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Toward Better Planetary Surface Exploration by
Orbital Imagery Inpainting

Hiya Roy , Subhajit Chaudhury, Toshihiko Yamasaki , and Tatsuaki Hashimoto

Abstract—Planetary surface images are collected by sophisti-
cated imaging devices onboard the orbiting spacecraft. Although
these images enable scientists to discover and visualize the un-
known, they often suffer from the ‘no-data’ region because the
data could not be acquired by the onboard instrument due to the
limitation in operation time of the instrument and satellite orbiter
control. This greatly reduces the usability of the captured data
for scientific purposes. To alleviate this problem, in this article,
we propose a machine learning-based ‘no-data’ region prediction
algorithm. Specifically, we leverage a deep convolutional neural
network (CNN) based image inpainting algorithm to predict such
unphotographed pixels in a context-aware fashion using adversar-
ial learning on planetary images. The benefit of using our proposed
method is to augment features in the unphotographed regions
leading to better downstream tasks such as interesting landmark
classification. We use the Moon and Mars orbital images captured
by the JAXA’s Kaguya mission and NASA’s Mars Reconnaissance
Orbiter (MRO) for experimental purposes and demonstrate that
our method can fill in the unphotographed regions on the Moon and
Mars images with good visual and perceptual quality as measured
by improved PSNR and SSIM scores. Additionally, our image
inpainting algorithm helps in improved feature learning for CNN-
based landmark classification as evidenced by an improved F1-
score of 0.88 compared to 0.83 on the original Mars dataset.COMP:
Please replace colons appearing after figure numbers and table
numbers with period in all figure and table captions.

Index Terms—Classification, image inpainting, machine
learning, mars, moon, neural networks, remote sensing, supervised
learning.

I. INTRODUCTION

IN THE Quest of exploring and understanding planetary
bodies, several missions to the Moon, Mars, and other planets

in the solar system have been carried out over the years. Ad-
vancement in imaging devices has enabled humans to visualize
the planetary terrains and inspired them to discover how planets
have evolved. Such high-resolution orbital images are crucial
in providing us unprecedented views of interesting planetary
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surface features or characterizing potential candidates for future
landing sites [1]. For example, onboard cameras of Kaguya mis-
sion’s Selene spacecraft [2], and Mars Reconnaissance Orbiter
(MRO) [3] have provided scientists with Lunar and Mars orbital
imagery. However, to obtain these high-resolution images, the
swath width of the on-board cameras of the orbiting satellite
is kept lower which in turn creates discontinuity or black lines
on the Lunar or Mars surface image. Although Moon and Mars
are the most extensively studied celestial bodies, there still exist
small portions that are yet not covered by the onboard instru-
ments. Moreover, there are other planets (e.g., Mercury, Pluto,
etc.) or celestial bodies where no-data regions exist because a
large percentage of the surface of these celestial bodies are not
yet captured. Therefore, till the time the global mapping of the
entire planetary surface is completed, the problem of no-data
problem will exist. Examples of such unphotographed/missing
regions on Moon, Mars, Mercury, and Earth remote sensing
images are shown in Fig. 1.

Such unphotographed pixels limit the application and usabil-
ity of data, in classifying or recognizing interesting morpholog-
ical features in the planetary surface. Therefore, restoring them
is of great significance for many practical applications such as
improving classification accuracy, enhancing data availability,
to make more accurate location adjustments while making the
mosaic of the planetary surface where the region is not illumi-
nated by Sunlight such as the Polar region, to improve the landing
site candidate selection efficiency, etc. Although one might think
that filling the unphotographed region with artificial pixel values
might be harmful from the viewpoint of precise observation,
nevertheless we show that such unphotographed pixel prediction
can effectively improve the performance of terrain classification
due to improved feature learning.

With the increasing amount of image data available from the
ongoing planetary imaging investigations [2]–[5], there is an
urgent need for automated vision-based algorithms that achieve
good feature learning of interesting landmarks. However, be-
cause of the unphotographed regions, the interesting features
sometimes appear incomplete. In this article, we aim to predict
such a region to enable the network to learn the complete
feature of the interesting landmark which in turn leads to better
classification performance.

Previous research works have shown that it is possible to re-
construct missing data on remote sensing imagery on Earth [6]–
[21]. While these previous methods perform well for Earth
remote sensing data, they are not suitable for planetary im-
ages such as Moon or Mars. This is because planetary surface
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Fig. 1. Example of unphotographed/missing pixel regions on (a) Lunar orbital
imagery acquired by Kaguya mission’s SELENE spacecraft [2]. (b) Mars
orbital imagery acquired by MRO [3]. (c) Mercury orbital imagery acquired
by MESSENGER spacecraft [5]. (d) Earth remote sensing images [6].

images differ from Earth remote sensing data in terms of the
histogram, contrast, presence of different geological features,
etc. Moreover, the vast difference in temperature, presence of
the atmosphere, water, vegetation, etc., on Earth makes geolog-
ical features (valleys, channels, etc.) on earth remote sensing
images look much different from that of other planetary bodies.
Furthermore, in the case of the planetary image dataset, we found
that there exists a gradation (different modes) of histogram dis-
tribution in the input images, which cannot be solved efficiently
using existing missing data reconstruction techniques on remote
sensing imagery. Therefore, we propose mode-specific expert
neural networks that can handle such peculiarity of histogram
distribution on any planetary surface images. In this article, we
have shown the effectiveness of our proposed algorithm only
on Lunar and Mars surface images. However, our algorithm is
applicable to any planetary images that suffer from such no-data
regions.

Recently, deep learning [23] has garnered tremendous success
because of its ability to express nonlinear functions. Benefiting
from this trend, CNNs have demonstrated outstanding perfor-
mance in solving several high-level vision-based tasks such as
image classification [25]–[28], object recognition [29], [30],
etc., as well as low-level tasks such as image denoising [31],
super-resolution [32], etc. Therefore, in this work, we employ
a CNN for restoring planetary orbital imagery contaminated
with unphotographed pixels. Here, we treat this problem as
an image inpainting problem where the main challenge is to
synthesize the unphotographed pixels in such a way that it looks
visually realistic when compared to the original ones. Another
challenge associated with planetary image restoration is that the
input images have several modes of histogram distribution which
inhibits the generative model to faithfully reproduce samples
representing each histogram mode. We tackled this problem by
clustering images with similar intensity distribution and then
training regression models having expertise in restoring unpho-
tographed pixels in the images with that particular intensity
distribution. Our intuition is that mode-specific encoders will
provide better inpainting results when compared with only one
encoder trained on an average intensity distribution [33]. We

build upon the recently proposed context encoder (CE) [55]
which is a generative adversarial networks (GAN) [56] based
network where our network first learns to predict and fill in
the unphotographed region. Then it uses the learned feature
representation as guidance to classify the morphological features
on the planetary surface. Our main contributions in this article
can be summarized as follows.

1) We introduce an adversarial learning-based image inpaint-
ing framework for planetary images (Moon, and Mars) that
learns a nonlinear end-to-end mapping from corrupted to
clean images.

2) To enable better inpainting we extract various modes of
histogram distribution in the input images by unsupervised
clustering. We train mode-specific GAN models which
are expert models for inpainting images belonging to that
cluster of the histogram mode. The simulated and real
experimental results show that our proposed approach
can restore images with a significant improvement in
terms of visual quality and evaluation metrics, thereby
outperforming previous inpainting methods.

3) We show that our proposed inpainting method helps in
augmenting features of interesting but masked/incomplete
landmarks which in turn leads to better generalization. Our
experimental results also validate this concept by boosting
the classification accuracy of the morphological features
on Mars images.

The rest of this article is organized as follows. Section II
describes the related works on image inpainting techniques on
standard datasets and remote-sensing datasets. Section III pro-
vides the details of the planetary dataset that we have used for our
experimental purpose. Section IV explains our proposed method
including the clustering of our training and testing images based
on histogram distribution, the training and implementation de-
tails of our inpainting module, and our classification module.
Section V provides the experimental results of the missing data
reconstruction in both simulated and real-data experiments and
its contribution to boosting classification performance. Finally,
our conclusions are presented in Section VI.

II. RELATED WORKS

In computer vision, the task of filling in the missing pixels
of an image is known as image inpainting. In this section, we
briefly review the previous image inpainting works on stan-
dard real-life datasets [36]–[39] by broadly categorizing them
into three sub-fields, (i) traditional inpainting techniques, (ii)
CNN-based inpainting, and (iii) GAN-based inpainting. We also
review previous works on remote sensing imagery inpainting on
Earth and Moon.

A. Traditional Inpainting Techniques

Traditionally, a variety of image inpainting approaches have
been proposed in the literature. One approach in this family is
known as diffusion-based image completion [40]–[43] where
a diffusive process is modeled using partial differential equa-
tions (PDE) to propagate colors into the missing regions. Chan
et al. [44] proposed a novel adaptive total variation model by
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combining the diffusion mechanism of the TV model based
on PDE and an edge detection operation to improve inpainting
performance by eliminating the staircase effect. These methods
work well for inpainting small missing regions, but fail to
reconstruct the structural component or texture for larger missing
regions.

Another approach is known as patch-based image completion,
which can handle complicated image completion tasks such as
large hole filling in natural images. Efros and Freeman [45]
first proposed a patch-based algorithm for texture synthesis,
which is based on iteratively searching for similar patches in
the existing image and paste/stitch the most similar block onto
the image. However, patch-based methods are computationally
very expensive because of the need for computing similarity
scores for every target-source pair. Therefore, for more accurate
and faster image inpainting, an optimal patch search algorithm
(fragment-based image completion) was proposed by Drori
et al. [46]. Another optimization method to synthesize visual
data (images or video) based on bi-directional similarity measure
was proposed by Simakov et al. [47]. Later these techniques
were expedited by Barnes et al. [48] who proposed PatchMatch,
a fast randomized patch search algorithm that could handle the
high computational and memory cost. For image completion,
several exemplar-based image completion methods have also
been proposed. Criminisi et al. [49] proposed a patch-based
greedy sampling algorithm, which enables faster image inpaint-
ing. Meur et al. [50] introduced a hierarchical super-resolution
algorithm for image inpainting. He et al. [51] approached the
image completion problem by computing the statistics of patch
offsets. However, the above methods rely only on existing image
patches and use low-level image features. Therefore they are not
effective in filling complex structures by performing semanti-
cally aware patch selections.

B. CNN-Based Inpainting

With the recent success of CNN models [24] in tackling
harder problems such as classification, object detection, and
segmentation, that need a high-level semantic understanding
of an image, CNNs became a popular choice to solve image
inpainting problems as well. Xie et al. [52] proposed Stacked
Sparse Denoising Auto-encoders (SSDA), a combined approach
of sparse coding and deep networks pre-trained with denoising
auto-encoder to solve the blind image inpainting task, which
is a more challenging inpainting task. This is because, in the
case of blind image inpainting, the algorithm does not know
the location of the missing pixels and it learns to find the
location of the missing pixels and then restore them. Kohler
et al. [54] showed a mask specific deep neural network-based
blind inpainting technique for filling in small missing regions
in an image. Chaudhury et al. [58] attempted to solve the blind
image inpainting task using a lightweight fully convolutional
network (FCN) demonstrating a comparable performance with
the sparse coding based k singular value decomposition (K-
SVD) [59] technique. However, initially, CNN-based image
inpainting approaches were limited to very small sized masks.

C. GAN-Based Inpainting

More recently, GAN-based inpainting methods have been
proposed which have achieved promising results in solving
image inpainting problems. Pathak et al. [55] proposed Context
Encoders, a channel-wise fully connected convolutional neural
network-based approach, that could inpaint large holes or miss-
ing regions existing in an image by predicting missing pixels
based on the context of the surrounding areas of that region. Their
network was trained using both standard �2 loss and adversarial
loss [56]. Later, Iizuka et al. [60] extended the work of [55]
and demonstrated that by leveraging the benefits of dilated
convolution layers, a variant of standard convolutional layers,
their encoder-decoder based method could restore missing pixels
that are consistent both locally and globally. Similar to [55],
this approach also used an adversarial training approach for
image completion, but unlike [55], this method could handle
arbitrary image size and mask because of the proposed global
and local context discriminator networks. Recently, Yu et al. [61]
presented a unified feedforward generative network with a novel
contextual attention layer, trained with reconstruction losses
and two Wasserstein GAN [62], [63] and showed that the
unified framework could inpaint images with multiple holes of
variable sizes situated at arbitrary locations. Later, to handle
free-form/irregular masks, Liu et al. [64] proposed a partial
convolution layer with an automatic mask-update rule, where
the mask is updated in such a way that the missing pixels are
predicted based on the real pixel values of the original image
where the partial convolution can operate. Song et al. [65]
introduced a segmentation guidance and prediction network that
first predicts the segmentation labels of the corrupted image,
then fills in the segmentation mask to use it as a guidance to
complete the image. Xiong et al. [66] showed that by predicting
and completing the contour of the foreground image, it can be
used as a guidance to inpaint the missing region of a corrupted
image. In a similar spirit, Nazeri et al. [67] proposed an edge
generator that hallucinates the edges of the missing regions
which is used as a guidance to the image completion network.
Yu et al. [68] proposed a gated convolution-based approach to
handle free-form image completion.

D. Remote Sensing Imagery Inpainting

Image inpainting on Earth remote sensing images has been
widely studied, where such missing pixels occur in the form of
dead pixels or thick cloud cover because of the atmospheric envi-
ronment or the working conditions of the satellite sensor [6], [7].
Remote sensing (RS) image inpainting using spatial information
include interpolation-based methods [8]–[10], variation-based
methods [11], [12], PDE-based methods [13], and exemplar-
based methods [49]. Although spatial-based methods can re-
construct small missing areas, they fail to guarantee pre-
cise reconstruction for large missing regions. To overcome
these limitations several other techniques such as spectral-
based methods (utilizing information from different spectral
bands) [14], [15], and temporal-based methods (using data taken
at the same location in different periods) [16], [17] have been
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Fig. 2. Overview of our image inpainting algorithm. First, we extract the masks from the real corrupted images and superimpose them on clean images and create
a pair of clean and simulated/artificially corrupted images. Next, we train the image inpainting module IV-B using these image pairs. Then, we fine-tune the trained
inpainting model on real corrupted images. Finally, we store all the clean and inpainted version of the corrupted images and solve a classification problem.

proposed. Later more generalized algorithms (hybrid methods)
were developed by integrating spatial, spectral, and temporal
information [6]. To this end, Ji et al. [18] proposed a nonlocal
low-rank tensor completion algorithm to reconstruct the missing
information. Cheng et al. [20] introduced a double-weighted
low-rank tensor (DWLRT) model and He et al. [19] proposed
a TV-regularized tensor ring completion (TVTR) model to re-
construct missing data in RS images. Recently, Zhang et al. [21]
proposed a progressive Spatio-temporal patch group learning
approach for cloud and cloud shadow removal for RS data. On
the other hand, to restore missing pixels on the Lunar surface
image, Roy et al. [22] proposed a U-Net based approach that
minimizes a standard �2 loss to restore the missing region on
Lunar surface images collected by the multiband imager (MI)
instrument on-board the Kaguya satellite.

III. EXPERIMENTAL DATA

In this work, we have used Lunar and Mars orbital images to
show the effectiveness of our proposed algorithm.

A. Lunar Orbital Imagery by SELENE

We have used the averaged lower resolution mosaic data
of the lunar surface captured by multiband imager onboard
the JAXA lunar explorer satellite SELENE (Kaguya) [2]. This
image covered the lunar surface with longitude (+180 to −180
degree) and latitude (+85 to−85 degree). This image consists of
46080× 21760 pixels with an image size of 600 MB. We created
this Moon dataset by converting the longitude and latitude of the
crater locations in terms of pixel values, where each degree is
considered to be 128 pixels and cropped the crater images with
and without the black lines. This dataset contains only clean
and real-corrupted crater images as shown in Fig. 3(c). Here,
each image is of size 256 × 256 pixels. We created pairs of
clean and artificially corrupted crater image pairs by randomly
superimposing the black lines (extracted from the real corrupted
images) on the clean crater images. A detailed number of such
clean and artificially corrupted crater image pairs used for train
and test purposes for the Moon dataset is summarized in the first

row of Table I. The second row of Table I describes the total
number of real corrupted images in the dataset. Since we did
not use the real corrupted Moon images for inference purposes,
we did not divide them into clusters and kept the corresponding
columns blank in Table I.

B. Mars Orbital Imagery by MRO

For Mars images, we have used the grayscale-version of
the Mars orbital images collected by the HiRISE camera on-
board the MRO having a spatial resolution of approximately
30 cm/pixel [4]. This dataset [69] is created and labeled by
processing map-projected HiRISE images to find eight visually
salient and interesting “landmarks” such as craters, dark and
bright sand dunes, slope streaks, impact ejecta, swiss cheese,
spider, etc., on the planetary surface as shown in Fig. 4. It consists
of a total of 73 031 landmarks amongst which 10 433 landmarks
are detected and extracted from 180 HiRISE browse images.1

The remaining 62 598 landmarks are the augmented version (90
degrees, 180 degrees, 270 degrees clockwise rotation, horizontal
flip, vertical flip, and random brightness adjusted) of 10 433
original landmarks. Each image is of size 227 × 227 pixels
and for this experimental purpose, we resized them to size 256
× 256. A detailed number of clean and artificially corrupted
image pairs used for train and test purposes for the Mars dataset
is summarized in the first row of Table I. The second row of
Table I describes the number of real corrupted images for each
cluster and the total number of real corrupted images in the
dataset.

It is to be noted that the black region on the Lunar surface
image as shown in Fig. 3(c) is a practical example of a no-data
region which could not be captured by the onboard camera
of the SELENE Kaguya satellite because of the limitation in
operation time of the instrument and satellite orbiter control.
However, the black regions on Mars HiRISE images as shown in
Fig. 3(f) are map projections. Nevertheless, for demonstration
purposes, we consider them as an example of the no-data region

1The dataset is available at https://zenodo.org/record/2538136#.
XYjEuZMzagR

https://zenodo.org/record/2538136#.XYjEuZMzagR
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Fig. 3. Details of Moon and Mars dataset: (a, d) Histogram distribution of several modes of input images, (b, e) Knee point analysis for determining the optimal
number of clusters, and (c, f) Examples of clean and corrupted images for each cluster. The first and second row demonstrates the details of Moon and Mars images,
respectively.

TABLE I
DETAILED NUMBER OF TRAIN AND TEST IMAGES OF MOON AND MARS DATASET

Fig. 4. Example of different classes of Mars dataset with the corresponding number of images for each class.

and propose an algorithm to show how to predict such a no-data
region for better surface image analysis.

IV. PROPOSED METHOD

In this article, our goal is to restore a predict the ‘no-data’
region of a corrupted image so that it helps in better feature
learning to improve the classification accuracy of interesting
landmarks on planetary images. We solve this problem by the
following four-stage approach.

1) In our Moon and Mars dataset, we found that the images
have several modes in the histogram distributions. Therefore
we divide the images into different clusters to prevent the
mode-collapse problem in generative models and encourage the
network to reliably generate samples from each cluster.

2) Both the Moon and Mars dataset consist of some real
corrupted images (with unphotographed pixels) and a majority
of clean images. From these real corrupted images, we extract the
masks of unphotographed pixel regions and artificially superim-
pose them on the clean image samples, thus yielding artificially
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corrupted and corresponding clean image pairs for each cluster.
GAN-based inpainting is performed on such paired data.

3) However, we find that there exists some distribution shift
between training and testing images (in terms of gray value,
contrast, histogram, etc). Therefore we design a finetuning stage
that uses partial ROIs of the real corrupted images to fine-tune
the models for matching the testing distribution.

4) Finally, we perform a classification task on original images
and compare that to the dataset where clean and inpainted
versions of the corrupted images are combined to yield better
F1-score due to improved landmark feature learning.

It is to be noted that we perform the first stage (separating
images into clusters) and second stage (image inpainting task)
for both Moon and Mars image datasets. However, we carry
out the third stage (inference on real-corrupted images), and
fourth stage (classification) only on the Mars dataset. This is
because our Moon dataset consists of images only from one
class (crater),2 whereas the Mars dataset consists of eight dif-
ferent classes as shown in Fig. 4. Therefore it is more useful
to demonstrate the results of the third and fourth stages using
the Mars dataset. In the following sections, we first introduce
how we preprocess the data and extract masks tailored for our
task. Then we explain the detailed implementation of our image
inpainting module and the fine-tuning process on real-corrupted
images. Finally, we describe our image classification module.
The overall framework of our proposed method is shown in
Fig. 2.

A. Unsupervised Separation of Histogram Clusters

In our Moon and Mars dataset, we found that planetary images
have several modes in the histogram distributions which can
be separated into clusters as shown in Fig. 3(a) and (d). To
encourage the generative model to faithfully reproduce samples
from each such clusters, we separate the images with different
histogram distribution into different clusters. Another intuition
behind such clustering is that a regression model trained with
images of particular intensity distribution such as p1(x) or p2(x)
will give better performance compared to a single model with an
average intensity distribution p(x) [33]. Here, we first calculated
the number of black pixels in every image and considered the
images having the number of black pixels less than 5 as clean
image and the number of black pixels more than 50 as corrupted
images. Then we performed k-means clustering [34], to cluster
these images with missing pixels into different groups based on
their histogram distribution as shown in the following

hk(x) =
n(x[i, j] = k)

number of pixels
(1)

where k varies from 1 to 255 for the features and h0(x) is the
number of black pixels.

To find the optimal number of clusters k, we carried out Knee
point analysis [35]. As shown in Fig. 3(b) and (e), for Moon

2The lunar surface has many geological features other than craters. However,
in this article, we have used only one kind of geological feature for the Moon
dataset for the sake of easy visual comparison and a lack of dataset availability
of different kinds of geological features.

images, the optimal number of image clusters comes out to be 3,
whereas for Mars images the optimal number of image clusters
comes out to be 5. Examples of clean and real corrupted images
corresponding to each clusters are shown in Fig. 3(c) and (f).
Subsequently, from the cluster centers in the grayscale histogram
space, we assign a class label to each clean image, according to
the cluster center having the closest Euclidean distance. Next,
for each of the clusters, we extracted a mask of the missing pixels
from the corrupted images and randomly superimposed them on
clean images and created pairs of clean and artificially corrupted
images for training and testing different regression models.

B. Image Inpainting Module

Given a real corrupted image, our goal is to fill in the missing
region so that the network can predict/augment the incom-
plete/masked features of the interesting landmarks with seamless
boundary transitions. Intuitively, the missing region can be filled
in multiple plausible ways. However, here we aim to restore the
missing pixels in such a way that it is the most coherent to its
surrounding context. For solving the inpainting task of Moon
and Mars images having different intensity distribution, we
train adversarial learning based GAN models which has shown
promising results in generative modeling of images [76] in recent
years. The network architecture of our inpainting module is
shown in Fig. 5. Our generator network takes an image with
missing pixels and its corresponding binary mask indicating the
missing regions as input pairs and outputs the inpainted image.

1) Network Architecture:
Generator: Our generator architecture is adapted from John-

son et al. [70] which has shown impressive results for neural style
transfer and image-to-image translation [72]. This generator
network contains three convolution layers (where Conv2 and
Conv3 layers are stride-2 convolution layers responsible for
down-sampling twice), eight residual blocks [27], and three
convolution layers (where Conv4 and Conv5 layers are transpose
convolution layers responsible for up-sampling twice back to the
original image size). Here, we use instance normalization [74]
and ReLU activation function across all layers of the generator
network. A more detailed description of the generator network
and output size of each layer is given in Table II.

Discriminator: Our discriminator network is a Markovian
discriminator similar to 70× 70 PatchGAN, adapted from [71],
[72]. The main motivation behind using a PatchGAN discrimina-
tor is that it works on a particular patch-size of an image instead
of a full image. Therefore, it has fewer parameters compared
to a discriminator working on a full image. Moreover, it can be
applied to any arbitrarily sized images in a fully convolutional
fashion [71], [72]. The details of our discriminator network and
output size of each layer is given in Table III. It should be
noted that the sigmoid function applied after the last convolution
layer produces a 1-D output score that predicts whether the
70 × 70 overlapping image patches are real or fake. For the
discriminator network, we use spectral normalization [73] as
our weight normalization method because it can stabilize the
discriminator network training. Moreover, here all the ReLUs
are leaky ReLUs [75] with slope of 0.2.
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Fig. 5. Network architecture.

TABLE II
GENERATOR NETWORK

TABLE III
DISCRIMINATOR NETWORK

2) Training: We train our proposed inpainting network in
two scenarios: (i) using images from different clusters sepa-
rately, and (ii) using all images together (not dividing them into
clusters). The detailed number of clean and artificially corrupted
image pairs for each cluster is given in the first row of Table I.
While training, for each real corrupted image xc, we extract a
binary image mask m (which takes the value 0 on the regions
to be filled-in and 1 elsewhere). Now for each clean image x,
we randomly superimpose the extracted masks m and obtain
artificially corrupted input image z = x�m, where� denotes
element-wise product operation. The generator of the inpainting

Algorithm 1: Training of Our Inpainting Framework.
1: while Generator G has not converged do
2: Sample batch images x from clean training data;
3: Extract masks m from corrupted training data;
4: Artificially construct corrupted inputs z← x�m;
5: Generate inpainted images by modifying masked

region, x̃← z+G(z,m)� (1−m);
6: Update G with �1 loss and adversarial critic loss;
7: Update discriminator critic D with x, x̃;
8: end while

networkG takes this concatenated input imagez and image mask
m as input, and produces a predicted image x′ = G(z,m) as
output. Then by adding the masked region of x′ to input image,
we get completed image as x̃ = [x�m] + [x′ � (1−m)]. For
clustered training, masks are extracted from corrupted images
from the same cluster, whereas no such restriction is imposed for
“all” case. The training procedure is described in Algorithm 1.

3) Loss Functions: To train our inpainting module to re-
store the input corrupted image realistically, we use two loss
functions: a reconstruction loss and an adversarial loss [56].
Although reconstruction loss helps in capturing the structural
details, using only �1 or �2 loss often leads to blurry or overly
smooth reconstructions [71]. Therefore using adversarial loss
along with reconstruction loss is important, because adversarial
loss tries to make the prediction look realistic, by fooling the
discriminator.

Reconstruction Loss: Previous inpainting approaches [55]
have shown that GAN objective function along with a tradi-
tional �2 loss helps in better reconstruction and stabilized GAN
training. Here for the reconstruction loss, we use �1 loss that
minimizes the distance between the clean/ground-truth image x
and the completed/inpainted image x̃

L�1(x) = [‖x− x̃‖1]. (2)

Here, x̃ = [x�m] + [x′ � (1−m)] and x′ = G(z,m).
Adversarial Loss: For the adversarial loss, we follow the

min-max optimization strategy, where the generator G is trained
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to produce inpainted samples from the artificially corrupted
images such that the inpainted samples appear as “real” as
possible and the adversarially trained discriminator criticD tries
to distinguish between the ground truth clean samples and the
generator predictions/inpainted samples. The objective function
can be expressed as follows

G∗, D∗ = argmin
G

max
D
Ladv(G,D) = Ex,x̃[logD(x, x̃)]

+ Ex̃[log(1−D(x̃,x′)].
(3)

Thus, our overall loss function becomes

Ltotal = λ1L�1 + λ2Ladv (4)

where we choose λ1 = 1 and λ2 = 0.1. The weighted sum of
these two loss functions compliments each other in the follow-
ing way. 1) The GAN loss helps to improve the realism of
the inpainted images, by fooling the discriminator. 2) The �1
reconstruction loss serves as a regularization term for training
GANs, helps in stabilizing GAN training, and encourages the
generator to generate images from the modes that are close to
the ground truth in an �1 sense.

4) Implementation Details: Our proposed model is imple-
mented in PyTorch.3 We train our network by optimizing
the encoder–decoder and discriminator using the Adam opti-
mizer [77] with β1 = 0.5 and β2 = 0.999. In our experiments,
we use a batch size of 14 and the training iterations of 100. While
training, we resize the image to 256× 256 and linearly scale the
pixel values from range [0, 256] to [−1, 1]. The Generator G is
trained with a learning rate of 10−4 until convergence, whereas
the Discriminator D is trained with a learning rate of 10−5,
one-tenth of that of the generator’s. Both the generator and
discriminator networks were trained together on a TITAN Xp
(12 GB) GPU.

5) Fine-Tuning The Network: We found that the clean images
and real corrupted images were visually different based on their
grayscale value, contrast, and histogram distribution. This re-
sults in poor transfer from training on artificially masked images
to true corrupted images. Therefore, it is required to fine-tune the
network on images having histogram distribution that matches
our intended test images. For this purpose, we fine-tune our
pre-trained inpainting model (explained in Section IV-B) on
limited regions of the real corrupted images, to get the inpainted
images, as described in Algorithm 2.

To fine-tune our inpainting model, during training, we heuris-
tically identify that each corrupted image has four mask direc-
tions: North, South, East, and West. The first step is to detect
the mask direction in the real corrupted image using standard
image processing tools (like connected components and center
of mass detection). From observation, we find that if an image
has a mask of direction d, the image region in the opposite half
is usually clean and can be used for creating an artificial training
set as before. Thus, we crop the opposite image region and
synthetically corrupted that part after resizing it to full resolution

3Our code is available at https://github.com/hiyaroy12/mars-image-
inpainting

Algorithm 2: Fine-Tuning Our Inpainting Framework For
Real Corrupted Images.

1: while Generator G has not converged do
2: Sample batch images x from originally corrupted

images;
3: Detect mask m and its direction d in x;
4: Crop other half of x and consider it as clean image;
5: Resize cropped clean image x̂ to full resolution;
6: Artificially construct corrupted inputs z← x̂�m;
7: Get predictions x̃← z+G(z,m)� (1−m);
8: Update discriminator critic D with x̂, x̃;
9: Update G with �1 loss and adversarial critic loss;

10: end while

of 256× 256. A detailed description to artificially create pairs
of clean and corrupted images for a sample image (with mask
direction in the East) during the training stage is shown in
Fig. 6(a). After tailoring the real corrupted data for our task,
we fine-tune the pre-trained image inpainting model keeping the
same optimization conditions as mentioned in Section IV-B4.

During inference, we take a real corrupted image from the
test set and heuristically identify the mask direction d similar to
training. Next, we crop the clean side (half) of the image, resize
it to full resolution of 256× 256 and consider it a clean image.
Similarly, we crop the corrupted side (half) of the image, resize
it to full resolution of 256× 256 and consider it as the corrupted
image, that needs to be inpainted. While inference, this step is
different from training. This is because in training we need to
artificially corrupt the clean side by extracting a mask from the
corrupted side to get a clean-artificially corrupted image pair.
Whereas, during inference, we need to inpaint the originally
corrupted side of the image. After we get the inpainted half,
we resize the inpainted side and the clean side back to their
previous resolution which is 256× 128. After that, we add both
the sides to get the inpainted image of full resolution (256× 256)
corresponding to the real corrupted image. A detailed description
of a sample image (with mask direction in the East) during
inference stage is shown in Fig. 6(b). Here, after cropping the
image into half, we follow the standard practice of resizing the
image into the full resolution (256× 256) before feeding it into
the network and then resize it back to its original size. Therefore,
we believe resizing the image will not cause distortion and will
not affect prediction quality. It is to be noted that although the
black regions on the Mars images are generated because of map
projection, we consider these images as an example of no-data
region images or real corrupted images, to demonstrate how to
predict such ‘no-data’ region in case of any planetary images, if
they are corrupted by unphotographed pixels.

C. Image Classification Module

After performing the image inpainting to augment the in-
complete features on the real corrupted images, we use these
inpainted images along with the clean images for the classifica-
tion task. We perform these additional experiments to check
if image inpainting on real corrupted images helps in better

https://github.com/hiyaroy12/mars-image-inpainting
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Fig. 6. Processing of real corrupted images to fine-tune our inpainting network (a) during training and (b) during inference. We perform the fine-tuning only on
the real corrupted Mars images for demonstration purpose.

feature learning, which in turn leads to improved classification
performance. Since our Mars dataset is highly imbalanced, we
take a natural approach to resample the given dataset by “over-
sampling” the minority classes [80] and “undersampling” the
majority classes [81]. Such resampling of data helps in achieving
a balanced distribution during training. For our experiments,
we train two variants of ResNet [27] model ResNet-50 and
ResNet-101 for 50 epochs with mini-batch size 80, and a weight
decay of 1 × 10−4 . We train both the models via ADAM [77]
optimizer with β1 = 0.5 and β2 = 0.999. We set the initial
learning rate to 0.002, resize the input images to 224× 224, and
ensure that all images over the training dataset are normalized.
We use ResNet classifier [27] for classification because it is the
state-of-the-art deep CNN model that can deal with the vanishing
gradient problem because of the proposed “identity shortcut
connections” implemented as “residual blocks”. Moreover, it
was the best performing approach for this dataset.

V. EXPERIMENTAL RESULTS

In this section, we discuss the quantitative and qualitative
results obtained from our inpainting module. We perform several
experiments to seek answers to the following two questions: 1)
Can image inpainting be used for filling in the unphotographed
pixels in planetary images?, 2) Does explicit clustering of our
training and testing images based on their histogram distribution
help in improving inpainting performance? 3) How does fine-
tuning on clean portions of the real corrupted images help in
improving inpainting quality? and 4) Can our inpainting method
contribute to better feature learning for interesting landmark
classification thereby improving classification performance?

Quantitative Results: We report the quantitative performance
of our method in terms of the following metrics 1) peak-signal-
to-noise ratio (PSNR); 2) structural similarity index (SSIM) [79]
and 3) mean absolute error (MAE). PSNR is measured in terms
of MSE and is still the most common quality measure for
reconstructed images. PSNR of a reconstructed image is given by

PSNR = 20 log10

(
MAXI√
MSE

)
(5)

where MAXI the maximum value of the pixel in the original
image. A higher PSNR normally indicates higher quality

reconstruction. SSIM index [79] provides a quantitative
assessment of the perceptual quality of the reconstructed image.
We calculate these metrics on the test set of the artificially
corrupted images and compare them to their corresponding
clean ground truth images. We report the quantitative evaluation
results for both Moon and Mars images using GI [68] and our
method in Table IV, where the metric values for images from
each of the clusters, the corresponding mean metric values for
each clusters, and the metric values when the inpainting module
was trained using all images together (i.e., not dividing the
images into clusters) are provided. Our method outperforms
the previous method [68] in terms of all the metric values for
both the datasets. Moreover, the improvement in metric values
(particularly PSNR (log-scale) values for inpainted images) over
the baseline (e.g., 2.1 dB improvement for ‘mean of clusters’ and
‘all images’ in case of Moon images) demonstrates the validity
of our proposed idea of leveraging the benefits of clustering our
training and testing images based on their histogram distribution.

Qualitative Results: Figs. 7 and 8 show the qualitative per-
formance of our proposed inpainting model when tested on
artificially corrupted images. Here we can see that for both
Moon and Mars dataset, previous inpainting methods, Patch-
Match (PM) [48], and Generative Inpainting (GI) [68] generate
significant artifact, however our method can predict the missing
region that looks similar to the ground truth data. On the contrary,
Fig. 9 demonstrates the qualitative inpainting results obtainted
from our inpainting model, when tested on real corrupted test
set of Mars images. For example, as seen in Fig. 9 the crater
or dark dune that are originally masked (first column) can be
successfully augmented in shape (second column) by using our
inpainting algorithm. This proves the generalization ability of
our inpainting model to complete different landmarks on the
planetary images. Fig. 10 compares the qualitative inpainting
results achieved by our model on real corrupted test set of Mars
images when compared with the previous inpainting methods
PM [48], and GI [68]. It is clear that our method produces
more photo-realistic results with seamless boundary transitions.
We also show the visual comparison of the inpainted image
quality when the inpainting module was trained using all images
together (i.e., not dividing the images into clusters) versus im-
ages divided into clusters in Fig. 11. We can see the previous
methods generate artifacts in the boundary causing the inpainted
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TABLE IV
QUANTITATIVE EVALUATION RESULTS OF SIMULATED/ARTIFICIALLY CORRUPTED MOON AND MARS DATASET FOR DIFFERENT CLUSTERS AND ALL IMAGES

TOGETHER (WHEN NOT DIVIDED INTO CLUSTERS) USING GENERATIVE INPAINTING (GI) [68], AND OUR METHOD

The best results for each row is shown in bold. − lower is better. +higher is better

Fig. 7. Visual examples of semantic feature completion of simulated/artificially corrupted images on Moon dataset using different methods: PatchMatch [48],
generative inpainting (GI) [68], and our method. Since we artificially corrupt the clean images, therefore we can consider the clean images as ground truth data in
this case.

Fig. 8. Visual examples of semantic feature completion of simulated/artificially corrupted images on Mars dataset using different methods: PatchMatch [48],
generative inpainting (GI) [68], and our method. Since we artificially corrupt the clean images, therefore we can consider the clean images as ground truth data in
this case.

images to look unrealistic. On the contrary, our fine-tuned in-
painting model can reconstruct an image with significantly fewer
artifacts and a seamless boundary that looks more realistic to
human eyes. Here, it should be noted that, in Figs. 9, 10, and
11 we are showing inpainting results on real corrupted Mars
images, which do not have their corresponding ground truth
images available. Hence the reconstruction quality of the real
corrupted images can only be shown qualitatively, not quantita-
tively.

A. Ablation Study For Inpainting Results

Here, we analyze the effect of different loss components used
to train our model and investigate if finetuning the inpainting
model contributes to the better reconstruction of the real cor-
rupted image. Table V reports the quantitative results achieved
by our inpainting model using different loss components, i.e.,
by using only �1 loss, and by using �1 with adversarial loss, on
the artificially corrupted Moon and Mars dataset. It can be seen
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Fig. 9. Visual examples of semantic feature completion of the real corrupted images using our method. Since these are real corrupted data, we do not have ground
truth images available in this case.

Fig. 10. Visual examples of semantic feature completion of real corrupted images on Mars dataset using different methods: PatchMatch [48], generative
inpainting (GI) [68], and our method. Since these are real corrupted data, we do not have ground truth images available in this case.

Fig. 11. Visual examples of semantic feature completion of real corrupted images on Mars dataset using different methods: PatchMatch [48], generative
inpainting (GI) [68], inpainting results when all images are trained together (when not divided into clusters) and our method (when divided into clusters). Since
these are real corrupted data, we do not have ground truth images available in this case.

that the adversarial loss component has a great contribution in
improving the inpainting quality in terms of the metric values.

Fig. 12 shows the qualitative inpainting results for real cor-
rupted Mars images using only �1 loss (without any finetuning),
and �1 with adversarial loss (with and without finetuning).
Clearly, if we train our model using only �1 loss, it generates
a significant amount of artifacts, as seen in the second and
sixth column of Fig. 12. Whereas, if we add the adversarial loss
component, it improves the inpainting performance to a certain
extent, as seen in the third and seventh column. Therefore,

we can draw a conclusion that for planetary image inpainting,
adversarial loss is an essential ingredient. Next, we compare the
performance of our model with and without finetuning. From
the fourth and eight column of Fig. 12, we can see that finetun-
ing greatly improves the performance of our image inpainting
model. Moreover, finetuning helps in completing the edges of the
morphological structures or restoring the texture of the image.
Therefore it is a crucial guidance to an image inpainting model
for restoring artifacts that exist near the boundaries rather than
in the center region of an input image.
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TABLE V
QUANTITATIVE COMPARISON OF DIFFERENT COMPONENTS OF OUR METHOD ON MOON AND MARS DATASET

Fig. 12. Effect of different loss components and fine-tuning for each cluster. Here the first column shows the real corrupted images, second, third, and fourth
column depict �1 loss without finetuning, (�1+adversarial loss) without and with finetuning, respectively.

B. Classification Results

Here, we show the image classification results on the Mars
dataset after applying our proposed image inpainting technique.
We show the comparison of mean precision, recall, and F1-
score on the original and inpainted images based on the same
ResNet-50 and ResNet-101 classifier and the same data dis-
tribution in Fig. 13. It should be noted that our Mars dataset
is highly imbalanced (with majority class Other having 61054
no of images, while minority class Impact Ejecta having 231
number of images) as shown in Fig. 4. Therefore, we show the
classification performance of our model in terms of precision,
recall, and F1-score (harmonic mean of precision and recall)
metrics which are more appropriate to handle class imbalance.

Fig. 13. Precision/Recall/F1 score for ResNet-50 and ResNet-101 in HiRISE
inpainted dataset (ADAM).
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Fig. 14. ROC curves corresponding to ResNet-50 and ResNet-101 for original and inpainted HiRISE dataset. For most classes, AUROC for inpainted images is
better than original images.

As can be seen in Fig. 13, for both ResNet-50 and ResNet-101
models, the inpainted image classification provides high mean
F1-score of 0.88 outperforming the mean F1-score of 0.83 and
0.85 for original image classification. Also, there is a consistent
improvement for inpainted images in the mean precision, and
recall score by a large margin when compared to the original
dataset. This reflects the fact that our model learns better features
for classification tasks when trained on the inpainted images
in comparison with original images (having partially masked
interesting landmarks).

We also show the area under the curve (AUC) for receiver op-
erating characteristics (ROC) for original and inpainted images
for ResNet-50 and ResNet-101 models in Fig. 14. Since the
AUROC metric is also appropriate to handle class imbalance,
we report the AUC of all the classes for each case. We can see
that for minority classes like Impact Ejecta, ResNet-50 performs
better for inpainted images than original images as indicated by
the higher area under ROC (AUROC) curve value.

Additionally, we provide the classification accuracy of our
method in Table VI and compare our results with previous classi-
fication results [69] on the same Mars dataset. Since the network
architecture is different in both cases, it cannot be considered as
a one-to-one comparison. However, the classification accuracy
is shown here as a reference for the reader for classification tasks
on the same dataset.

It should be noted that classification accuracy is not an appro-
priate metric to measure the performance of the model, in case of
such an imbalanced classification performed on a highly skewed

TABLE VI
CLASSIFICATION RESULTS USING OUR PROPOSED INPAINTED IMAGES

dataset. Because in such case, high accuracy can be achieved
by a nonexpert model by predicting only the majority class.
Therefore, with the improved mean precision, recall, F1-score,
and AUROC metric values achieved on the inpainted images
(Figs. 13 and 14) for both ResNet-50 and ResNet-101 models,
we prove the effectiveness of our proposed inpainting algorithm
for better feature learning for classification.

VI. CONCLUSION

We present an adversarial training based image inpainting
technique for planetary images to facilitate improved scientific
discoveries. Our method predicts the unphotographed pixels
by training a GAN-based model on input images belonging
to various modes of histogram distribution. We find that our
proposed inpainting algorithm helps the network to learn better
features by augmenting the incomplete landmarks leading to
better generalization. Our analysis reveals that by perform-
ing such image inpainting as a first step, we can boost the
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classification performance with an improved F1 score. We be-
lieve that this work will benefit the planetary science community
to analyze and explore the planetary images in a more efficient
way. Our method can also be a helpful first step for planetary
scientists to make more accurate location adjustments while
making the mosaic of the planetary surface where the region
is not illuminated by Sunlight such as the Polar region. In
the future, we plan to extend this work by incorporating extra
information such as digital elevation map or multispectral image
data.
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