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Robust SAR Automatic Target Recognition Via
Adversarial Learning

Yuchen Guo, Lan Du

Abstract—The traditional denoising methods in noise robust
synthetic aperture radar (SAR) automatic target recognition re-
search are independent of the recognition model, which limits the
robust recognition performance. In this article, we present a robust
SAR automatic target recognition method via adversarial learning,
which could integrate data denoising, feature extraction, and classi-
fication into a unified framework for joint learning. Different from
the common recognition methods of directly inputting the SAR data
into the classifiers, we add a dual-generative-adversarial-network
(GAN) model between the SAR data and the classifier for data
translation from a noise-polluted style to a relatively clean style
to reduce the noise from SAR data. In order to ensure the target
information in the SAR data can be retained during the data style
translation, reconstruction constraint and label constraint are also
used in the dual-GAN model. Then, the more reliable transferred
SAR data are fed into the classifier. The parameters of the dual-
GAN and classifier are learned through joint optimization in our
method. Thus, the data separability is guaranteed in the process of
denoising and feature extraction, which greatly improves the recog-
nition performance of the method. In addition, our method can
be easily extended to a semisupervised method by using different
objective functions for labeled and unlabeled training data, which
is more suitable for practical application. Experimental results on
MSTAR dataset and Gotcha dataset show that our method can get
the encouraging performance in the case of low signal-to-noise ratio
and small labeled data size.

Index Terms—Adversarial learning, automatic target
recognition (ATR), generative adversarial networks (GAN),
noise robust, semisupervised learning, synthetic aperture radar
(SAR).

I. INTRODUCTION

YNTHETIC aperture radar (SAR) is an active ground ob-
S servation system that can be installed on aircraft, satellites,
spacecraft, and other flight platforms [1]. Also, it can perform
observations on the ground at all times and all days and has
the ability to penetrate the ground. Therefore, the SAR has
unique advantages in the application of disaster monitoring,
environmental monitoring, marine monitoring, resource explo-
ration, crop estimation, mapping, and military and can play a
role that other remote sensing methods cannot play [2]-[5].
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Thus, it is increasingly being used by countries around the
world. SAR processing can produce high-resolution imagery
containing 2-D information [1]. Besides, SAR images contain
both shape information and scattering information, presenting
a good representation of the objects. For this reason, SAR
images are also becoming a useful tool for radar automatic target
recognition (ATR) [4], [5], [38]-[40].

However, when electromagnetic wave encounters rough-
surface reflection, due to the phase difference, the echo inter-
ference occurs, resulting in the echo strength becoming stronger
and weaker and the speckle pattern forming the interference
noise to the SAR data. The noise is distributed over the whole
SAR image and will mask the target information and, thus,
reducing the identifiability of the target and increasing the
difficulty of SAR target recognition [6]. Experimental results
presented in [7] showed that the classification performance of
SAR images dramatically deteriorates under the high noise level.
Therefore, the noise robustness of a recognition algorithm is very
important in the SAR ATR research.

In practice, there are usually three approaches to improve the
recognition performance of SAR data under the high noise level.

1) One approach is to extract the noise-robust feature of SAR
data. Xu et al. [8] proposed a robust principal component
analysis (PCA) method to get noise-robust features of
SAR data by extracting the main component features.
In [7], sparse-representation-based classification (SRC)
and attributed scattering center (ASC) matching were
hierarchically fused to ensure that the SAR recognition
framework can extract robust features. Nevertheless, since
the traditional methods of extracting noise-robust features
are learned separately from the classifiers, the classifiable
distances between the features extracted from different
categories of targets cannot be guaranteed, which may
affect the final recognition performance.

2) A popular approach in recent research is data augmenta-
tion [9], [10]. Both the expanded data, which are generated
by adding noise to the original SAR training samples,
and the original SAR training samples participate in the
training of the recognition model to improve the noise
robustness [10]. However, in order to extract the noise-
robust features for the noised SAR data and guarantee the
recognition performance, itis necessary to greatly increase
the complexity of the recognition model along with data
augmentation.

3) The last but also the more natural choice is to remove the
noise component in SAR data before classification. These
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methods can be classified into two categories: the image-
domain methods, i.e., average filtering, median filtering,
refined Lee filtering [50], and Gamma-MAP filtering [11],
and frequency-domain methods, i.e., RELAX [12] and
OMP [13] algorithms. Nevertheless, the goal of these
denoising methods is to remove noise from SAR images
rather than for the recognition task. In addition, both of
RELAX and OMP require a prior knowledge of the noise
level, which is hard to obtain in practice.

Generative adversarial network (GAN) [14] is a family of
successful models which learn to generate with the constraint
functions learned jointly with the model itself. GAN have re-
cently demonstrated impressive performance for image genera-
tion and received widespread attention. Models with adversarial
constraint have been used in a wide range of cross-domain
applications. The cross-domain research study mainly focuses
on the translation and fusion of data from different domains,
such as words in different languages [35], words and images
[19], and images of different styles [17], [18], [20]-[22]. In com-
puter vision, domain adaptation methods for image classification
task have already been widely studied. Recent works [41]-[43]
implement domain confusion with gradient reversal layer or
GAN loss for feature alignment through adversarial learning.
Besides that, inspired by the success of image-to-image trans-
lation techniques, other pixel-level works [44] aim to achieve
domain adaptation through translating images from the source
domain to the target domain. Hertzmann et al.’s image analogies
[21] first proposes the idea of image-to-image translation. Most
common methods implement image-to-image translation by
using input—output training image pairs in the training phase
[21], [22]. Different from other traditional methods that require
one-to-one image pairs, GAN [14], [23] learned to capture
special characteristics of one image domain and to figure out
how these characteristics could be translated into the other image
domain without any paired training examples. Inspired by the
GAN, it is desirable to introduce the image-to-image translation
by adversarial learning into recognition to reduce the noise in
SAR images. It occurred to us that if the SAR images in low
signal-to-noise ratio (SNR) could be transformed into an image
style such as the SAR images in high SNR without losing target
information, we could reduce the nuisance noise in SAR images.

Deep learning, which is inspired by the human learning
system, has launched a profound reformation and even been
applied to many real-world tasks [24]-[26], in which image
classification is one of the most important applications. The two
steps of feature extraction and classification in the recognition
framework are integrated into one model in deep learning meth-
ods, which greatly improves the classification performance of
the model. Many researchers have applied deep learning to SAR
ATR research and achieved good recognition performance [4],
[26]. For example, Xu et al. [26] obtained excellent recognition
results by training the deep network with data-augmented SAR
images. Naturally, we want to apply the deep learning method to
our SAR recognition model. Nonetheless, recognition via deep
learning methods obviously falls into the scope of supervised
learning, which means that a lot of labeled data are provided for
the training processes. In practice, we may measure a lot of data

in real environment which is difficult to labeled accurately. Fully
supervised deep learning methods cannot use these data to learn
more abundant information for extracting more robust features.
In the traditional machine learning fields, many semisupervised
learning algorithms are introduced to achieve the label prediction
by training with limited samples, such as semisupervised SVM
[36] and semisupervised sparse representation [37]. With the
development of deep learning, some research studies incorporat-
ing deep learning with semisupervised algorithms are proposed
recently [34]. In semisupervised deep learning, there are two
ways to use unlabeled data to participate in model learning:
One is to add a new loss function, such as reconstruction loss
[45], and the other is to use the well-learned network with
labeled data to predict the pseudolabel for the unlabeled data
[46]. By reducing the requirement of labeled samples, these
semisupervised algorithms are able to improve the training and
recognition capability of the deep learning system with limited
dataset to some extent. Therefore, in the SAR ATR via deep
learning research, it would be satisfying if the model could have
the semisupervised learning ability to utilize the information of
unlabeled data.

In this article, we present an image recognition method via ad-
versarial learning, which could integrate data denoising, feature
extraction, and classification into a unified framework for joint
learning. We use a deep learning framework as the classifier.
And a dual-GAN model is added between the images and the
classifier for image translation. Different from traditional GAN,
the dual GAN has two generators and two discriminators to
realize image translation in two symmetrical directions. By
training the dual-GAN model with low SNR SAR data and high
SNR SAR data, the dual GAN can reduce the noise irrelevant
to the recognition task in SAR data. Furthermore, to ensure that
the transferred SAR images retain the information related to
recognition, reconstruction constraint and label constraint are
also used in the dual-GAN model. The reconstruction constraint
can ensure that the target information can be retained during
image transformation, whereas the label constraint can ensure
that the transferred image is as similar as possible to the same
category of the original SAR data. Then, the more reliable
transferred SAR images are used to train a classification deep
network. The dual GAN and the classification deep network
are in a joint learning framework. Furthermore, we extend our
method to a semisupervised learning method by using different
objective functions for labeled data and unlabeled data, so that
it is more suitable for practical applications. In this article, in
order to verify the performance of our method, we use a simple
network LeNet as the classification network. With applications
on the MSTAR dataset and Gotcha dataset, our proposed method
gets encouraging results in the case of low SNR ratio and small
labeled data size.

The main contributions of this article are summarized as
follows.

1) The proposed SAR ATR method integrates data denoising
and feature extraction and classification into a unified
framework for joint learning.

2) A dual GAN is proposed for SAR data denoising via
adversarial learning. Our dual GAN can provide more
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Fig. 1. Typical scheme of SAR ATR with training stage and classification

stage.

reliable image translation results than traditional GAN via
both of the reconstruction constraint and label constraint.

3) Different from traditional denoising methods, most of
which rely on prior knowledge of noise level, our method
uses the idea of cross-domain to remove noise informa-
tion, which is more reliable when the noise level prior
information is not accurate.

4) We extend this method to semisupervised learning. A large
amount of unlabeled data will enable the deep network to
learn more reliable robust features.

The rest of the article is organized as follows. In Section II,
SAR ATR and GAN are described. In Section 111, our adversarial
learning method is proposed. Experimental results compared
with other methods on MSTAR dataset and Gotcha dataset are
shown in Section I'V. Finally, Section V concludes this article

II. BACKGROUND
A. SAR ATR Framework

A typical SAR ATR scheme is depicted in Fig. 1. As we can
see, there are two stages, i.e., training stage and classification
stage, in the recognition procedure, both of which include pre-
processing and feature extraction steps. For robust SAR ATR
by traditional denoising methods, as discussed in Section I, the
processing technique of classification stage is needed to reduce
the noise of SAR data. And in the deep learning methods, the
feature extraction step and classifier step are usually combined
in one model. For example, the first several layers of convolution
neural network (CNN) are the feature extraction layer, and the
last one is classification layer.

B. Generative Adversarial Networks

As an excellent generative model, the GANs have exploded
many interesting applications of image generation [23], [28].
The key to GANS’ success is the idea of an adversarial loss that
forces the generated images to be indistinguishable from real
images.

In the traditional GAN, for mapping X — Y, in which X
and Y present two different data domains, the generator GG and
a discriminator D compete in a two-player minimax game. The
discriminator tries to distinguish real training data from fake
data; and the generator tries to fool the discriminator. Concretely,
the network D tries to minimize the loss function

Lp = —Ey[log D(y)] — Ex[log(1 — D(G(x)))] (D)

Real 1

y \
Discriminator D —» or fake 0

X —» Generator G —» j) /

Fig. 2. Traditional GAN framework, and § = G(x). It pits two adversaries
against each other in a game. Each player is represented by a differentiable
function controlled by a set of parameters.
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Fig.3. Illustration of our method structure. Our proposed method contains two
parts : 1) A dual GAN capable of two-way domain transfer and contains two
generators G'y and G x, two discriminators Dy and D x; 2) The classification
network C'. For a more intuitive understanding, we use blue and red lines to
represent the two data flows x — § — X and y — X — ¥, respectively.

whereas network G tries to minimize
Le = Ex|log(1 — D(G(x)))] 2)

Ey[log D(y)] indicates the expectation that the discrimina-
tor D judges y as a real sample, and Ex[log(1 — D(G(x)))]
indicates the expectation that the discriminator D judges the
generated sample GG(x) as a fake sample. In the process of the
game, the performance of both generator GG and discriminator D
is getting better and better. The process of the game is described
in detail in Fig. 2: For updating D, y is sent to D, and the
expected output is 1, whereas § = G(x) is sent to D and the
expected output is 0; for updating GG, the y = G(x) is sent to D
and the expected output is 1, which means the G tries to fool the
D that the § = G(x) is from the domain Y.

Compared with other generative models, GANs have two
main characteristics: 1) GANs do not depend on any priori
hypotheses. Many traditional methods assume that the data obey
a distribution and then use maximum likelihood to estimate the
data distribution [27]. However, the idea of GANs is simple. A
discriminator is used to measure the distance between the distri-
bution generated by the generator and the real data distribution
without maximum likelihood. 2) The way to generate real-like
samples is very simple. The way GANs generate real-like sam-
ples is propagated forward by generator, whereas the traditional
sampling method is very complex, such as nearest neighbor
resampling, bilinear resampling, and bicubic resampling.

III. METHOD

In this section, we introduce the proposed SAR ATR method
via adversarial learning. As shown in Fig. 3, our proposed
method contains two parts: 1) the dual GAN and 2) the classifi-
cation network C. The dual GAN consists of four components:
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Mlustration of the mapping of different constraints. The background color of the data represents the category the data belongs to, of which the same

background color means the same target category. The color of the arrow indicates whether the mapping is allowed: Green indicates yes, and red indicates no. The
number in the subscript presents the corresponding image, i.e., x1 and y; are the same image with different SNRs. (a) Original GAN. (b) GAN with the label
constraint. (¢) Dual GAN with the label constraint and the reconstruction constraint.

denoising generator Gy for image denoising, image-restoration
generator G'x for image reconstruction to make sure the target
information can be retained during the image denoising, discrim-
inator Dy designed to assist the denoising generator Gy to gen-
erate high SNR image, and discriminator D x designed to assist
the image-restoration generator G'x to reconstruct the original
low SNR image. More specifically, the denoising generator G'y-
first maps x to a fake image y. Then, the image-restoration
generator Gx maps y to a fake image X , and the classifier
C uses ¥ to predict the label [.The quality of Gy is judged
by how well ¥ fools the discriminator Dy, how well the %X
fools the discriminator Dx, and how well the label predicts.
For a more intuitive understanding, we use blue and red lines
to represent the two data flows x -y X andy - X — §
in Fig. 3, respectively. During the training stage, low SNR data
x is fed into Gy to generate § = Gy (x) to fool the Dy into
thinking that ¥ is high SNR data. Then, the ¥ is fed into Gx
to generate X = G x (§) to fool the Dx into thinking that X is
low SNR data. At the same time, the X = Gx (¥) is expected
to be able to be the same as x. It is the same process for data
y. For the classification network C, the § = Gy (x) is fed into
C' to predict the label of x. It should be pointed out that G'x,
Dx, and Dy only participate in the training phase. In the test
phase, our method contains only two parts: 1) image translation
through generator Gy to get an SAR image with high SNR and
2) label prediction through classifier C'. We introduce the details
of our method in the next part of this section.

A. Dual-GAN Model

As discussed in Section II, the GAN realizes the image trans-
lation by reducing the distribution discrepancy between two data
domains that forces the generated images to be indistinguishable

from real images. However, the traditional GAN constraint only
considers the marginal (global) distributions between domains.
in the SAR ATR applications, the marginal (global) distributions
and conditional (local) distributions between domains are often
contributing differently to the image translation. As shown in
Fig. 4(a), the traditional GAN constraint allows the model to
learn the difference between high and low SNR in SAR data,
but cannot guaranteed that the generated image will correspond
to the original image. More specifically, if we input a T72 SAR
data with low SNR, the GAN model may output BMP2 SAR
data with high SNR. It is not expected for the recognition task.

In our dual GAN, the generators Gy, GG x and the discrim-
inators Dy, Dx form two dual GANs and enables our dual
GAN that it could reduce the noise from the SAR data in low
SNR X = {x;}¥,. We present the SAR data in high SNR
as Y ={y; }Jj\il For the mapping Y — X, we express the
objective as

Lpy = —Ex[log Dx (x)] — Ey[log(1 — Dx(Gx(y)))] (3)
Lgy = Eyllog(1 — Dx(Gx(y)))] 4)

where G x tries to generate images Gx(y) that look similar
to images from domain X, whereas Dx aims to distinguish
between translated samples G x (y) and real samples x. In (3),
the D is trying to distinguish x and fake sample X = G x (y).
In (4), y is sent to the generator G x to fool the discriminator
D x . Temporarily, we introduce a similar adversarial loss for the
mapping X — Y

Lp, = —FEylog Dy (y)] — Ex[log(1 — Dy (Gy(x)))] (5)
Lg, = Ex[log(1 — Dy (Gy (x)))]- (6)

The loss function let Gy map x to a fake image ¥ identically
distributed as target domain Y. However, as discussed above,
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the adversarial losses cannot guarantee that the learned Gy
can map an individual input x to a desired output y, which
means the information of x may have nothing to do with ¥
meanwhile x and ¥ may be in different categories for our
recognition task. According to our needs, we argue that our dual
GAN should ensure that the transferred SAR data can retain the
target information during the image translation. Therefore, to
further improve the performance of the model, we make two
improvements to the objective function: add the label loss to
the mapping X — Y and introduce the reconstruction loss [33]
with L1 distance.

First, we introduce the label constraint to the generator Gy
and discriminator Dy . Assume X and Y have K categories.
Then, we rewrite the adversarial losses for the mapping X — Y

LDY = - y,l[lng(DY(Y) = k)}
— Ex[log p(Dy (Gy (x)) = K +1)] (N
Lg, = Ex llogp(Dy (Gy(x)) = k)]. (8)

We add a new class label y = K + 1, which corresponds
to the fake data [34]. Compared with (5) and (6), the new
adversarial losses can constrain the fake image Gy (x) to be
closer to the distribution of high SNR data of the same class.
We visualize the mapping in Fig. 4(b). We can intuitively see
that compare with adversarial constraint, the label constraint
preserves the correct mapping while suppressing the mapping
between different categories.

But we are not satisfied with the current results. Although the
category is preserved during the image transformation, there is
no guarantee that the target information in the SAR data can also
be preserved, i.e., the mapping of x; — y- is still allowed.

The reconstruction loss is expressed as

L = Exl|Gx(Gy (x)) — x|,] + Ey[IGy (Cx (¥)) ~ v,
©))
We can see from the reconstruction loss that for each SAR
data, the generators should ensure the ability to return the image
back to the original condition. Further explanation, in order to
complete (9), the denoising generator Gy must only remove
the noise information without losing target information in the
original image during the process of denoising. Otherwise G x
will not be able to reconstruct x from Gy (x). Intuitively, we
can see in Fig. 4(c) that the dual GAN with the label constraint
and the reconstruction can guarantee that the corresponding
relationship of the image target in the image transformation
remains unchanged.
Because of the benefits of the reconstruction constraint, it is
desirable to add the constraint to our model.

B. Full Objective and Training Procedure

For the traditional supervised GANSs [15], [16], the discrimi-
nator can also implement the task of classification. However, in
our model, the discriminator is trained by the original training
SAR data Y, so that it is not suitable for the classification of
Gy (x). Thus, a classifier C is linked to the dual GAN and takes
the G'y (x) as input. Concretely, the classifier C'tries to minimize

Algorithm 1: Training Step.
Input: {(x;, li)}i]\il’ {(yy lj)}é‘bilv T, Tourn—in, A1, A2,
A3y Ay

Output: Parameters G x, Gy, Dx, Dy, C,

1: Initialize the parameter Gx, Gy, Dx, Dy, C.

2:fort =1to T do

3: Sample minibatch of n samples
{(z1,l1),...,(zn,1,)} from data distribution
pdata(x7 l)

4: Sample minibatch of m samples
{(y1,11)s- -+ (Ym, lm)} from data distribution
Pdata (¥, ).

5: Update the discriminators by maximizing the full
objective:

6: Dx + I%aX V(Dx); Dy I%aX V(Dy);

X Y
7: Update the generators by minimizing the full objective:
8: Gx + minV(Gx); Gy + minV(Gy);

GX GY
9:ift > Thurn—in »,do
10: C «+ mcip — > L;InC(Gy (x;));
i=1

11: end if
12: end for

the loss function

N
Lo ==Y 1;InC(Gy (x7)).

i=1

(10)

The adversarial losses Lp,, La,, Lp,, and Lg, can be
rewritten to two min—-max problems (Lgany . Lcan, ). Then,
we give our full objective as follows:

i V(Gx,Gy,Dx,Dy,C
Gmin | max (Gx,Gy,Dx,Dy,C)
= MLgany +A2Laany + Azl +A4Llc
(11

where A1, Lo, A3, and A4 control the relative importance of the

four objectives. By solving the min—-max problem V, the low
SNR SAR data can be transformed to the simple domain of high
SNR SAR data. And by the constraints of reconstruction and
label, the image translation can retain the target information in
the original SAR images and provide more reliable images for
the classifier.

In our method, we first use the classifier pretrained by the high
SNR SAR data to initialize the parameters of classifier C. The
training process of our method is shown in Algorithm 1. Since
the Gy (x) is not well enough at the first iterations to fine-tune
the classifier, we do not update the parameters of C' in the first
Thurn—in iterations.

C. Discussion

In our method, we use a dual GAN and a classifier to build
robust SAR ATR method via adversarial learning. By adversarial
learning, our method can automatically remove the noise from
the SAR data without any prior information. Compared with
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Fig.5.
of the three targets. (a) BMP2 target. (b) BTR70 target. (c) T72 target.

the classical denoising algorithms, i.e., OMP and RELAX, our
method is more reliable when the noise level prior information
is not accurate. And by integrating data denoising, feature ex-
traction and classification steps into a joint learning framework,
the denoising process also ensures that the distances between
denoised image distributions of different categories is as large
as possible.

It is popular to improve the recognition performance of SAR
data under the high noise level by data augmentation. In order
to improve the performance of the model, the deep learning
methods always increase the complexity of the classifier. In
our method, we remove the noise information of the SAR data
first. In this way, the noise robustness of the model is greatly
improved, whereas the classifier is not burdened. Therefore, even
though the classifier structure is very simple, our method can still
get satisfactory recognition results.

IV. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of our pro-
posed model in the MSTAR dataset and Gotcha dataset from
three aspects: denoising effect, fully supervised recognition, and
semisupervised recognition.

A. Data Description

1) MSTAR Dataset: In this section, MSTAR dataset with
three-category data is tested using our proposed model. The data
contain two types of tanks, T72 and BMP2, and a vehicle BTR70.
Some SAR and optical imagery examples of these three types
of targets are shown in Fig. 5. Each of the target has full aspect
coverage from 0° to 360° and different views at 15° and 17°
depression angles. The data at depression 17° are used for train-
ing and those at depression 15° for test. The number of aspect
views available for these targets is listed in Table I. As shown in
Table I, we only use the images of BMP2-9563, BTR70-C71, and

@
(b)
©

SAR and optical images of the three-category data. The first column shows the optical images. The remaining columns gives some SAR imagery examples

-
1

TABLE I
TYPE AND NUMBER OF TRAINING AND TEST SAMPLES FOR
THREE-CATEGORY DATASET

BMP2 BTR70 T72
Dataset
C21 9566 9563 C71 132 S7 812
Training samples (17°) 233 0 0 233 232 0 0
Test samples (15°) 196 196 195 196 196 191 195

T72-132 at depression angle 17° as the training data, whereas all
images of BMP2-C21, BMP2-9566, BMP2-9563, BTR70-C71,
T72-132, T72-S7, and T72-812 at depression angle 15° are used
as the test data. MSTAR images available are of around 128 x
128 pixels and cropped to 63 x 63 pixels region of interest in
our experiments. The amplitudes of all images differ a lot in the
MSTAR dataset.

Since it is not convenient to accurately control the SNR of
the SAR image after adding multiplicative noise, we consider
two ways to add noise to the SAR data, so that we can more
fully analyze the effectiveness of our proposed method. First,
the noisy SAR data are simulated by adding additive Gaussian
noises to the original data according to the predefined SNR [47],
[48]. We simulate data at —10 dB, —5 dB, 0 dB, 5 dB, and10 dB
for training and —10 dB, —7.5 dB, —5 dB, —2.5 dB, 0 dB,
2.5 dB, 5 dB, 7.5 dB, and 10 dB for test. In order to verify
the generalization ability of the methods compared with the
training data, there are four more SNRs in the test data: —7.5 dB,
—2.5dB, 2.5 dB, and 7.5 dB. Fig. 6 shows the noised images at
different SNRs. With the deterioration of noise contamination,
target characteristics are submerged in the noise, which will
definitely increase the difficulty of target recognition. Then, in
order to prove the effectiveness of the proposed method in the
case of more realistic SAR data, we noise the SAR data with
multiplicative noise modeled by Gamma distribution, which
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Noisy images at different SNRs. (a) Original image. (b) 10 dB. (c) 7.5 dB. (d) 5 dB. (e) 2.5 dB. (f) 0 dB. (g) —2.5 dB. (h) —5 dB. (i) —7.5 dB. (j) —10dB.

Fig. 6.

TABLE II
TYPE AND NUMBER OF TRAINING AND TEST SAMPLES OF GOTCHA DATASET

Type Size of vehicle Training samples Test samples
ChevyMalibu 48x18x148 83 20
ToyotaCamry 48x1.8x148 83 25
FordTaurusWag 5x 1.8 x 1.4 116 32
CASEtractor 5x27x%x3.1 86 28
HysterForkLift 22x1.1x2 60 17
NissanMaxima 49x18x14 93 31
NissanSentra 46x1.7x15 85 24
HyundaiSantaFe 4.7 X 1.9 x 1.7 85 25
ChevyPrizm 44x1.6%x13 61 19

contains shape parameter o and scale parameter . We set
a =10, § = 1for training dataand o = 5, § = 5 for test data.

2) Gotcha Dataset: Gotcha dataset [51] is called Gotcha
volumetric SAR data set and collected by a high-resolution
spotlight SAR with X-band. The Gotcha data are SAR image
of the whole parking lot in an omnidirectional manner at eight
different pitch angles. The imaging scene contains nine types of
civil vehicles, namely Chevy Malibu, toyotacamry, Ford Taurus
wag, casetracker, hysterforklift, Nissan maxima, Nissan centra,
Hyundai isantafe, and Chevy prizm. We cut out the single target
image from the original SAR image and divided the training and
test sets. The type and number of training and test samples of
Gotcha dataset is shown in Table II. We noise the Gotcha SAR
data with multiplicative noise modeled by Gamma distribution,
which contains shape parameter « and scale parameter 3. We
set « = 10, B = 1 for training data and o = 5, § = 5 for test
data.

O] @

B. Network Architectures and Parameter Settings
on MSTAR Dataset

In our experiments, we use a six-layer network for the gen-
erators with two convolutional layers as encoding blocks, two
convolutional layers as residual blocks, and two deconvolutional
layers as decoding blocks. The corresponding discriminator
Dx is a four-layer two-class DCGAN [16] and Dy is a four-
layer K + 1-class DCGAN. For the classifier, to prove that our
method can avoid increasing complexity of classifier, we use
LeNet as our classifier. we use two classical networks, LeNet
and ResNet-18 [50], as our classifier. Fig. 7 shows the network
architecture of our method. Since the structure of generator G x
and Gy, as well as the structure of discriminator D x and Dy,
are the same, we only give the structure diagram of Gy, Dy, and
classifier C' (LeNet) in the structure diagram. The number on the
feature map represents the size of the feature map, the number
below the feature map represents the number of channels, and
“FC” represents the fully connection.

The parameter setting in our experiments is A; = Az= 0.5,
do =xy = 1,T = 50000, Thurn—in = 5000. We use minibatch
SGD and apply the Adam solver [29], with learning rate of
0.0001 and a batch size of 64.

C. Experimental Results on MSTAR Dataset
With Gaussian Noise

1) Visualization of Denoising Quality: In this section, we
first analyze the denoising quality of our algorithm. Nine targets
with different SNRs from test samples are selected for the de-
noising visualization. As shown in Fig. 8§, the left six columns are
the denoising results of BMP2 targets, the middle six columns
are the results of BTR70 targets, and the right six columns are the
results of T72 targets. Fig.8 clearly shows that our method can
indeed transform the low SNR SAR data to high SNR SAR data
with high quality. The noise information is obviously removed
in the denoised images, and the target information is completely
retained. Furthermore, it can be found that the denoising effect of
our method has little difference in SAR data at different SNRs.
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Fig. 8.

Denoising results of our method on MSTAR dataset with Gaussian noise. Odd-numbered columns: the original SAR data with low SNRs (from top to

bottom: —10dB, —7.5dB, —5dB, —2.5dB, 0dB, 2.5dB, 5dB, 7.5 dB, and 10 dB). Even-numbered columns: transformed SAR data with high SNR generated from
the corresponding one. Observe that noise information has been removed from the SAR data obviously. On the other hand, target information that is classification

related has been well preserved.

For the robust SAR automatic recognition task, the denoising
capability of our algorithm can undoubtedly guarantee the noise
robustness.

Second, we also compared our algorithm with the traditional
denoising algorithm based on the OMP method and refined Lee
filter. As an example, we pick up a test target to visualize the

performance of the two methods. Fig. 9 shows the denoising
results of the target data at different SNRs by our algorithm,
OMP method, and refined Lee filter respectively. Since the
OMP method is essentially to find the strong scattering points
in the SAR image, it loses the ability of denoising under low
SNRs. And by observing the results of refined Lee filter, we
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Fig. 9.

Denoising results of our algorithm and the OMP method at different SNRs with Gaussian noise on MSTAR dataset. From left to right are the results with

an SNR of —10 dB, —5 dB, 0 dB, 5 dB, and 10 dB. (a) Original test SAR image at high SNR. (b) Noised SAR images. (c) Results of our algorithm. (d) Results of

the OMP method. (e) Results of the refined Lee filter.

find that the target information in the denoised SAR image is
obviously modified. By comparing the denoising results with the
original SAR data, we can find that our algorithm has a better
denoising effect and more stable performance under different
SNRs than both the OMP method and the refined Lee filter.
Moreover, what is surprising is that although the image has been

seriously damaged by noise at 10 dB, our algorithm can still get
a satisfactory denoising result, which will be of great help to our
robust SAR ATR research.

2) Analysis of Model Convergence: The convergence is an
important problem in the training of GAN, which is affected
by many factors and difficult to adjust parameters. Failure to
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TABLE III
RESULTS OF ABLATION EXPERIMENTS ON MSTAR DATASET WITH GAUSSIAN NOISE

Method -10dB -7.5dB -5dB -2.5dB -0dB 2.5dB 5dB 7.5dB 10dB

Baseline 0.7377 0.8190 0.8645 0.8872 0.9062 0.9187 0.9290 0.9289 0.9355

Label 0.7805 0.8300 0.8854 0.8962 0.9024 0.9047 0.9051 0.9010 0.9145

Label + Reconstruction 0.8006 0.8514 0.8921 0.9091 0.9176 0.9297 0.9464 0.9423 0.9482

Label + Reconstruction + Joint learning 0.8190 0.8684 0.9082 0.9151 0.9223 0.9339 0.9487 0.9467 0.9494
TABLE IV

Train loss

0 22500 45000

Train iters

Fig. 10.  Convergence curve of the classifier’s loss during training on MSTAR
dataset with Gaussian noise.

converge will lead to the mode collapse of the GAN model. The
essence of the mode collapse problem is that GAN cannot reach
the optimal Nash equilibrium state through training [14]. Since
the generator and discriminator are trained against each other,
the loss function of the traditional GAN is not monotonically
decreasing in convergence.

In our method, we can observe whether the loss of classifier
decreases and converges. The convergence curve of the classi-
fier’s loss during training is given in Fig. 10. It can be seen that
the loss curve is convergent with the increase in iteration, which
proves that the training of our model is convergent. Moreover,
by observing the generated images in Fig. 8, our method can
indeed transform the low SNR SAR data to high SNR SAR data
with high quality, which also proves that the dual GAN has been
trained well.

3) Ablation Study: To verify the effectiveness of our method,
we first conducted ablation study on three modules of the al-
gorithm: reconstruction constraint, label constraint, and joint
learning. In order to verify the effectiveness of the various
modules of the algorithm, we perform ablation experiments in
this section. In particular, the baseline indicates the model LeNet.
The experimental results are shown in Table III.

As can be seen from Table III, reconstruction constraint,
label constraint, and joint learning are all effective at the low
SNREs. First, the label constraint makes the model has the ability
to denoise trough GAN, which makes the model recognition
performance greatly improved at the low SNRs (accuracy of
the model on the test set improves from 73.77% to 78.05%

TOTAL RECOGNITION ACCURACIES OF FULLY SUPERVISED LEARNING
OBTAINED BY DIFFERENT SAR ATR METHODS ON MSTAR DATASET WITH
GAUSSIAN NOISE

Methods Accuracy
SVM 0.8007
PCA 0.8122
LeNet 0.8807
ResNet-18 0.9004
ResNet-34 0.9045
VGGNet 0.9088
OMP+ ResNet-18 0.8867
Refined Lee+ResNet-18 0.9035
Proposed method (LeNet) 0.9140
Proposed method (ResNet-18) 0.9268

at —10 dB). However, since the label constraint alone cannot
ensure that the target information in the SAR images is not
lost, the model performance is reduced at high SNRs. When
reconstruction constraint is added to the model, the accuracies
at all SNRs have been significantly improved, which show that
reconstruction constraint brings better recognition performance.
The dual GAN retains the target information more completely
and accurately in the process of data denoising, so that the
classifier can more accurately identify the target. Similarly, by
jointly training the dual GAN and classifier, the recognition per-
formance of the model can also be improved. By jointly learning
the three steps of denoising, feature extraction and classification,
each step can make the data as separable as possible when
processing the SAR data. In the ablation experiments, under the
“Label 4+ Reconstruction + Joint learning” experimental setting,
the best recognition accuracies are achieved at all SNRs.

4) Recognition Performance Comparison: In this section,
we compare the proposed method with other representative SAR
ATR , such as SVM, PCA [30], LeNet [31], ResNet-18 [49],
ResNet-34 [49], VGGNet [32], OMP+ResNet-18, and refined
Lee+ResNet-18. For the PCA method that can extract noise
robust features, we use the original high SNR data as the training
data, which is the common way for the PCA method [8]; for the
deep learning methods and SVM method, we use the expanded
data of different SNRs (—10 dB, —5 dB, 0 dB, 5 dB, 10 dB) as
the training data.

First, we use all the training data for training and then test
the recognition performance on all the expanded test data. As
shown in Table IV, our method achieves the highest recognition
accuracy in MSTAR dataset. Compared with SVM, our method
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Variation of the recognition performance with SNR of fully supervised learning for different methods on MSTAR dataset with Gaussian noise. (a) Results

of all methods under all SNR. (b) Details of several methods with high recognition accuracies in (a) under the SNRs from 0 to 10 dB.

with LeNet is 11.33% higher, which indicate that our method
extracts more separable features than the original SAR data.
And compared with traditional robust recognition method PCA,
the recognition accuracy of our method with LeNet also has an
advantage of 10.18% and 7.08%. The recognition accuracy of
our method with LeNet is 3.33% higher than that of LeNet due
to the ability of the dual GAN reducing noise information from
SAR data.

Since our algorithm has a better denoising effect and more
stable performance under different SNRs than the OMP method
and refined Lee filter, our method with LeNet is 2.73% higher
than that of OMP+ResNet-18 and 1.05% higher than that of
refined Lee+ResNet-18. Surprisingly, our method with LeNet
outperforms ResNet-18 by 1.36% in recognition performance.
However, the experiment results show that our method with
LeNet has little improvement in recognition accuracy compared
with ResNet-34 and VGGNet (accuracy rate improved by 0.95%
and 0.52%). The reason for this result is that the LeNet is much
simpler than ResNet-34 and VGGNet, which greatly limits the
classification performance of the model. When we replace the
LeNet with ResNet-18 in our method, the recognition accuracy
of our method with ResNet-18 is 2.23% higher than that of
ResNet-34 and 1.80% higher than that of VGGNet. Moreover,
we represent the test results with different SNRs in Fig. 11
to make further comparison. It can be clearly observed that
our method with ResNet-18 achieves the highest recognition
accuracy in all SNRs except for 10 dB, in which the recogni-
tion accuracy of our method is only 0.02% lower than that of
ResNet-34.

Second, we test the classification performance of our method
in the case of semisupervised learning. And the results of VG-
GNet under fully supervised learning are compared in Table V.
The different columns in Table V represent the percentages of the
labeled training data used in model learning. In experiments with
low SNR and few labeled training dataset, since our proposed
method can use both labeled and unlabeled data for model
learning to ensure the denoising effect, it can be observed that our
proposed method has a significant improvement in recognition

0.95 T T T T T T T T T

09 r

0.85

Accuracy
o
[oo]
T

0.75 1
0.7 4
—#— Proposed method
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The proportion of labeled training data (%)

Fig. 12.  Variation of the recognition performance with labeled training dataset
of different methods on MSTAR dataset with Gaussian noise.

performance compared with VGGNet. More intuitively, we draw
the recognition results of all test data recognition accuracies
under different proportions of labeled training data in Fig. 12. As
the semisupervised learning ability can utilize the information
of unlabeled data, the advantage of our proposed method is more
obvious with the reduction of the labeled training dataset. In the
case of a large number of labeled training samples and high SNR
situations, the VGGNet achieves better recognition accuracies
because of that the VGGNet is much more complex than our
classification network LeNet. However, our method still obtains
the results that are competitive with the VGGNet.

D. Experimental Results With Multiplicative Noise

In order to prove the effectiveness of the proposed method in
the case of more realistic SAR data, we test our method on SAR
data with multiplicative noise modeled by Gamma distribution
in this section.
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TABLE V
RECOGNITION ACCURACIES OF SEMISUPERVISED LEARNING ON MSTAR DATASET WITH GAUSSIAN NOISE

SNRs  Methods 5 10 15 20 25 30 40 50 60 70 80 90 100

VGGNet 0.5897 0.6330 0.6725 0.6945 0.6974 0.7150 0.7216  0.7377 0.7429 0.7377 0.7656  0.7770  0.7839
-10dB Proposed

method 0.6878 0.7119 0.7558 0.7599 0.7608 0.7695 0.7746 0.7868 0.7892 0.7938 0.7982 0.8004 0.8190

VGGNet 0.6286  0.6967 0.7231 0.7480 0.7451 0.7736  0.7963 0.8103  0.8227 0.8300 0.8374 0.8344  0.8498
-7.5dB Proposed

method 0.7249 0.7712 0.7855 0.7961 0.8173 0.8166 0.8206 0.8306 0.8375 0.8474 0.8508 0.8523 0.8684

VGGNet 0.6623  0.7055 0.7641 0.7817 0.8007 0.8195 0.8322 0.8469 0.8689 0.8733 0.8733  0.8806  0.8930
-5dB Proposed

method 0.7504 0.7844 0.8174 0.8291 0.8453 0.8518 0.8652 0.8760 0.8852 0.8893 0.8959 0.9040 0.9082

VGGNet 0.6791  0.7363  0.7766  0.8154 0.8374 0.8440 0.8696 0.8835 0.8952 0.9055 0.9077 0.9122 0.9165
-2.5dB Proposed

method 0.7754  0.8008 0.8290 0.8435 0.8619 0.8727 0.8939 0.9038 0.9000 0.9089 0.9150 0.9141 0.9191

VGGNet 0.6806  0.7377 0.7795 0.8212 0.8381 0.8535 0.8872 0.8901 0.9179 0.9187 0.9209 0.9289 0.9342
0dB Proposed

method 0.7693 0.8046 0.8312 0.8555 0.8728 0.8870 0.8931 0.8992 09160 0.9206 0.9204 0.9218 0.9283

VGGNet 0.6952  0.7524 0.7810 0.8293  0.8498 0.8627 0.8960 0.8982 0.9245 0.9253 0.9297 0.9317 0.9436
2.5dB Proposed

method 0.7778 0.8156 0.8364 0.8565 0.8825 0.8967 0.8977 0.9023 0.9290 0.9269 0.9313 0.9316 0.9379

VGGNet 0.6960 0.7612 0.7853 0.8410 0.8564 0.8659 0.9077 0.9084 0.9289 0.9319 0.9451 0.9473 0.9521
5dB Proposed

method 0.7738 0.8187 0.8363 0.8710 0.8831 0.9011 09112 09014 0.9299 0.9302 0.9366 0.9433  0.9487

VGGNet 0.6967 0.7582 0.7824 0.8418 0.8542 0.8659 09150 0.9194 0.9326 0.9385 0.9421 0.9466 0.9524
7.5dB Proposed

method 0.7711  0.8188 0.8301 0.8686 0.8858 0.9073 09172 009187 0.9314 0.9366 0.9392 0.9411 0.9467

VGGNet 0.6952  0.7641 0.7883 0.8462 0.8608 0.8803 09179 0.9194 0.9363 0.9407 0.9487 0.9503 0.9535
10dB Proposed

method 0.7687 0.8244 0.8403 0.8709 0.8858 0.9030 0.9252 0.9135 09353 0.9382 0.9436  0.9458  0.9494

(a) (b)

Fig. 13.

(d) (e)

Denoising results of our algorithm and the OMP method on MSTAR dataset with multiplicative noise. (a) Original test SAR image at high SNR. (b)

Noised SAR image. (c) Denoising result of our method. (d) Denoising result of the OMP method. (e) Denoising result of the refined Lee filter.

1) MSTAR Dataset: We first analyze the denoising quality
of our method. Fig. 13 shows the denoising results of the SAR
data with multiplicative noise by our algorithm. It can be clearly
observed that compared with the original noised SAR image, the
noise interference in the denoised image is greatly reduced, and
the target is more significant. By comparing with the denoising
results of OMP method in Fig. 13(d) and the denoising results
of refined Lee filter in Fig. 13(e), we can find that our algorithm
has a better denoising effect than the OMP method and refined
Lee filter.

Second, as presented in the previous section, we compare the
proposed method with other representative SAR ATR methods.
The recognition results are shown in Table VI. The recognition
accuracy of our method with LeNet is obviously higher than

SVM and PCA. And compared with LeNet, the recognition ac-
curacy of our method with LeNet is 2.59% higher due to the abil-
ity of the dual GAN reducing noise information from SAR data.
However, due to the simplicity of the LeNet, our method with
LeNet can only get comparable results as ResNet-18, ResNet-34
and VGGNet. When we replace the LeNet with ResNet-18 in our
method, the recognition accuracy of our method with ResNet-18
is 2.22% higher than that of ResNet-18, 1.50% higher than that
of ResNet-34, and 1.28% higher than that of VGGNet. Since
our algorithm has a better denoising effect and more stable
performance under different SNRs than the OMP method and
refined Lee filter, our method with ResNet-18 is 0.83% higher
than that of OMP-+ResNet-18 and 3.63% higher than that of
refined Lee+ResNet-18.
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Denoising results of our algorithm and the OMP method on Gotcha dataset with multiplicative noise. (a) Original test SAR image at high SNR. (b)

Noised SAR image. (¢) Denoising result of our method. (d) Denoising result of the OMP method. (e) Denoising result of the refined Lee filter.

TABLE VI
RECOGNITION ACCURACIES OF DIFFERENT SAR ATR METHODS ON
MULTIPLICATIVE NOISED MSTAR DATASET

Methods Accuracy
SVM 0.8220
PCA 0.8212
LeNet 0.8974
ResNet-18 0.9165
ResNet-34 0.9237
VGGNet 0.9259
OMP+ ResNet-18 0.9305
Refined Lee+ ResNet-18 0.9024
Proposed method (LeNet) 0.9233
Proposed method (ResNet-18) 0.9387

2) Gotcha Dataset: We first analyze the denoising quality
of our method. Fig. 14 shows the denoising results of the SAR
data with multiplicative noise by our algorithm. It can be clearly
observed that compared with the original noised SAR image, the
noise interference in the denoised image is greatly reduced, and
the target is more significant. By comparing with the denoising
results of the OMP method in Fig. 14(d) and the denoising
results of the refined Lee filter in Fig. 14(e), we can find that our
algorithm has a better denoising effect than the OMP method
and the refined Lee filter.

Second, as presented in the previous section, we compare the
proposed method with other representative SAR ATR methods.
The recognition results are shown in Table VII. The recognition
accuracies of our method with ResNet-18 and LeNet are the
highest accuracies among all the methods. The recognition
accuracies of our method with ResNet-18 is obviously higher
than SVM and PCA. And compared with LeNet, the recognition
accuracy of our method with LeNet is 2.01% higher due to
the ability of the dual GAN reducing noise information from
SAR data. When we replace the LeNet with ResNet-18 in our
method, the recognition accuracy of our method with ResNet-18
is 2.04% higher than that of ResNet-18, 1.59% higher than that
of ResNet-34, and 1.16% higher than that of VGGNet. Since
our algorithm has a better denoising effect and more stable
performance under different SNRs than the OMP method and the
refined Lee filter, our method with ResNet-18 is 1.05% higher
than that of OMP-+ResNet-18 and 3.75% higher than that of
refined Lee+ResNet-18.

TABLE VII
RECOGNITION ACCURACIES OF DIFFERENT SAR ATR METHODS ON
MULTIPLICATIVE NOISED GOTCHA DATASET

Methods Accuracy
SVM 0.7714
PCA 0.7691
LeNet 0.8630
ResNet-18 0.8718
ResNet-34 0.8763
VGGNet 0.8806
OMP+ResNet-18 0.8817
Refined Lee+ResNet-18 0.8547
Proposed method (LeNet) 0.8831
Proposed method (ResNet-18) 0.8922

V. CONCLUSION

To integrate data denoising and feature extraction and classifi-
cation into a unified framework for joint learning, we proposed
a robust SAR ATR method via adversarial learning. Different
from traditional denoising methods, most of which rely on prior
knowledge of noise level, our method uses the idea of cross-
domain to remove noise information, which is more reliable
when the noise level prior information is not accurate. By using
reconstruction constraint and label constraint, the denoised data
are more reliable for recognition than the original SAR data. In
the experiments, we use MSTAR dataset and Gotcha dataset to
validate our method and obtain gratifying results in both fully
supervised learning and semisupervised learning.
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