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Infrared Small Target Detection Utilizing the
Enhanced Closest-Mean Background Estimation

Jinhui Han , Chengyin Liu, Yuchun Liu, Zhen Luo, Xiaojian Zhang, and Qifeng Niu

Abstract—Background estimation is an efficient infrared (IR)
small target detection method. However, to deal with unknown
targets, the estimation window in existing algorithms should be
adjusted to perform multiscale detection and requires a lot of
calculations. Besides, the stages during and after estimation have
received wide attention in existing algorithms, but the research
on the stages before estimation is insufficient. Moreover, existing
algorithms typically regard the maximum value of different orien-
tations as the estimation value. However, when a dim target is ad-
jacent to high-brightness background, it is easily submerged. This
article proposes a three-layer estimation window to detect targets
of different sizes with only a single-scale calculation. The enhanced
closest-mean background estimation method is then proposed and
carefully designed before, during, and after the estimation. Before
estimation, the matched filter is adopted to improve the image
signal-to-noise ratio. During estimation, the principle of closest-
mean is proposed to suppress high-brightness background. After
estimation, a ratio-difference operation is performed to enhance
the true target and suppress the background simultaneously. A
simple checking mechanism is proposed to further improve the de-
tection performance. Experiments on some IR images demonstrate
the effectiveness and robustness of the proposed method. Com-
pared with existing algorithms, the proposed method has better
target enhancement, background suppression, and computational
efficiency.

Index Terms—Background estimation, closest-mean, infrared
(IR) small target, matched filter, three-layer window.

I. INTRODUCTION

IN INFRARED (IR) precise guidance [1], early warning [2],
space tracking [3], maritime target searching [4], and other

fields, the target is usually very far from the detector. Due
to the limitation of the optical system and focal plane array
performance, the target usually occupies only a few pixels and
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has a weak gray value, which is difficult to detect and leads to a
low detection rate [5]. In addition, due to the presence of trees,
houses, clouds, sea waves, and other clutter, there are usually
various types of complex backgrounds in the raw IR image,
such as high-brightness background [6], background edge [7],
and pixel-sized noise with high brightness (PNHB) [8], and they
may cause severe interferences and bring low signal-to-clutter
ratio (SCR) [9], which may lead to a high false alarm rate.

Several algorithms have been proposed, including sequence-
based and frame-based algorithms [10] to achieve precise IR
small target detection with high detection rate and low false
alarm rate. Sequence-based algorithms use the difference infor-
mation between consecutive frames to detect a moving target
in a stationary background, and achieve good detection perfor-
mance even if the target is occluded in some frames. How-
ever, sequence-based algorithms are usually time-consuming
and have limitations in some applications (for example, when the
target is stationary and/or the background is changing fast). By
contrast, the frame-based algorithms only use the information
within a single frame and usually have a faster detection speed.
Moreover, frame-based algorithms can be the basic module in
some sequence-based algorithms; hence, we focus on frame-
based detection algorithms in this study.

Of the several frame-based detection algorithms, those based
on background estimation first divide the raw image into back-
ground and foreground, and then detect small targets in the
foreground. In theory, the background estimation algorithms are
consistent with the imaging model. Moreover, they are simple in
structure and easy to implement, attracting extensive attention.

Existing background estimation algorithms can be divided
into nonlocal and local background estimations [11]. The non-
local background estimation algorithms decompose the entire
image into the background and foreground directly. For example,
the wavelet transform [12] and Butterworth high-pass filter
[13] decompose the image through some frequency-domain
methods; the sparse representation [14] and the robust principal
component analysis [15] decompose the whole image under
constraints of sparse and low rank. However, these algorithms
require huge computations since the whole image information
is needed to estimate the background of each pixel.

By contrast, the local background estimation algorithms first
use local neighborhood pixel information (but not the whole
image) of each pixel to estimate the background and, then, get the
foreground by calculating the difference information between
the raw image and the background. Some of them are also called
local contrast methods. Compared with nonlocal algorithms,

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-2149-5589
mailto:hanjinhui@zknu.edu.cn
mailto:xiaojiandr@yeah.net
mailto:niuqifeng2011@163.com
mailto:kworms@foxmail.com
mailto:lycdgp@163.com
mailto:zluo@zknu.edu.cn


646 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

local background estimation algorithms are easier in both theory
and application and are more popular.

Numerous local background estimation algorithms have been
proposed to date. For example, the Laplacian of Gaussian filter
[16], [17] and the difference of Gaussian (DoG) filter [18]–[21]
use the weighted sum of neighborhood pixels as the background;
however, they are sensitive to edges. To suppress the edges
better, the improved difference of Gabor (IDoGb) filter [22] and
accumulated center-surround difference measure [23] divide the
local area into eight orientations, calculate the weighted sum of
neighborhood pixels in different orientations and, then, take their
maximum value as the background.

Several algorithms have adopted the idea of orientation seg-
mentation. For example, the max-mean and max-median filters
[24] first calculate the mean and median values in different lines,
respectively, then take the maximum value as the background.
The local contrast measure (LCM) [25], improved LCM (ILCM)
[8], and multiscale patch-based contrast measure (MPCM) [26]
adopt an image patch with a 3 × 3 cell estimation window.
They first calculate the average value of the eight surrounding
cells and, then, take the maximum value as the background. The
relative LCM (RLCM) [27] and novel LCM (NLCM) [28] use
some largest pixels in different cells to calculate the average
value. The 2-D least mean square (TDLMS) [29]–[31] and the
multidirectional 2-D least mean square (MDTDLMS) [32] use
iterations to estimate the background according to the principle
of least mean square error. However, since the target size is
usually unknown in real applications, it is necessary to adjust
the estimation window size to perform multiscale calculations,
making the calculation very complex.

Recent research considers the stages during and after esti-
mation to achieve better performance and uses some weighting
functions to further suppress clutters. For example, the weighted
local difference measure (WLDM) [33]–[35] introduced the
local entropy as a weighting function; the local self-similar [36]
used self-similarity as a weighting function; the homogeneity
weighted LCM (HWLCM) [37] used local homogeneity as a
weighting function; the regional intensity level (RIL) [38] used
the difference of RIL as a weighting function. However, the
weighting function calculation is usually complex since the
window size needs to be adjusted to deal with unknown size
targets.

In general, existing local background estimation algorithms
for IR small target detection still have some drawbacks. First, to
deal with unknown size targets, the estimation window should
be adjusted to perform multiscale detection and calculate the
weighting function, which requires a lot of calculations. Second,
there has been much research on the stages during and after
estimation, but the significant effect of the preprocessing before
background estimation is usually overlooked. Third, during
estimation, most algorithms typically take the maximum value
of different orientations as the background. However, if a dim
target is adjacent to high-brightness background, it will be easily
submerged by the background.

In this study, an enhanced closest-mean background estima-
tion (ECMBE) method is proposed and carefully designed be-
fore, during, and after estimation. First, a three-layer estimation

window consisting of a central layer, an isolating layer, and a sur-
rounding layer is proposed to deal with unknown size targets by
single-scale calculation. Before estimation, the idea of matched
filter [39] is adopted and a Gaussian filter is applied in the
central layer to improve the image signal-to-noise ratio (SNR),
so as to detect the target more easily. During estimation, the
closest-mean principle is proposed for the eight orientations of
the surrounding layer to suppress high-brightness background.
After estimation, a ratio-difference operation is used between
the central and surrounding layers to enhance true target and
suppress background simultaneously, and a simple weighting
function utilizing the isolating layer is proposed as a checking
mechanism to suppress clutters further.

The contributions of this article can be summarized as follows.
1) A new estimation window consisting of three layers is

proposed. The isolating layer setting ensures that it can
deal with small targets of different sizes using only single-
scale calculation.

2) Not only the stages during and after the background es-
timation, but also the stage before estimation are fully
considered, and the image SNR is purposefully improved
according to the shape of the true target.

3) Aiming at the problem of target submergence caused by
the high-brightness background, the closest-mean princi-
ple for different orientations of the surrounding layer is
proposed, effectively alleviating the problem.

4) A weighting function utilizing the isolating layer is pro-
posed that does not require estimation window size adjust-
ment according to the target size, making the calculations
simpler.

Experiments on some real and simulated IR images demon-
strate the effectiveness of the proposed method in successfully
detecting small targets under complex background. Compared
to existing state-of-the-art algorithms, the proposed method has
advantages in both target enhancement and background sup-
pression and achieves good detection performance in terms of
detection rate and false alarm rate. Besides, the computation is
reduced significantly.

The organization of rest of this article is as follows. In
Section II, some related research works are introduced, such
as the imaging model and theoretical basis of the background
estimation methods, features of the different components in
the IR image, and some most common estimation windows. In
Section III, the calculation of the ECMBE is described in detail.
In Section IV, the detection ability of the proposed algorithm is
analyzed, and the threshold operation for small target detection
is described. Simulations and experimental results are presented
in Section V, and the conclusion is presented in Section VI.

II. RELATED RESEARCH WORKS

A. Theoretical Basis of Background Estimation Methods

According to the widely used imaging model, a raw IR image
consists of three parts, the background image, the target image,
and the noise image [40]

I(x, y) = IB(x, y)+IT (x, y)+IN (x, y) (1)
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Fig. 1. (a) Typical real IR image sample. (b) 3-D distributions of different types
of components in a local 15 × 15 area. Here, TT represents true small target,
NB represents normal background, HB represents high-brightness background,
EB represents edge of background, and PNHB represents pixel-sized noise with
high brightness.

where (x, y) is the coordinate of each pixel in the image; I is the
raw image; IB is the image with backgrounds, such as clouds,
buildings, and sea waves and is usually self-correlated; IT is the
image containing the true small target and is usually sparse and
independent of IB; IN is a random noise image.

Traditional background estimation algorithms first estimate
IB using some methods, then subtract IB from the raw image
to eliminate background (some algorithms choose to use the
ratio of the raw image and IB to enhance target), and the target
can be found in the result. In theory, the background estimation
algorithms are consistent with the imaging model, and they
are simple in structure and easy to implement. However, ran-
dom noise can be a serious interference factor, needing special
attention.

B. Features of Different Types of Components

To intuitively explain the differences between true small target
and various interferences, a typical sample of real IR image [41]
is given in Fig. 1(a). The normalized 3-D local distribution of the
components in Fig. 1(a) is given in Fig. 1(b), including true target
(denoted by TT), normal background (denoted by NB), high-
brightness background (denoted by HB), edge of background
(denoted by EB), and PNHB.

From Fig. 1, we derive the following conclusions.
1) TT is usually brighter than its immediate neighbors, since

the target is usually hotter in most practical applications.
In addition, due to the optics point spread function (PSF)
of the detector [42], TT usually has a small area between
3 × 3 and 9 × 9 (a target larger than 80 pixels is no longer
a small target, which is beyond the scope of this study). It
attenuates from the center without anisotropy, similar to
the 2-D Gaussian function [33].

2) NB is usually dark and flat, so the difference between the
central position and its neighborhood pixels is not obvious.

3) HB is also flat, although it may have a large gray value
(probably much larger than TT). Therefore, the difference
between the central position and its neighborhood pixels
is also not obvious.

4) EB has different gray values on each side. However, in
a small local area, EB is usually distributed in a specific

Fig. 2. (a) Common double-layer estimation window for background es-
timation, in which the surrounding layer is divided into eight orientations.
(b) Another common double-layer estimation window, in which only some active
pixels (the yellow squares) in the surrounding layer are used.

direction, significantly different from TT in the directional
feature.

5) The pattern of PNHB is similar to TT. However, PNHB is
usually caused by random factors, and only emerges as a
single pixel, different from TT.

C. Most Common Estimation Windows

Fig. 2 gives the two most common estimation windows used
in existing algorithms. They both have two layers, in which the
central layer is used to mask the whole target, and the surround-
ing layer is used to capture the background near the target.
Especially, in Fig. 2(b), only some active pixels in different
orientations are used, which is more advantageous in processing
stripe noise in the IR image (more common in images obtained
by scanning devices [43]).

There are two main defects in the two windows in Fig. 2. First,
when the target size is unknown, it will be necessary to adjust
the window size to carry out multiscale detection, which requires
many calculations; additionally, the calculation of the weighting
function will be very complex. Second, to suppress background
edges better, the surrounding layer is divided into eight ori-
entations, and the maximum value in the eight orientations
will be taken as the final background estimation of the central
position of the window. However, if a dim target is adjacent to
high-brightness background, it will be easily submerged by the
background.

III. CALCULATION OF ECMBE

In this section, based on the analysis in Section II, a new
estimation window, which consists of three layers, is proposed
first. Subsequently, the Gaussian filtering of the central layer
(before estimation) and closest-mean principle of the surround-
ing layer (during estimation) are described in detail. Finally,
the weighting function utilizing the information of the isolating
layer is introduced briefly, and the definition of the ECMBE is
finally given (after estimation).

A. Proposed Estimation Window

This article proposes a new estimation window consisting
of three layers, as shown in Fig. 3. The central layer is used
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Fig. 3. Proposed three-layer estimation window.

to capture the target, which can be the whole target (for tar-
get smaller than the central layer) or the main energy around
the target center (for target larger than the central layer). The
surrounding layer is used to capture the local neighborhood
background pixels and is divided into eight orientations for
edge suppression. The isolating layer separates the target from
its neighborhood background when the target is larger than the
central layer.

The main improvement of the new estimation window is
the setting of the isolating layer. As described in Section II-C,
existing algorithms usually use a double-layer window, in which
the central layer is used to capture the whole target. However, in
practical applications, the target size is usually unknown; hence,
existing algorithms must adjust the window size to carry out
multiscale detection, making the calculation very complex. In
this study, by setting an isolating layer between the central and
surrounding layer, the estimation window does not need to be
adjusted as long as the small target does not exceed the isolating
layer, and small targets of unknown sizes can be processed by
single-scale calculation. It simplifies not only the estimation
process, but also the calculation of the weighting function.

B. Gaussian Filtering of the Central Layer

As described in Section II-A, random noise is a serious
interference factor in background estimation methods. Hence, it
is better to suppress noise before estimation, but existing algo-
rithms usually do not fully consider the stage before estimation.
In this study, a filtering operation is applied in the central layer
to suppress random noise and improve the image SNR before
estimation.

According to the matched filter theory, SNR can be improved
best when the filter template is similar to the signal shape [39].
From the analysis in Section II-B, it can be seen that the true
target usually has a 2-D Gaussian shape near its center, so a
typical normalized Gaussian filtering template (as seen in Fig. 4)
is first applied to the central layer. The filtering result of the
central layer is defined as

IGS(x, y) =

1∑
l=−1

1∑
k=−1

GS(l, k)I(x+ l, y + k) (2)

where (x, y) is the coordinate of the central pixel in the central
layer, I is the raw image, GS is the Gaussian template in Fig. 4,
and IGS is the filtering result.

Fig. 4. Normalized 2-D Gaussian filter template.

Fig. 5. Special case where the dim target (the yellow circle) is adjacent to
the bright background (the brown area). According to the max-mean principle,
orientation 1 or 4 will be output as the estimated background. But according to
the closest-mean principle, other orientations will be output.

C. Closest-Mean Background Estimation (CMBE) of the
Surrounding Layer

The surrounding layer of the estimation window is used to
capture the local neighborhood background pixels. For each ori-
entation, to suppress random noise, the background estimation
(BE) value is defined as the mean gray of the active pixels, i.e.,
the yellow pixels in Fig. 3

BEi(x, y) =
1

p

p∑
j=1

APIXi
j , i = 1, 2, . . . , 8 (3)

where (x, y) is the coordinate of the central pixel in the central
layer, i denotes the ith orientation, APIXj

i is the gray value of
the jth active pixel in the ith orientation, and p is the number of
active pixels in each orientation.

After calculating each orientation, existing algorithms usually
take the maximum value of different orientations as the final
background estimation value, so that the background edges can
be suppressed. However, when the target gray is very dim and
background gray is very high and they are adjacent to each other,
the background estimation value will be very high, and the target
will be easily submerged, as seen in Fig. 5.

In this study, the closest-mean principle for different orien-
tations of the surrounding layer is proposed to alleviate this
problem. The CMBE of a current position is defined as

CMBE (x, y) = argmin
BEi(x,y)

|BEi(x, y)− IGS(x, y)| . (4)

In short, the closest-mean principle can be described as:
From the mean values of different orientations, select the value
closest to the central value as the final estimated background,
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so that high-brightness background will not participate in the
calculation of the next stages, as seen in Fig. 5.

D. Weighting Function Utilizing the Isolating Layer

From the analysis in Section II-B, we find that a true target
usually attenuates from the center. Therefore, in this study,
a simple weighting function utilizing the information of the
isolating layer is proposed to suppress clutters further

ILi(x, y) =
1

q

q∑
j=1

IPIXi
j , i = 1, 2, . . . , 8 (5)

W (x, y) =

{
1, if IGS(x, y) ≥ max[ILi(x, y)]
0, otherwise

(6)

where (x, y) is the coordinate of the central pixel in the central
layer, i denotes the ith orientation, IPIXj

i is the gray value of
the jth inactive pixel (i.e., the green pixels in Fig. 3) in the ith
orientation, totally there are q inactive pixels in each orientation
in the isolating layer. W is the weighting parameter, set to 0 when
the central value is smaller than the isolating layer to suppress
clutters further.

E. Calculation of ECMBE

The basic idea of the background estimation method is to
obtain the foreground by calculating the ratio or difference
between the raw image and estimated background, in which the
ratio operation can enhance the true target, and the difference
operation can eliminate background [27]. In addition, a weight-
ing function is used to achieve better performance sometimes.
In this study, both ratio and difference operations are used, along
with a weighting function, so the ECMBE of a pixel is defined
as

ECMBE(x, y) = R(x, y)D(x, y)W (x, y) (7)

where

R(x, y) =
IGS(x, y)

max[CMBE(x, y), ξ]
(8)

D(x, y) = max[IGS(x, y)− CMBE(x, y), 0] (9)

and W is the weighting function in (6). There is a small value ξ (in
this article, it is 5 for an 8-b digital image) in the ratio operation
to avoid a denominator of 0, and a nonnegative constraint in the
difference operation to suppress clutters.

Apply the estimation window on the raw IR image from left to
right and top to bottom pixel by pixel, the ECMBE is calculated
for each pixel, and a new matrix named saliency map (SM)
is formed. Algorithm 1 gives the main steps for the ECMBE
calculation.

IV. DISCUSSIONS AND THRESHOLD OPERATION

It is necessary to discuss the following different cases when
(x, y) is different types of pixels.

1) If (x, y) is a TT: Because TT is usually brighter than its
immediate neighbors and attenuates from the center, it can

be easily deduced that

IGS(x, y) > CMBE(x, y) (10)

and

IGS(x, y) ≥ max[ILi(x, y)] (11)

as long as it does not exceed the isolating layer. Hence

R(x, y) > 1 (12)

D(x, y) > 0 (13)

W (x, y) = 1 (14)

and

ECMBE(x, y) > 0. (15)

Here, (12) means that the true target can be enhanced.
2) If (x, y) is an NB: Since background is usually flat, there

will be

IGS(x, y) ≈ CMBE(x, y). (16)

Hence

D(x, y) ≈ 0 (17)

and

ECMBE(x, y) ≈ 0. (18)

Here, (17) means that the flat background can be eliminated.
3) If (x, y) is an HB: Because HB is similar to NB

ECMBE(x, y) ≈ 0. (19)

4) If (x, y) is an EB: If (x, y) is on the higher side, according
to the closest-mean principle, the estimated background
will be high and

IGS(x, y) ≈ CMBE(x, y). (20)

Hence

D(x, y) ≈ 0 (21)

and

ECMBE(x, y) ≈ 0. (22)

If (x, y) is on the darker side, the estimated background will
be low and the result will be similar to (20)–(22).

1) If (x, y) is a PNHB: If (x, y) is located in a flat background,
it will be similar to TT, i.e.

ECMBE(x, y) > 0. (23)

However, it can be easily deduced that

ECMBEPNHB< ECMBETT (24)

when the PNHB has a gray value equal to or slightly larger than
TT, because PNHB usually emerges as a single pixel and can be
suppressed to some extent by Gaussian filtering.

Fig. 5 shows a special case where the target is adjacent to the
high-brightness background, which has a gray value far larger
than the true target. Subsequently, according to the closest-mean
principle, the high-brightness background in orientation 1 and
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Fig. 6. Flowchart of the proposed algorithm.

Algorithm 1: ECMBE Calculation.
Input: A raw input image I with resolution M × N, and the
new estimation window.

Output: The saliency map SM.
1: for x = 1:M
2: for y = 1:N
3: Place the new estimation window on the image,

and take (x, y) as its center pixel.
4: Calculate IGS(x, y) for the central layer, according

to (2).
5: Calculate CMBE(x, y) for the surrounding layer,

according to (3) and (4).
6: Calculate W(x, y) for the isolating layer, according

to (5) and (6).
7: Calculate ECMBE(x, y), according to (7)–(9).
8: end
9: end

10: Form the results as a new matrix SM, and normalize it
to (0, 1)

4 will be ignored, and the darker background in other orienta-
tions will be taken as CMBE. Therefore, the target will not be
submerged, and (10)–(15) are still true.

From the discussions earlier, it can be seen that the true target
will be the most salient in SM. Therefore, an adaptive threshold
operation will be used to extract the true target. In this study, the
threshold Th is defined as

Th =λ×maxSM+(1− λ)meanSM (25)

where maxSM and meanSM are the max and mean value of SM,
respectively. λ is a parameter in the range 0–1. Our experiments
show that a λ between 0.7 and 0.9 will be appropriate for most
single-target cases; however, for multitarget cases, λ should be
set to a smaller value since different targets may have different
saliency.

In SM, the pixels with larger values than Th will be labeled
as 1, or else as 0. In the final binary result, each connected area
will be taken as a detected target (to eliminate clutters, a dilation
operation may be needed).

Algorithm 2 summarizes the main steps for the threshold op-
eration, and Fig. 6 shows the flowchart of the proposed method.

Algorithm 2: Threshold Operation.
Input: The saliency map SM with resolution M × N, and
the parameter λ.

Output: The target positions.
1: Calculate the threshold Th according to (25).
2: for x = 1:M
3: for y = 1:N
4: if SM(x, y) < Th
5: SM(x, y) = 0
6: else
7: SM(x, y) = 1
8: end
9: end

10: end
11: Apply a dilation operation on SM to suppress clutters.
12: Output the connected areas in SM as target positions.

V. EXPERIMENTAL RESULTS

In this section, 11 real IR sequences, a simulated sequence,
and a single-frame dataset are used to verify the performance
of the proposed algorithm. First, the processing steps of the
proposed algorithm are given. To further illustrate the effec-
tiveness of the proposed algorithm, comparisons between the
proposed and state-of-the-art algorithms are given. Finally, the
noise immunity of the proposed algorithm is tested. All the
experiments are conducted on a computer with 8-GB random
access memory and 2.6-GHz Intel i5 processor, and the codes
are implemented in MATLAB R2016b.

A. Testing Data Used in This Article

Eleven real IR sequences with different targets and back-
grounds are used for the experiments. The samples of these
sequences are shown in Fig. 7, and the details are listed in Table I.
From Fig. 7 and Table I, it can be seen that in the raw IR images,
the targets are usually very small and dim, but they still have a
small area (equal to or larger than 3 × 3, but smaller than 7 × 7
in most cases), and the backgrounds are usually very complex.
Additionally, there are heavy noises in some images.

To verify the detection performance when the target is adja-
cent to high-brightness background, a simulated sequence that
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Fig. 7. Samples of the 11 real IR sequences. (a)–(k): Seq. 1–Seq. 11.

TABLE I
FEATURES OF THE 11 REAL IR SEQUENCES
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Fig. 8. Generation of the simulated images (the 42nd frame is presented), here INB is set to 100, IHB is set to 200, IMAX is set to 20, σ is set to 2, and σN is set
to 20. (a) Background part IBK. (b) Target part ITGT, a 5 × 5 target is shown here. (c) Noise part INOI. (d) Simulated image I.

Fig. 9. Samples of the single-frame dataset.

contains 200 frames is generated. Using the widely used 2-D
Gaussian model, the steps of generating simulated images are
listed as follows.

1) Generate a 256 × 320 matrix with a uniform value INB

as the normal background. Subsequently, generate a high-
brightness background area (upper left corner with area
80 × 240) with a gray value IHB in it. Denote this matrix
by IBK.

2) Generate a 256 × 320 matrix, which contains a simulated
small target, denoted by ITGT. In this study, we use the
2-D Gaussian model to generate a small target, which can
be described as

ITGT(x, y) = IMAX exp

(
− (x− i)2 + (y − j)2

2σ2

)
(26)

where IMAX is the maximum gray value of the target, (i,
j) is the target center, and σ determines the target size.

3) Generate a 256 × 320 matrix, which contains random
Gaussian white noises with standard deviation σN; denote
this matrix as INOI.

4) Generate a simulated image, according to

I = IBK + ITGT + INOI. (27)

In this study, INB is set to 100, IHB is set to 200, IMAX is set
to 20, σ is set to 2 (the target size is about 5 × 5), and σN is set
to 20. The target is placed at location (84, 20) in the first frame
and moved from left to right one pixel per frame.

A sample of the simulated images is shown in Fig. 8.
Besides the 12 sequences, a single-frame dataset (23 frames),

which contains different types of targets and backgrounds, is
used in some tests, too. Some samples are shown in Fig. 9.

B. Processing Results of the Proposed Algorithm

First, we tested the detection ability of the proposed algorithm.
Three parameters are important and need to be discussed, i.e.,
the sizes of the central, isolating, and surrounding layers.

The central layer is used to capture the main energy of a target.
A true target usually has an area larger than 3 × 3 due to the
optics PSF of the detector [42]; hence, we set the central layer
to 3 × 3.

The isolating layer is used to separate the target from its
neighborhood background when the target is larger than the
central layer; hence, it should not be smaller than the maximum
target size in practical applications. However, if it is too large, the
computational area will be very large and unnecessary clutters
may be introduced, reducing the detection ability. Hence, the
isolating layer is set to be equal to the general maximum size of
the small target; 7 × 7 or 9 × 9 are both suitable values. In this
study, considering the target size is usually smaller than 7 × 7
(see Table I), we set the isolating layer to 7 × 7, i.e., q in (5) is
set to 2.

The surrounding layer is used to capture the neighboring
background near a target. The larger the surrounding layer, the
more active pixels will be considered in the mean operation in
(3) to achieve better suppression of the random white noise.
However, if the surrounding layer is too large, the computa-
tional area will be very large, and some unnecessary clutters
may also be introduced, reducing the detection ability. Several
experiments have been conducted to achieve a balance between
noise suppression and clutter introduction. The results show that
a surrounding layer between 11 × 11 and 17 × 17 will be
appropriate. In this study, we set the surrounding layer to 13
× 13, i.e., p in (3) is set to 3.
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Fig. 10. Processing results of the proposed algorithm for the samples of the 12 sequences (from top to bottom: Seq. 1-Seq. 11, and the simulated sequence).
(a) Raw IR images. (b) Images after Gaussian filtering. (c) Estimated backgrounds. (d) Results of ratio-difference operations between (b) and (c). (e) Weighting
functions. (f) Final saliency maps of ECMBE. (g) 3-D display of (f). (h) Detection results after threshold operation.
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Fig. 11. Processing results of the proposed algorithm for the samples of the single-frame dataset. (a) Raw IR images. (b) Images after Gaussian filtering.
(c) Estimated backgrounds. (d) Results of ratio-difference operations between (b) and (c). (e) Weighting functions. (f) Final saliency maps of ECMBE. (g) 3-D
display of (f). (h) Detection results after threshold operation.

Fig. 10 shows the step-by-step processing results of the pro-
posed algorithm for the 12 sequences. The same sample images
used in Figs. 7 and 8 are given.

Following can be seen from Fig. 10.
1) The Gaussian filter can improve the image quality to a

certain extent first, as seen in Fig. 10(b).
2) In the estimated background, the target position is different

from the original data, as seen in Fig. 10(c).
3) The ratio-difference calculation between the filtered image

and estimated background shows that the target is very
salient but with some residues of complex background, as
seen in Fig. 10(d).

4) The weighting function, as seen in Fig. 10(e), can suppress
the complex background further, making the target more
salient after weighting, as seen in Fig. 10(f) and (g).

5) After the threshold operation, all the real targets are
found successfully without any false targets, which prove
the effectiveness of the proposed algorithm, as seen in
Fig. 10(h).

To verify the effectiveness of the proposed algorithm in more
different types of targets and backgrounds, Fig. 11 gives the
processing results of the proposed algorithm for the single-frame

dataset, and the same sample images with Fig. 9 are given here.
It can be seen that all the real targets are output, and only one
false target is output when the background is very complex.

C. Comparisons With Other Algorithms

To verify the advantage of the proposed algorithm, eight state-
of-the-art algorithms are chosen for comparison, namely DoG
[18], ILCM [8], NLCM [28], MPCM [26], RLCM [27], WLDM
[33], MDTDLMS [32], and the recent, multiscale trilayer LCM
(TLLCM) [44].

1) DoG is considered as a traditional background estimation
method without orientation segmentation.

2) ILCM and NLCM are background estimation methods
with orientation segmentation; however, they use the max-
imum value in different orientations as the estimated back-
ground.

3) MPCM is a multiscale method.
4) RLCM is a multiscale method in which both ratio and

difference operations are used.
5) WLDM is a multiscale weighted method that introduces

the local entropy as a weighting function.
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TABLE II
PARAMETER VALUES USED IN EXISTING ALGORITHMS

TABLE III
SCRG OF DIFFERENT ALGORITHMS

The bold means the largest value, the italics-underlined means the second largest value.

6) MDTDLMS uses iterations to estimate the background
according to the TDLMS principle, then uses both ratio
and difference operations between the original image and
estimated background. However, iterations cost times.

7) TLLCM uses another trilayer window to estimate the
background. However, it is still a multiscale algorithm
and costs a lot of computations. Besides, TLLCM uses
the maximum value in different orientations as the final
estimated background. Moreover, the information of the
isolating layer is wasted in TLLCM.

The key parameters of each algorithm are listed in Table II.
1) Comparing Detection Performance: SCR gain (SCRG)

and background suppression factor (BSF) are objective indica-
tors that can describe the target enhancement and background
suppression ability of an algorithm and defined, respectively, in

SCRG =
SCRout

SCRin
(28)

BSF =
σin

σout
(29)

where SCRin and SCRout are the SCR [defined as (30)] of the
raw image and SM respectively, σin and σout are the standard
deviation of the raw image and SM, respectively

SCR =
|It − Inb|

σ
(30)

where It is the maximal gray in the 9 × 9 area around the target
center, Inb is the average gray of the neighboring background

between 15 × 15 and 9 × 9 area around the target center, and σ
is the standard deviation of the image.

As seen in Tables III and IV, the proposed algorithm can
achieve the highest or second-highest SCRG and BSF in most
cases. TLLCM may achieve better performance than the pro-
posed algorithm sometimes. However, as it uses the maximum
of different orientations as the estimated background, it fails
to detect targets adjacent to high-brightness background. For
example, for the simulated sequence (denoted by Sim in the
tables), the SCRG of TLLCM is 0, which means that the target
is totally submerged.

Figs. 12 and 13 show the saliency map and detection results
for the sample images of the 12 sequences using different algo-
rithms. Fig. 14 gives the receiver operating characteristic (ROC)
curves [45] of different algorithms for each whole sequence.
Here, the false positive rate (FPR) and the true positive rate
(TPR) are defined, respectively, as

FPR =
number of detected false targets

total number of pixels in the whole image
(31)

TPR =
number of detected true targets

total number of real targets
. (32)

Following can be seen from Figs. 12–14.
1) The detection performance of DoG is usually the worst

because it is a traditional algorithm without orientation
segmentation.
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TABLE IV
BSF OF DIFFERENT ALGORITHMS

The bold means the largest value, the italics-underlined means the second largest value.

2) The performance of ILCM is usually better than DoG,
because of the utilization of the directional information to
suppress the complex background edges better. However,
its performance is still not satisfied in some sequences, for
example, Seq. 1, Seq. 3, and Seq. 6.

3) NLCM is similar to ILCM and has similar performances
in most sequences.

4) MPCM adopts multiscale detection to achieve a good
performance. However, if the background is very complex,
some interferences will be enhanced and output, as in Seq.
8 and Seq. 9.

5) RLCM can usually achieve a better detection performance
since it utilizes both ratio and difference operations. How-
ever, its performance in some sequences is not satisfied,
especially when the target is adjacent to high-brightness
background, for example, the simulated sequence. This
is because RLCM takes the maximum value in different
orientations as the final background estimation.

6) WLDM is a multiscale weighted method using the local
entropy as the weighting function; however, when the
background is very complex, some interferences will be
enhanced and output. Sometimes, its performance is even
worse than RLCM, which does not have a weighting
function.

7) MDTDLMS can achieve a good detection performance in
most cases. However, some false alarms emerge in Seq. 1
and the simulated sequence.

8) TLLCM, as a newly published method, can achieve good
performance in 11 real sequences. However, in the simu-
lated sequence, it fails because it takes the maximum value
in different orientations as the final estimated background.

9) The proposed algorithm can achieve good detection per-
formance. Compared to existing state-of-the-art algo-
rithms, its performance is always at the forefront, and
there is no big fluctuation. Particularly, when the target is
adjacent to high-brightness background (i.e., the simulated
sequence), it is the only algorithm that can still output the
true target successfully.

2) Comparison of Computational Complexity and Time Con-
sumption: The computational complexity of the different algo-
rithms is analyzed in this section. For simplicity, suppose the

resolution of the IR image is X×Y, and scale of the filter window
or cell is (2L+1)2. For multiscale algorithms, such as MPCM,
WLDM, RLCM, and TLLCM, S represents the scale number,
Li (i = 1, 2, …, S) represents the L for the ith scale, and LS is
the largest L.

For DoG, with (2L+1)2 multiplications and (2L+1)2 addi-
tions for each pixel, the computational complexity is O(L2XY).

For ILCM and NLCM, since they both use DoG in pre-
processing, and the latter subblock-stage processing has fewer
calculations, their computational complexity will be O(L2XY).

For MPCM, the average operation will cost (2Li+1)2 addi-
tions for each pixel at each scale; hence, its total computational
complexity will be O(SLS

2XY).
For RLCM, the sort operation within a cell will cost

(2Li+1)2log(2Li+1)2 calculations for each scale; hence, its
computational complexity will be O[SLS

2log(LS
2)XY].

For WLDM, the mean operation will cost (2Li+1)2 addi-
tions for each pixel at each scale. In addition, the entropy
calculation requires a sort operation within a cell, costing
(2Li+1)2log(2Li+1)2 calculations for each scale; hence, its
computational complexity will be O[SLS

2log(LS
2)XY].

For MDTDLMS, the computational complexity is analyzed
in the original paper [32] and is O(L2XY).

For TLLCM, the computational complexity is analyzed in the
original paper [44] and is O(SLS

2log(LS
2)XY).

The proposed algorithm consists of four steps: Gaussian filter-
ing operation for the central layer, background estimation for the
surrounding layer, ratio-difference operation between them, and
weighting function using the isolating layer. There are 3 × 3 =
9 pixels in the central layer, 7 × 7 – 9 = 40 pixels in the isolating
layer, and L – 3 – 1 = L - 4 pixels in each orientation of the sur-
rounding layer. Hence, for the Gaussian filtering operation, there
will be 9 multiplications and 1 addition, totaling 10 operations;
for the background estimation, there will be L - 4 additions and 1
division for the average of each orientation, and 8 comparisons
between eight orientations, totaling 8(L - 3) + 8 operations;
for the ratio-difference operation, there will be 1 division and 1
subtraction, totaling 2 operations; for the weighting operation,
there will be 40 additions and 1 division for the average of the
isolating layer, 1 comparison and 1 multiplication, totaling 43
operations. If the resolution of the IR image is X × Y, there will
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Fig. 12. Saliency maps of the 12 sequences using different algorithms. (a) DoG. (b) ILCM. (c) NLCM. (d) MPCM. (e) RLCM. (f) WLDM. (g) MDTDLMS. (h)
TLLCM.

be a total of [10 + 8(L - 3) + 8 + 2 + 43]XY operations for
the proposed algorithm. Thus, the computational complexity of
the proposed algorithm will be O(LXY). The computational com-
plexity of different algorithms is given in Table V. The proposed

algorithm has the smallest computational complexity, which
helps to reduce the detection time and improve detection speed.

Table VI gives the average detection time of different algo-
rithms for one frame.
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Fig. 13. Detection results of the 12 sequences using different algorithms. (a) DoG. (b) ILCM. (c) NLCM. (d) MPCM. (e) RLCM. (f) WLDM. (g) MDTDLMS.
(h) TLLCM.
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Fig. 14. ROC curves of different algorithms in different sequences. (a)–(k) Seq. 1–Seq. 11. (l) Simulated sequence.

TABLE V
COMPUTATIONAL COMPLEXITY OF DIFFERENT ALGORITHMS

TABLE VI
AVERAGE DETECTION TIME OF DIFFERENT ALGORITHMS FOR ONE FRAME (IN SECONDS)

The bold means the largest value, the italics-underlined means the second largest value.

The comparison results show that some existing algorithms
(such as DoG, ILCM, NLCM, etc.) can achieve a fast detection
speed; however, their performances in target enhancement and
background suppression are bad, so the detection rate and false
alarm rate are not satisfied. By contrast, some existing algorithms

(such as RLCM, MDTDLMS, TLLCM, etc.) can achieve good
detection performances but at an increased cost. The proposed
algorithm can achieve a good detection performance in all of
the 12 sequences, and its average time consumption is only less
than 0.5 s per frame. Particularly, its performance is much better
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Fig. 15. ROC curves in different sequences using the proposed algorithm after the addition of random noise. (a)–(k) Seq. 1–Seq. 11.

than those of other algorithms in the simulated sequence when
the target is adjacent to high-brightness background.

D. Noise Immunity of the Proposed Algorithm

Fig. 15 gives the performances of the proposed algorithm
under different levels of random noises, a key influence factor.
Eleven real IR sequences are tested, and zero-mean Gaussian
white noises with variances 1, 2, 3, 4, and 5 are added.

The ROC curves in Fig. 15 show that the performance of the
proposed algorithm is usually stable or only decreases slightly
with noise, which confirms the robustness of the proposed
algorithm against noises.

VI. CONCLUSION

In this article, a new background estimation method for IR
small target detection is proposed. A three-layer estimation
window, consisting of a central layer, an isolating layer, and
a surrounding layer, deals with targets of different sizes using
a single-scale calculation. A Gaussian filtering operation is
adopted for the central layer to improve the image SNR, a
closest-mean principle is proposed for the surrounding layer
to suppress high-brightness background, and a simple weight-
ing function utilizing the information of the isolating layer
is proposed to suppress clutters further. Experiments on real
and simulated images show the effectiveness of the proposed
algorithm under different types of targets and backgrounds
and robustness to random noise. Compared with eight existing

state-of-the-art algorithms, the proposed algorithm can achieve
better target enhancement and background suppression (i.e.,
SCRG and BSF) and improved detection and false alarm rates.
In addition, the computational complexity is reduced, and its
average time consumption is only less than 0.5s per frame, much
less than those of some multiscale algorithms.
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