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A Simple Phenology-Based Vegetation Index
for Mapping Invasive Spartina Alterniflora

Using Google Earth Engine
Ronglong Xu , Siqing Zhao , and Yinghai Ke

Abstract—Spartina alterniflora (S. alterniflora) after introduced
to China, has rapidly expanded along the coastline and become one
of the top invasive plants in coastal wetland. While it has been well
accepted that phenological information derived from multitempo-
ral remotely sensed data improves vegetation mapping accuracy,
previous research primarily relied on scene-based features for inva-
sive plant mapping. In the coastal regions with frequent cloud cover
such as South China coast, extracting phenological features at scene
level was impossible due to lack of sufficient cloud-free imageries.
In this study, we aimed to propose a simple phenological vegetation
index (PVI) using pixel-level composition of Sentinel-2 observations
with the assist of Google Earth Engine platform. By developing and
comparing six PVIs, separability analysis showed that phenological
normalized vegetation difference index (PNDVI) of S. alterniflora
and other land cover types were more separable than other PVIs
and single-season NDVI. Based on the PNDVI, we further proposed
supervised and unsupervised Otsu thresholding methods for S.
alterniflora extraction. The overall accuracies of supervised Otsu-
PNDVI-thresholding method using 10-fold cross validation reached
97.84%, and that of the unsupervised Otsu-PNDVI-thresholding
method reached 97.20%. Kappa Z-test statistics showed that both
supervised and unsupervised Otsu-PNDVI-thresholding methods
yielded statistically similar accuracies as random forest classifiers
based on six PVIs, and higher accuracies than scene-based classifi-
cation. The success of the unsupervised Otsu-PNDVI-thresholding
method suggested that the method was practical and operational
for S. alterniflora mapping and its expansion monitoring in wide
area such as South China coast.

Index Terms—Google Earth Engine (GEE), invasive species,
phenological vegetation index (PVI), phenology, Sentinel-2,
Spartina alterniflora.
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I. INTRODUCTION

THE INVASION of nonnative plant species has posed sig-
nificantly negative effects on ecosystem services as well

as human wellbeing [1]–[3]. In 1979, for the purpose of con-
solidating seashore and mitigating the coastal erosion, Spartina
alterniflora (S. alterniflora) was introduced to Chinese coastal
areas [4]–[6]. Due to the strong reproductive capacity and the
high tolerance to the habitat, S. alterniflora has undergone an
extensive expansion along many regions of Chinese coastline,
ranging from Guangxi Province in South China (21 °33′ N,
108 °08′ E) to Liaoning Province (40 °20′ N, 122 °35′ E) in North
China [7]–[9]. Since 2003, S. alterniflora has been listed as top
invasive plants in China by the State Environmental Protection
Administration of China [10], [11]. Rapid expansion of S. al-
terniflora has threatened coastal wetland ecosystems by acceler-
ating soil salinization, encroaching the habitats of native plants
and leading to reduction of bird species [12]–[16]. This raises
necessities for accurate detection and mapping of S. alterniflora
in order to better understand the invasive mechanisms, mitigate
its further invasion and impacts, and assist decision making in
coastal wetland ecosystem management and restoration.

Remote sensing techniques have been widely used for invasive
plant species mapping [17]–[19]. The task of invasive species
mapping involves discrimination of the target species from
the native species and other land cover types. In addition to
spectral features, in recent years more and more studies have
paid attention to the phenological information provided from
multitemporal remote sensing imagery [20]–[24]. For example,
Diao and Wang [20] extracted phenological metrics using the
adaptive Savitzky–Golay smoothing function based on monthly
Landsat imagery and then detected the invasive salt cedar in
southwestern United States using random forest (RF) algorithm.
Tian et al. [25] categorized the existing strategies incorporating
phenological features into two classes, i.e., scene-based meth-
ods and pixel-based methods. Scene-based methods utilized
cloud-free (or mostly cloud-free) scenes to derive phenological
features, while pixel-based methods composited phenological
features for each pixel using cloud-free observations among
all available scenes, even if a scene was cloud contaminated.
In areas with frequent cloud cover, scene-based methods are
problematic because cloud clear images are not sufficient for
deriving useful phenological information. Pixel-based methods
can mitigate this problem by using all cloud-free observations
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of a pixel through a year regardless the cloud coverage at scene
level [26], [27]. Pixel-based processing is both computational
and demanding, while this issue can be solved by Google Earth
Engine (GEE, https://earthengine.google.com), a cloud-based
platform with supercomputing capacity for massively geospatial
data analysis.

Detailed literature review on invasive species mapping show
that existing methods are dominated by machine learning (ML)
classification algorithms [28], [29]. The mainstream classifiers
include support vector machines, artificial neural networks,
decision tree classification, classification and regression tree
(CART), k-nearest neighbors, and RF [30]–[32]. Although ML
classification methods generally yield good accuracies, they
usually require plenty of features, such as geometry features,
texture features as well as spectral features, which is complicated
to operate. It is well accepted that the performances of ML-based
classification are sensitive to the selection of feature sets. In
addition, application of ML-based classification algorithms over
large area (e.g., Southeast China Coast) requires large amount of
training samples, which is time consuming and labor intensive.

Given the importance of phenological features in invasive
species mapping and the advantage of GEE in efficient pixel-
based phenological feature extraction, we aim to construct a
simple and effective phenological vegetation index (PVI) for
S. alterniflora mapping in cloudy and humid coastal area in
southeast China. The objectives of this study are as follows.

1) Propose a PVI based on Sentinel-2 time series imagery
using pixel composition method, based on which S. al-
terniflora can be distinguished from native vegetation
types and its background land cover types.

2) Present a simple threshold-based method for S. alterni-
flora identification solely based on PVI.

3) Evaluate the effectiveness of PVI-threshold-based method
by comparing to both pixel- and scene-based ML classifi-
cation methods.

II. STUDY AREA AND DATA

A. Study Area

Our study area is located in the southeastern coastal regions
of mainland China. It includes Beibu Gulf in Guangxi Province
(covering two National Natural Reserves, i.e., Shankou Man-
grove National Natural Reserve and Hepu Dugong National Nat-
ural Reserve) [see Fig. 1(a)], Zhangjiangkou Mangrove National
Natural Reserve [see Fig. 1(b)], and Jiulongjiangkou Mangrove
Provincial Natural Reserve in Fujian Province [see Fig. 1(c)].
The climate is subtropical marine monsoon climate with annual
average temperature varying from 15 to 22 ° and annual average
precipitation ranging from 1200 to 2000 mm. Port develop-
ment, rapid economic growth as well as abundant habitats of
microbial communities have made these sties the priorities of
the coastal management program. For these sites, dominant
intertidal vegetation species include invasive S. alterniflora and
native Mangrove forests [25], [33]. In recent years, intertidal
mudflats of these natural reserves have been extensively invaded
by S. alterniflora [34], [35].

Fig. 1. Study regions situated in southeast coastal region of China. (a) Beibu
Gulf in Guangxi Province. (b) Zhangjiang Estuary of Fujian Province. (c)
Jiulongjiang River Estuary in Fujian Province.

TABLE I
GENERAL SKETCH OF THE SENTINEL-2 BANDS

B. Datasets

Sentinel-2A and Sentinel-2B are two matching satellites
launched by European Space Agency on June 2015 and March
2017, respectively. Detailed description of the Sentinel-2A/B
multispectral instrument (MSI) sensors is provided in Table I.
In order to mitigate the influence of cloud contamination and
tidal inundation in the study area, we collected all available
Sentinel-2A and Sentinel-2B MSI data with cloud/cirrus cover
less than 70% from 2018 to 2019 on GEE platform. There were
a total of 2732 images covering the three study sites, among
which 1150 images had cloud cover less than 70%. Only 132
images were cloud free. Taking the Beibu Gulf in the humid
and cloudy Southern China Coast as an example, only images
acquired on three dates (March 22, September 30, and October
30) are cloud-free in year 2018.

Reference data were randomly sampled as evenly as possible
throughout the research sites covering S. alterniflora, Mangrove
forests, and other land cover types (hereafter named “Others”),
including water and mudflat (see Fig. S1–S6 in Supplementary

https://earthengine.google.com
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Materials). With the assistance of the field survey reported in the
existing literature [33], [36], the land cover type of each point
was allocated by visual interpretation of very high-resolution
(VHR) image with spatial resolution less than 10 m [21]. Specif-
ically, the visual interpretation was conducted by three experi-
enced remote sensing experts, who have visited different coastal
wetlands in China and have comprehensive understanding of
the phenological characteristics of S. alterniflora and Mangrove
trees. VHR Google Earth images in year 2018 and 2019 were
used for interpretation, including images collected on March 20,
April 28, August 27, September 29, November 3, and November
30 in year 2018, and images collected on January 26, February
7, April 10, August 10, October 26, and November 30 in year
2019. Although not all images were available for each study site,
they can help to visualize and analyze the seasonal change of
vegetation greenness. The visual interpretation was also assisted
by several previous studies including UAV images collected by
Zhu et al. [24], the reference samples by Liu et al. [16], and Tian
et al. [25], and the resultant maps by Li et al. [34] and Tian et
al. [25]. Once the samples were interpreted by one expert, they
were re-examined by other experts and all experts discussed the
ones with uncertainties. All artificial land cover types such as
crops and ponds were manually excluded. The reference pixels
include 1867 pixels for S. alterniflora, 1973 for Mangrove, and
2046 for others type together for the three study sites.

III. METHODOLOGY

Fig. 2 illustrates the flow chart of the methodology. First,
all Sentinel-2 datasets with cloud cover less than 70% were
preprocessed by removing cloudy pixels (see Part A). Second,
pixels during key phenological periods, i.e., senescence period
and green period, were selected, and six PVIs were derived based
on phenological composition of six commonly used vegetation
indices (see Part B). Third, the optimal phenological index
was selected through separability analysis (see part C), and
both supervised and unsupervised threshold-based classification
method were presented to extract S. alterniflora (see part D).
Finally, the PVI-based thresholding classification methods were
compared with ML classifiers at both pixel- and scene-based
level, thus, to further evaluate the effectiveness of all these
available classification methods (see Part E and Part F).

A. Data Preprocessing

Using 10th and 11th bits of QA60 band of Sentinel-2 data,
we removed clouds and cirrus from Sentinel-2 imagery. We
then analyzed the phenological characteristics of the major land
cover types in the study areas. Fig. 3 demonstrates time series
normalized difference vegetation index (NDVI) of three sam-
ple pixels covered by S. alterniflora, Mangrove, and mudflats,
respectively. Note that these pixels were manually selected to
ensure that sufficient valid observations were available to recover
full temporal profile of NDVI time series. It is explicit that S.
alterniflora has different phenological features from Mangrove
trees. Mangrove trees are evergreen, while S. alterniflora are
not. NDVI of Mangrove trees is consistently high throughout
the year, while that of S. alterniflora is low from early January

Fig. 2. Overview of the processing workflow.

Fig. 3. Temporal profile of NDVI of Mangrove, S. alterniflora and Mudflat
during 2018–2019.

to the end of April and raises maximum from June to October.
From January to April, NDVI differences between Mangrove
and S. alterniflora are large, while from June to October, NDVI
differences between S. alterniflora and mudflat are large. There-
fore, we considered the day of year (DOY) 1 to 142 belongs to
senescence period, and DOY 154 to 270 belongs to green period
for S. alterniflora [25], [43], [44].

Fig. 4 illustrates the number of valid observations (no
cloud/cirrus cover) across three study sites of two key phe-
nological periods during year 2018–2019. Valid observations
over Zhangjiang Estuary and Jiulongjiang River Estuary ranged
from 38 to 51 and 15 to 27 in green period, and 31 to 39, 16
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Fig. 4. Spatial distributions of valid observations for all pixels in the study areas. (a) Valid observations over Beibu Gulf study area. (b) Valid observations over
Zhangjiang Estuary. (c) Valid observations over Jiulongjiang River Estuary. The upper subfigure illustrates the valid observations in green period, and the bottom
one illustrates valid observations in senescence period.

TABLE II
FORMULAS OF THE EXISTING VEGETATION INDICES WITH THEIR REFERENCES

to 21 in senescence period, respectively. The number of valid
observations of the Beibu Gulf ranged from 10 to 196 with an
average number of 38 in green period, and from 4 to 148 with
an average number of 25 in senescence period.

B. Phenological Vegetation Indices

For each cloud-free pixel, we calculated NDVI, enhanced
vegetation index (EVI), difference vegetation index (DVI), green
difference vegetation index (gDVI), green NDVI (gNDVI), and
soil-adjusted vegetation index (SAVI) using the equations in
Table II.

All valid pixels acquired during DOY 1–142 were considered
as senescence pixels, and those acquired during DOY 154–270
were green pixels. Therefore, for each vegetation index, we con-
structed two seasonal VI composite images, i.e., Senescence VIs
(SeVI, including SeNDVI, SeEVI, SeDVI, SegDVI, SegNDVI,
SeSAVI) and Green VIs (GrVI, including GrNDVI, GrEVI,
GrDVI, GrgDVI, GrgNDVI, GrSAVI). SeVI images and GrVI
images were generated as the maximum VI value on a per-pixel
basis during the senescence period and during the green period,

respectively. PVIs (PNDVI, PEVI, PDVI, PgDVI, PgNDVI,
PSAVI) were then calculated by using the following equation:

CVI = GrVI + SeVI (1)

PVI =
CVI

CVImax − CVImin
(2)

where CVI denotes composited vegetative index calculated as
the sum of GrVI and SeVI derived from the candidate index;
CVImax and CVImin denote the maximum and minimum CVI
values across the CVI image, respectively.

C. Separability Analysis

Intraclass and interclass variabilities are the key measures
to evaluate how well S. alterniflora can be separated from the
other classes. Here, we adopted separability index (SI) presented
by Somers et al. [45] to assess the spectral separability of
S. alterniflora and other classes in terms of PVIs. SI defines
the separability between a pair of class by incorporating both
intraclass and interclass variability measurements. The formula
is calculated as

SIsj =
Δintersj
Δintrasj

=
|μs − μj |

1.96× (σs + σj)
(3)

where SIsj refers to the SI between S. alterniflora (denoted
as s) and one of the other two classes (Mangrove or Others,
denoted as j). μs and μj denote the mean vegetation index of
S. alterniflora and class j, respectively; σs and σj denote the
standard deviation of the candidate PVI of class s and class j.
|μs − μj | represents the interclass variability between class s and
class j, and (σs + σj) represents the sum of intraclass variability
of the two given classes. Greater differences between μs and μj

and smaller within-class variances yield higher value of SI. The
average value of SI between S. alterniflora and each of the other
classes were considered as the average separability between S.
alterniflora and non-S. alterniflora.
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D. Classification Using Otsu Thresholding Algorithm

In this study, we adopted and compared two strategies of
threshold-based classification, i.e., supervised and unsupervised
strategies. Both strategies utilized Otsu thresholding algorithm
to determine suitable thresholds of PVIs in order to separate S.
alterniflora from other classes. Otsu algorithm is a nonparamet-
ric approach for automatic threshold selection proposed by Otsu
et al. [46], which determines the optimal threshold by going
through all possible thresholds and selecting the one that the
intraclass variance is minimum. For the supervised classifica-
tion strategy, thresholds between each pair of the classes were
determined using Otsu algorithm based on the training samples.
The PVI thresholds were then implemented over the entire study
area (all three study regions). For the unsupervised classification
strategy, multiclass Otsu thresholding algorithm was applied
over the PVI images and the pixels within each study region
were automatically classified into three classes, and the land
cover type was assigned to each class based on its PVI range.

E. Scene- and Pixel-Based ML Classification Methods

We further compared the proposed methods with pixel-based
and scene-based ML classification methods. The scene-based
classification was conducted based on cloud free imagery. As the
three study sites were located within different scenes, cloud free
image scenes acquired on similar dates were selected. For Beibu
gulf, the images include those acquired on March 9, September
30, and November 4 in 2018, and on January 23 2019; for the
other two sites, the images include those acquired on March
10, September 26, November 5 in 2018, and on January 24 in
2019. The four dates represent spring, summer, autumn, and
winter. For each of the images, we calculated the six vegetation
indices, and implemented RF classification (hereafter called RF-
spring, RF-summer, RF-autumn, and RF-winter). For the pixel-
based method, we implemented RF and CART based on multiple
features of vegetation indices. Based on the training datasets,
each of the RF and CART was trained based on 1) 6 GrVIs, 2)
6 SeVIs, 3) 6 PVIs.

When it comes to the coefficient of the CART classifier, we
utilized the default coefficient of GEE (“max Nodes” as null and
“minLeafPopulation” as 1); for RF classifier, the “number of
trees” was 4, and all other parameters were set as default values
in GEE, i.e., “variablesPerSplit” as null, “minLeafPopulation”
as 1, “bagFraction” as 0.5, “maxNodes” as null, “seed” as 0.

F. Training and Evaluation of the Classification Methods

Two strategies were used to train and evaluate the supervised
Otsu thresholding method, scene-based ML methods, and pixel-
based ML methods. First, ten-fold cross validation was applied
to each of the classification strategies to assess the stability
and reliability of the methods. Classification accuracies were
evaluated using the average overall accuracies (OA), Kappa
coefficient, producer’s accuracies (PA), and user’s accuracies
(UA). Second, from the reference pixels, 70% were randomly
selected from each class as training samples (see Figs. S1, S3,
and S5 in Supplementary Materials), and the rest 30% were
used as testing samples (Figs. S2, S4, and S6 in Supplementary

Fig. 5. Histogram of senescence vegetation indices, green vegetation indices,
and phenological vegetation indices.

Materials). In addition to OA, PA, UA, and kapa coefficient,
Kappa Z-test [47] was conducted in order to evaluate whether
the accuracies of two different classification algorithms were
statistically different. The null hypothesis of Kappa Z-test is that
the Kappa values from two classification methods are equal. Z
statistics can be calculated as

Z =
k1 − k2√

(Var (k1) + Var (k2)
(4)

where k1 and k2 are the Kappa coefficients of the two clas-
sification algorithms; Var(k1) and Var(k2) are their variances,
respectively, calculated from the confusion matrix [48]. The null
hypothesis is rejected if the Z-statistic is higher than the critical
value (1.96 at 95% confidence level).

IV. RESULTS

A. Separability Assessment

Fig. 5 presents the histograms of GrVIs, SeVIs, and PVIs
calculated from the training samples of S. alterniflora, Man-
grove, and “Others.” From the GrVI diagrams (left column of
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Fig. 6. SI value of the vegetation indices between different classes. (a) SI value of the vegetation indices between S. alterniflora and Mangrove trees. (b) SI value
of the vegetation indices between S. alterniflora and “Others.” (c) SI value of the vegetation indices between S. alterniflora and non-S. alterniflora.

Fig. 5), it is obvious that S. alterniflora was easy to be confused
with Mangrove forest in green period, as the range of VIs
of S. alterniflora had a large overlap with that of Mangrove
trees. Whereas in senescence period (middle column of Fig. 5),
the VIs of S. alterniflora inclined to overlap with those of
“Others.” Take NDVI as an example, in green period, GrNDVI
of S. alterniflora had an overlap from 0.44 to 0.70 with that
of Mangrove forest. GrNDVI of S. alterniflora showed almost
no overlap with “Others” class. In senescence period, SeNDVI
of S. alterniflora (ranging from 0.04 to 0.48) had little overlap
with that of Mangrove trees, while it has a large overlap with
“Others” (ranging from −0.2 to 0.38). PVIs, however, have
greatly mitigated the histogram overlaps among the three classes
(right column of Fig. 5). Compared to GrNDVI and SeNDVI,
the range of PNDVI did not change significantly for Mangrove
trees or “Others,” while PNDVI of S. alterniflora moved toward
the middle between those of Mangrove trees and “Others” so
that the overlaps between S. alterniflora and each of Mangrove
or “Others” greatly reduced. Likewise, PgNDVI and PSAVI
also showed great mitigation of histogram overlap compared to
the corresponding green period and senescence period indices.
GrSAVI of S. alterniflora (0.01–0.52) has a large overlap with
Mangrove (0.22–0.64) in green period with a range of 0.22–0.52,
while in senescence period, S. alterniflora (0.04–0.28) has a
large overlap with “Others” (−0.14–0.20) within a range of
0.04–0.20.

Among the six candidate PVIs, it can be found that PNDVI,
PgNDVI, and PSAVI of the three classes were more separable
than PEVI, PDVI, and PgDVI. For EVI, DVI, and gDVI, large
overlaps were found in green indices between S. alterniflora
and Mangrove trees. Although the corresponding phenological
indices reduced the overlap, the confusions between S. alterni-
flora and Mangrove trees (or “Others”) were still considerable.

Fig. 6 demonstrates the SI values of the GrVIs, SeVIs, and
PVIs. It can be discovered that the SeVIs yielded higher SI
value than PVIs and GrVIs when discriminating S. alterniflora
from Mangrove trees (>0.198), while GrVIs had the lowest SI
value (< 0.182) [see Fig. 6(a)]. In contrast, the SI values of
GrVIs between S. alterniflora and “Others” were higher than
PVIs and SeVIs [see Fig. 6(b)], suggesting that S. alterniflora
is more separable from Mangrove trees in senescence period,
while it is more separable from “Others” in green period, which
is consistent with Fig. 4. Neither GrVIs nor SeVIs alone can
discriminate S. alterniflora for they always left one type of

Fig. 7. Z-statistic values of the candidate classification algorithms.

land cover to be confused. Although PVIs did not produce the
highest separability between S. alterniflora and Mangrove trees
or between S. alterniflora and “Others,” PVIs produced higher
SI value between S. alterniflora and non-S. alterniflora when
compared to single season derived VIs [see Fig. 6(c)], indicating
that PVIs were suitable for discerning S. alterniflora from the
other two classes.

The comparison of the six PVIs shows that PNDVI had the
maximum SI value than others, whose SI value is 0.279, followed
by PgNDVI with SI of 0.275 and PSAVI with SI of 0.271
[see Fig. 6(c)]. The other three indices have lower SI values.
The highest SI value of PNDVI between S. alterniflora and
non-S. alterniflora indicates that PNDVI produces the high-
est interclass separability and the lowest intraclass variability.
Therefore, PNDVI was selected as the optimal phenological
index to discriminate S. alterniflora.

B. Comparison of Classification Accuracies

Supervised and unsupervised Otsu thresholding classifica-
tion approaches solely based on PNDVI (hereafter named su-
pervised Otsu-PNDVI and unsupervised Otsu-PNDVI, respec-
tively) were compared with the more complex RF and CART
classification methods. For the supervised Otsu-PNDVI, the
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TABLE III
CLASSIFICATION ACCURACIES WITH THE TEN-FOLD CROSS-VALIDATION

thresholds determined with training data were 0.224 between S.
alterniflora and “Others” and 0.529 between S. alterniflora and
Mangrove trees. Pixels with PNDVI values lower than 0.529
and higher than 0.224 were identified as S. alterniflora. For
the unsupervised strategy, the thresholds were 0.234 and 0.519,
respectively.

Ten-fold validation (see Table III) shows that RF-6PVI ap-
proach yielded the highest overall accuracy (98.03%), followed
by Supervised Otsu-PNDVI classification algorithm (97.84%).
The CART classifier based on 6 PVIs (CART-6PVI) also had
a good accuracy (97.31%). The unsupervised Otsu-PNDVI
method had 0.64% lower accuracy than supervised Otsu-
PNDVI, but the overall accuracy still reached 97.20%. In gen-
eral, CART produced lower OA than RF classifiers. Besides,
with single-season indices such as GrVIs and SeVIs, the overall
accuracy is generally low regardless of the classifiers. It is ob-
vious that scene-based ML classification produced much lower
accuracies than pixel-based classifications. Although RF-spring
yielded 92.39% overall accuracy, both PA and UA of S. alterni-
flora was lower than 89%.

Table IV lists the confusion matrices using 70% reference
sample for training and the rest for testing. First, we can conclude
that scene-based methods all lead to poorer accuracy compared
to other algorithms (OA < 92%). Compared to the supervised
Otsu-PNDVI method, the unsupervised Otsu-PNDVI method
tended to produce slightly greater confusion between S. alterni-
flora and Mangrove trees, as the threshold determined from
the unsupervised Otsu (0.519) was lower than that from the
supervised Otsu (0.529). Compared to the ML classification
algorithms based on single-season VIs, the thresholding method
solely based on PVI has a better performance in distinguishing S.
alterniflora from its background land cover types. Considerable
confusions between S. alterniflora and Mangrove trees were
produced for the RF-6GrVI and CART-6GrVI algorithms, and
confusions between S. alterniflora pixels and “Others” were pro-
duced for the RF-6SeVI and CART-6SeVI algorithms. It is ob-
vious that the supervised Otsu-PNDVI algorithm has mitigated
the confusions better than unsupervised Otsu-PNDVI algorithm.

The Kappa Z-test statistics listed in Fig. 7 demonstrated
that while the supervised Otsu-PNDVI-based method did not

statistically improve the accuracy compared to RF and CART
classification methods based on the six PVIs, incorporating PVIs
in classification, regardless of the classification methods, did
improve the accuracy compared to RF and CART classifica-
tions using single-season-based VIs. In addition, the Kappa
value of the unsupervised Otsu-PNDVI classification was not
significantly different from that of the supervised Otsu-PNDVI
classification or ML algorithms, indicating that S. alterniflora
can be detected accurately with PNDVI without the assistance
of training datasets. It can be seen that scene-based algorithm has
significantly lower accuracy than Otsu-PNDVI-based method.

C. Classification Results

Figs. 8 and 9 show the mapping results of S. alterniflora in
the three study regions during 2018–2019 with the proposed su-
pervised Otsu-PNDVI method. Table V showcased the detailed
distribution area of S. alterniflora. The invasive area is 1159.21
ha in Beibu Gulf [see Fig. 8(a)], 245.89 ha in Zhangjiang Estuary
[see Fig. 9(a)], and 524.23 ha in Jiulongjiang River Estuary [see
Fig. 9(b)]. Note that our observed invasion in Zhangjiang Estuary
approximately commensurate with the detection conducted by
Tian et al. [33], who measured that the invasive area was 270.3
ha by the November 23rd of 2018.

V. DISCUSSION

A. Advantages of PNDVI

This study presented a novel vegetation index that captures
the phenological characteristics based on seasonal vegetation
indices for invasive plant species identification using pixel-based
approach. Previous research has used stacking of multitemporal
cloud-free scenes for S. alterniflora mapping. For example, Liu
et al. [36] mapped S. alterniflora in Jiangsu Province, East
China, using Maxent algorithm based on monthly cloud-free
Landsat imagery. However, this scene-based method is not fea-
sible in regions such as our study area because the coastal area
in South China was dominated by humid and cloudy weather.
For pixel-based approach, pixels across all available Sentinel-2
imagery can be utilized as long as they were not covered by
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TABLE IV
CONFUSION MATRIX OF THE SIX CLASSIFICATION METHODS

TABLE V
SUMMARY OF CLASSIFICATION OUTCOMES OF THREE GIVEN STUDY SITES

cloud, so that the cloud-contaminated scenes were fully used.
The pixel-based image (or VI) composition strategy might be the
only viable solution for vegetation mapping in cloudy regions.
It is worth noting that our pixel-based composition strategy was
not affected by the inaccuracies in cloud/cirrus masks provided
by Sentinel-2 data because the SeVIs and GrVIs extracted the
maximum value from the datasets. This also ensures the relia-
bility of the results.

Using the pixel-based composition method, the GrVIs repre-
sent the greenest status of a pixel throughout a year, thus, GrVIs
performed well in separating vegetation from nonvegetation (see
Figs. 4 and 5). However, GrVIs were not preferable in separating
S. alterniflora from Mangrove trees as they were both large in
their growing period in summer season. SeVIs, on the other
hand, represent the greenest state of a pixel in senescence season.

The SeVIs of Mangrove trees did not vary significantly from
GrVIs as Mangrove trees are evergreen; SeVIs of nonvegetative
cover did not vary either, while those of S. alterniflora decreased
considerably. PVIs neutralized the greenest states in both green
and senescence seasons. For Mangrove trees and “Others,” PVIs
were similar as GrVIs and SeVIs; In contrast, for S. alterniflora
PVIs were lower than GrVIs but higher than SeVIs. Therefore,
PVIs combine the advantage of GrVIs and SeVIs and increase
the interclass separability between S. alterniflora and non-S.
alterniflora.

Compared to other PVIs, PNDVI proved to be the most
effective one in terms of separability assessment (see Figs. 4
and 5). Interestingly, EVI, which has been well recognized to be
an improved version of NDVI, did not show higher interclass
variability than NDVI regardless of the seasonal composite.
Compared to NDVI, EVI reduces the saturation effect in area
with dense vegetation cover. In our study, we also found that
both S. alterniflora and Mangrove trees had wider range of EVI
values (0.1–1 for GrEVI of S. alterniflora and 0.36–1 for GrEVI
of Mangrove trees) than NDVI values. Therefore, it is inevitable
that the resultant PEVI values had greater overlaps.

Previous research has utilized pixel-based composition of
time series remotely sensed imagery for vegetation mapping.
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Fig. 8. S. alterniflora maps in (a) Beibu Gulf, (b) zoomed-in area of Region 1, (c) zoomed-in area of Region 2, and (d) zoomed-in area of Region 3.

For example, Tian et al. [25] composed two 6-band Landsat
imageries using cloud-free pixels that have maximum EVI
value and using pixels that have maximum plant senescence
reflectance index for S. alterniflora detection, respectively. Li
et al. [34] constructed time series Sentinel-2 imagery using
harmonic analysis of time series algorithm at pixel level for
Mangrove tree species mapping. Karasiak et al. [49] constructed

time series Formosat-2 imagery by filling cloudy pixels using
temporal linear interpolation and conducted forest tree species
classification. Most of the existing studies relied on stacking of
composited imagery for vegetation classification. In compari-
son, the PNDVI proposed in our study was simple but effective.
Our results showed that S. alterniflora can be accurately detected
solely based on the PNDVI.



XU et al.: SIMPLE PHENOLOGY-BASED VEGETATION INDEX FOR MAPPING INVASIVE S. ALTERNIFLORA USING GEE 199

Fig. 9. S. alterniflora maps in (a) Zhangjiang Estuary, and (b) Jiulongjiang Estuary.

B. Comparison With ML-Based Classification Methods

Current studies on invasive plant species mapping were dom-
inated by ML classification methods. The general procedures of
ML-based classification consist of the following:

1) extracting spectral, spatial, and/or phenological features
based on one or more images;

2) using training datasets to establish ML classifiers; and
3) implementing the trained classifiers to classify land cover

and vegetation types and extract the target species.
Generally, ML classification methods require large numbers

of features, such as spectral features, texture features, and geo-
metric features. For example, Tian et al. [33] detected submerged
S. alterniflora in Zhangjiang Estuary, China, using the RF
method based on a total of 35 spectral, geometry, and texture fea-
tures from Sentinel-2 imagery; the resultant mapping accuracy
was over 90%. Tian et al. [25] utilized Stacked Auto Encoder to
detect S. alterniflora based on 12 spectral features composited
by imageries at different seasons, and reported 96.22% overall
accuracy; the study also reported that the classification accuracy
dropped to 83.3% when only summer pixels were used. In addi-
tion, parameters in the ML classifiers are subject to adjustment,
and inappropriate parameters may degrade the classification
accuracies [50]. Furthermore, the choice of classifier is also
an influencing factor, as different classifiers may affect the
accuracy. In our study, we found that the RF classifiers achieved
higher accuracies than CART.

Compared to the more complex ML classification results,
both supervised and unsupervised Otsu thresholding approaches
solely based on the PNDVI index yielded considerably compet-
itive performances. Besides, the Otsu thresholding approach is
more computationally efficient. The unsupervised Otsu thresh-
olding approach produced statistically similar accuracy as the

supervised Otsu thresholding approach. Compared to the super-
vised classification methods, the unsupervised Otsu threshold-
ing method does not require collecting training samples, which
might be the most labor intensive and time-consuming task
in classification procedures. This is particularly useful for S.
alterniflora detection over large region such as the South China
coastal area.

The high accuracies of the proposed method can be mainly ex-
plained by the high spatial and temporal resolution of Sentinel-2
imagery, the utilization of pixel-based composition strategy and
good separability of PNDVI. The 10 m spatial resolution allows
us to detect small vegetation patches, which are not possible for
Landsat-series imagery. With 5-day revisiting cycle, the time
series Sentinel-2 observations could capture the greenest state
of a pixel in both green period and senescence period with the
assistance of pixel-based composition strategy.

C. Opportunities and Challenges

In this study, we demonstrated that the PNDVI-based Otsu
thresholding methods (supervised or unsupervised) proposed in
our study were simple, efficiently applicable for S. alterniflora
mapping in South China coastal region. The PNDVI enhanced
the separability between S. alterniflora and non-S. alterniflora
by considering the differences in phenological characteristics
of vegetation types in the study areas. The Otsu thresholding
method was easy to implement, indicating that it could be widely
accepted by coastal wetland managers. Because each vegetation
type has its own growth rhythm and phenological characteristics,
the perspective of pixel-based phenological index construction
can be utilized for other vegetation mapping tasks.

It should be noted that the success of PNDVI in our study
were mainly dependent on the distinct phenological difference
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of S. alterniflora and Mangrove trees. In the coastal wetlands
where strong phenological contrast between S. alterniflora and
native plants species were not available, PNDVI might lead to
poorer accuracies. However, this problem can be overcome by
carefully examining the phenological features of each vegetation
types before classification. For example, in the Yellow River
delta in North China, S. alterniflora and the native Phragmites
Australis have one month differences in the start of growing
season and end of growing season [51]. It is possible to utilize
the time window for the construction of PVI. Time window
was also proved important as in a recent study by Zhang et al.
[27], which examined differences in time series spectral indices
of S. alterniflora and other vegetation species in Chongming
island in Eastern China, and found that using land surface water
index during April–May was most effective in extraction of S.
alterniflora. Sun et al. [22] found that April, May, and November
are important months for classifying salt marsh at species level.
However, when time window is too narrow, it is possible that
the number of valid observations is insufficient to derive VIs for
each pixel.

Our results proved the promising potential of time series
Sentinel-2 data for S. alterniflora mapping in cloudy South
China due to its high temporal frequency. Before Sentinel-2 A/B
constellation began to provide 5-day revisiting imagery in March
2017, the combined use of Landsat 7 ETM+ and Landsat 8 OLI
(or Landsat 7 ETM+ and Landsat 5 TM before 2012) might
also be used to map S. alterniflora as they could provide 8-day
revisiting period.

VI. CONCLUSION

In this study, we proposed a new vegetation index, namely
PNDVI for detection and mapping of invasive species, S. alterni-
flora, using Sentinel-2 data with the assistance of GEE platform.
Taking South China coastal regions as study areas, our results
showed that the PNDVI enhanced the separability between S.
alterniflora and non-S. alterniflora land cover types compared
to single-season-based VIs, as well as other 5 PVIs. Based on
the PNDVI values, Otsu thresholding algorithm was applied
with or without training datasets. Ten-fold cross validation
showed that the supervised Otsu-PNDVI method yielded high
classification accuracy for discriminating S. alterniflora (OA
= 97.84%, Kappa = 0.968). Kappa Z-statistical test suggested
that the Otsu-PNDVI method yielded similar accuracy as RF-
6PVI. However, compared to ML-based algorithms, this method
is simpler and more efficient as it only requires one feature.
In addition, the unsupervised Otsu-PNDVI method produced
comparable accuracies to the supervised Otsu-PNDVI and ML-
based algorithm. The pixel-based Otsu-PNDVI method showed
superior performance over scene-based method. As collecting
training samples were probably the most time consuming and
labor-intensive task in supervised classification procedures, the
success of unsupervised Otsu-PNDVI method suggests that the
method is more practical, operational and has potential to be
widely implemented in areas such as South China coast. It is
also anticipated that PNDVI has the opportunity of bringing as-
sistance for uncovering the invasive mechanism as well as giving
aid for planning protection to potentially hazardous regions.
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