrupt temperature changes had occurred over the span
across the two view times of the ninth daytime image and the
reference image that the fourth estimate is associated with. As an
initial estimate highly relies on the known values on the reference
image, abnormal temperature changes on the reference image
inevitably result in an unreliable estimate. A probability-based
data fusion approach as adopted in the proposed approach can
efficiently reduce the risk of introducing unexpected biases to
the results, for which simple algebraic mean will never succeed.

The improved accuracies through data fusion differ over im-
age timings. The daytime images generally had a lower accuracy
for initial estimates than the nighttime images. Their improve-
ments by data fusion were more obvious. The largest reductions
in RMSE after data fusion amounted to 1.2, 1.34, and 1.1 °C
for the 9th, 142nd, and 255th daytime images, respectively.
For the nighttime images, the fused results were also superior
to the initial estimates with moderately better metric values.
Reductions of about 0.66 °C in both RMSE and MAE were
obtained by imposing data fusion upon the initial estimates (see
Fig. 10).
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Fig. 10. Accuracy improvements of using data fusion over individual initial estimates for some exemplified LST images of 2010. Initials 1 to 4 are the first to
fourth DINEOF initial estimates corresponding to four proximate reference images. Fused LST indicates the best estimate after fusing all initial estimates by a
Bayesian data fusion approach. RMSE: root mean square error; MAE: mean absolute error; and SR: spatial correlation coefficient. d: daytime; and n: nighttime.

IV. CONCLUSION AND PROSPECTIVE

An improved approach for interpolating clear-sky MODIS
LST in areas that suffer extensive data losses has been proposed.
This approach extends prior work by using multiple tempo-
ral proximate images as reference images and introducing a
Bayesian approach to find a best estimate based on multiple
initial estimates made on the basis of multiple reference images
through an EOF method. By those techniques, the weakness
relating to using global reference images as used in the prior

work has been overcome and the interpolation accuracy has
been significantly improved via the use of data fusion. The
proposed method has proven to be effective in interpolating
clear-sky equivalent LST with favorable accuracy in the presence
of extensive spatial and temporal data losses through two exper-
iments, one representing the real data void case and the other
using fictitious data voids, based on the 2005 and 2010 Terra
LST images on the QTP. Both experiments demonstrate that the
proposed approach is much superior in interpolating large-area
missing data than three established methods, i.e., the Yu method,
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the HANTS model, and the co-kriging method with DEM as
a variant. The interpolated results obtained by the proposed
approach agreed well with the true data in the fictitious-void
experiment, with high spatial correlation coefficients exceeding
0.9. The RMSE and mean absolute errors were less than 3.7
and 3.0 °C, respectively, for daytime images, and both less than
2.0 °C, for nighttime images. The combined use of multiple
temporally proximate LST images as reference images and
subsequent fusing of multiple initial estimates are important for
improving interpolation accuracy.

In this study, we selected several auxiliary variables (such as
DEM, NDVI, and solar radiation) as main factors influencing the
characteristics of temporal changes in LST, which are critical for
determining the similar pixel set. The influencing factors may
vary region by region. Therefore, in practice, it is advised to
determine the influencing factors according to regional char-
acteristics. Despite that, in this study the MODIS/Terra LST
data on the QTP were used as a demonstration; the proposed
approach is theoretically applicable to the Aqua LST data and
other variables in any large areas suffering similar extensive
data losses. It should be stressed that the approach interpolates
clear-sky equivalent LST values rather than real cloudy-sky
values. This work provides an important step in the stepwise
approaches toward fully recovering the LSTs affected by clouds.
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