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SANet: A Sea–Land Segmentation Network Via
Adaptive Multiscale Feature Learning

Binge Cui , Wei Jing , Ling Huang, Zhongrui Li, and Yan Lu

Abstract—Sea–land segmentation of remote sensing images is of
great significance to the dynamic monitoring of coastlines. How-
ever, the types of objects in the coastal zone are complex, and their
spectra, textures, shapes, and distribution features are different.
Therefore, sea–land segmentation for various types of coastlines is
still a challenging task. In this article, a scale-adaptive semantic
segmentation network, called SANet, is proposed for sea–land
segmentation of remote sensing images. SANet has made two in-
novations on the basis of the classic encoder–decoder structure.
First, to integrate the spectral, textural, and semantic features of
ground objects at different scales, we designed an adaptive multi-
scale feature learning module (AML) to replace the conventional
serial convolution operation. The AML module mainly contains a
multiscale feature extraction unit and an adaptive feature fusion
unit. The former can capture the multiscale detailed information
and contextual semantic information of objects from an early
stage, while the latter can adaptively fuse feature maps of different
scales. Second, we adopted the squeeze-and-excitation module to
bridge the corresponding layers of the codec so that SANet can
selectively emphasize the features of the weak sea–land boundaries.
Experiments on a set of Gaofen-1 remote sensing images demon-
strated that SANet achieved more accurate segmentation results
and obtained sharper boundaries than other methods for various
natural and artificial coastlines.

Index Terms—Adaptive learning, atrous convolution, remote
sensing image, residual block, sea–land segmentation, squeeze-
excitation module.

I. INTRODUCTION

S EA–LAND segmentation aims to separate coastal remote
sensing images into ocean and land regions, which is a

key step for many coastal applications, such as coastline change
analysis [1], ship detection [2], and maritime safety [3]. A large
number of automatic sea–land segmentation methods have been
put forward, which can be mainly divided into the following cat-
egories: Thresholding segmentation methods, object-oriented
segmentation methods, and methods based on machine learning
or deep learning [4]–[13].

The thresholding segmentation methods are simple and easy
to implement. This class includes the most commonly used
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methods in the sea–land segmentation of remote sensing im-
ages [4]–[6]. In a normalized difference image, pixels with in-
tensities below the thresholding are classified as negative (land),
and those with intensities above the thresholding are classified as
positive (water). The thresholding segmentation methods obtain
satisfactory results for coastal areas (such as artificial coasts),
with large spectral differences between sea and land. However,
the conventional thresholding segmentation methods only rely
on the spectral information, and it is difficult to correctly distin-
guish objects with a similar spectrum, such as aquaculture ponds
and the sea. Moreover, the selected optimal thresholding is easily
affected by factors such as coast type, sensor, weather, and sea-
son, which limits the application of the thresholding method in
complex sea–land segmentation scenarios. The object-oriented
segmentation methods divide the image into objects of different
sizes composed by image segmentation [7]–[9]. This method
takes the object as the basic unit, ignores the textural features of
the object, and processes the image according to the spectral and
spatial features [10]. The object-oriented segmentation methods
can reduce the interference of the internal information of the
pixel, but their steps are complex, and they cannot make full
use of the hidden information of the image. Machine learning
can extract useful information and knowledge from a large
amount of incomplete random data [10]. Recently, machine
learning-based methods have also been applied to sea–land seg-
mentation tasks [11]–[13]. The sea–land segmentation methods
based on machine learning can achieve high automation, but it
requires a combination of multiple machine learning methods
to obtain better extraction results. Deep learning based on fully
convolutional neural network has achieved satisfactory perfor-
mance in the field of semantic segmentation [14]–[19]. Fully
convolutional network can automatically extract the features
from input images and reconstruct the image resolution through
the decoder [14]. In recent years, work on sea–land segmentation
of remote sensing images based on deep learning has also made
great progress [20]–[22]. For example, DeepUNet introduced
the residual block on the basis of U-Net to extend the depth
of the network, thereby extracting deeper features for sea–land
segmentation [20]. RDU-Net used dense connection blocks to
enhance feature reuse [21]. SeNet added edge supervision to the
structure of the deep semantic segmentation network, thereby
obtaining more accurate sea–land boundaries [22].

The above methods exhibit high recognition and extraction
accuracy for sea–land segmentation within a certain area. They
demonstrate excellent performance in applications such as ob-
taining the location and length of the coastline in a small
area. However, in actual applications, it is often necessary to
investigate and analyze all coastlines of the entire region. With
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the expansion of the application area, some new problems also
arise. In general, the following two problems exist in large-scale
sea–land segmentation: 1) The scene is more complex, and
various types of coastlines coexist. For example, the boundary of
a port changes drastically, the breakwater extends deep into the
sea, and the shape is long and narrow. These issues often coexist.
The silty coast is open and flat, with a wide range of distribution,
and changes slowly. It often accumulates with ground objects
such as aquaculture ponds and estuaries. The spectral features
of reclamation are close to those of silty or sandy coasts, and
the latter will be classified as sea in the task of sea–land seg-
mentation. (2) Weak boundaries (such as silt coastlines) and
strong boundaries (such as artificial coastlines) are alternately
distributed. It is difficult for the model to choose an optimal
threshold or hyperparameter to determine the location of the
sea–land boundary. Due to the existence of the above problems,
most existing methods cannot obtain good segmentation results
for large-scale sea–land segmentation tasks. In response to the
above problems, a novel deep convolutional neural network
(DCNN) model, called the scale-adaptive semantic segmenta-
tion network (SANet), is proposed in this article for sea–land
segmentation. The SANet uses the designed adaptive multiscale
learning (AML) module for multiscale feature extraction and
fusion, which can obtain multiscale features of ground objects
at the same resolution and adaptively learn the weight of each
feature map based on the fused information. Moreover, SANet
adopts the squeeze-and-excitation (SE) module to enhance the
feature maps related to the weak sea–land boundaries then
transfers them to the decoder to obtain a sharper segmentation
boundary. To evaluate the performance of SANet for sea–land
segmentation, experiments on a set of remote sensing image
data from Gaofen-1 were carried out. Compared with other sea–
land segmentation methods, SANet achieves higher accuracy,
precision, recall, and F1-score values for both sea and land
regions. The main contributions of this work are summarized as
follows.

1) We designed a novel feature extraction and fusion module
to replace the conventional serial convolution operation that can
construct adaptive and multiscale contextual representations for
sea–land segmentation tasks. The experimental results show that
the AML module can be ported to other semantic segmentation
models and significantly improve performance.

2) A novel DCNN model, called SANet, is proposed for
sea–land segmentation of remote sensing images with complex
coastline types. The SANet combines AML and SE modules to
learn multiscale features and strengthen weak sea–land bound-
ary information. Compared with other sea–land segmentation or
semantic segmentation methods, SANet produces less misclas-
sification, especially near the coastlines.

3) We provide the research community with a new high-
quality dataset to advance sea–land segmentation with high-
resolution remote sensing images. The dataset contains 1726
hand-labeled and cropped Gaofen-1 images with an 8-m spatial
resolution and 4 bands, covering the various types of coastlines
in Lianyungang, China. It can be found.1

1[Online]. Available:https://www.kaggle.com/cuilab224/sea-land-
segmentation-with-gaofen-1

II. RELATED WORK

A. Sea–Land Segmentation

Most of the existing sea–land segmentation works are based
on thresholding methods, e.g., the normalized difference water
index (NDWI) [4], the modified normalized difference water
index (MNDWI) [5], etc. Li proposed the second modified
normalized difference water index (SMNDWI) to extract the
waterline [23]. Liu proposed an automatic sea–land segmen-
tation algorithm based on the locally adaptive thresholding
technique [24]. You proposed a segmentation scheme, which can
determine the threshold according to the adaptively established
statistical model of the sea [25]. Chen proposed a threshold
segmentation algorithm combining a rough threshold with an
accurate threshold and provided a complete sea–land segmenta-
tion scheme [26]. The object-oriented methods are also applied
to sea–land segmentation. Zhao et al. used an object-oriented
segmentation method to automatically extract a wide range
of water lines and classified the extracted coastlines based on
the remote sensing interpretation symbols of different coastal
types [8]. Lei et al. interpreted the sea–land segmentation task
in view of superpixels, where similar pixels are clustered and
the local similarity is explored [13].

Currently, the deep semantic segmentation network has
been improved to make it suitable for sea–land segmentation
tasks [20]–[22]. Li et al. [20] proposed a DeepUNet network
based on U-Net structure. The network has two kinds of short
connections, namely, the U connection and Plus connection.
DeepUNet concatenates the layers in the encoder into the layers
in the decoder and deepens U-Net to a deeper depth [20]. The
network has achieved excellent segmentation results on natural
color images from Google Earth. Shamsolmoali et al. [21]
proposed a residual dense U-Net (RDU-Net) for pixelwise sea–
land segmentation in complex and high-density remote sensing
images. RDU-Net is a combination of both downsampling and
upsampling paths and achieves satisfactory results [21]. Cheng
et al. [22] proposed a local smooth regularization method for
sea–land segmentation tasks to achieve better spatially consis-
tent results, and used a multitask loss to simultaneously ob-
tain the segmentation and edge detection results. The attached
structured edge detection branch can further refine the seg-
mentation results and dramatically improve the edge detection
accuracy [22]. The abovementioned methods yield excellent
performance in small-scale land and sea segmentation. However,
when these methods are used for large-scale segmentation tasks,
they show certain limitations in generalization ability.

B. Semantic Segmentation

In recent years, deep learning has achieved advanced
performance in image segmentation, classification, and object
detection [14]–[17]. Semantic segmentation models based
on deep learning, such as the fully convolutional network
(FCN) [14], U-Net [15], SegNet [16], and DeepLabv3+[17],
have been proposed. Among them, FCN [14] replaces the fully
connected layer in conventional convolutional neural networks
(CNNs) with a convolution layer to classify images at the
pixel level, performing end-to-end image segmentation tasks.
U-Net [15] uses skip connections to concatenate the feature maps
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Fig. 1. Atrous Convolution with 3 × 3 kernel size and the dilation rate is 2.

of different scales generated in the encoder and corresponding
feature maps in the decoder, which effectively preserves the
boundary information. For CNNs, the more network layers
there are, the richer the extracted features at different levels
will be [27]–[30]. However, simply increasing the number
of network layers will lead to gradient vanishing or gradient
explosion and degradation [31], [32]. He K. et al. proposed a
residual block to alleviate this problem [33]. By adding shortcut
connections to the residual block, the network becomes easier
to optimize. Based on the idea of residuals, the network can
reach deeper depths and extract deeper levels of information.

For the semantic segmentation model, the larger the receptive
field of the model is, the more contextual semantic information
it can extract [30]. However, when increasing the receptive field
by increasing the size of the kernel, the parameters of the model
will increase significantly, and the model will be difficult to
train. The atrous convolution was proposed to alleviate this
problem [34]–[36]. This operation injects holes into the standard
convolution map to increase the reception field. Compared with
the general convolution operation, the atrous convolution has
an additional hyperparameter called the dilation rate, which
refers to the interval size of the kernel. For example, in Fig. 1,
the receptive field of the standard 3 × 3 convolution kernel is
expanded to 5 × 5 by atrous convolution with a dilation rate of
2, but the number of parameters does not change. The atrous
convolution operation is as follows:

O
(d)
i,j = σ

(
k−1∑
l=0

k−1∑
m=0

W (l,m) · I(d∗l+i,d∗m+j) + b

)
(1)

where O refers to the output feature maps, d is the dilation rate,
i, j refer to the indexes of the pixel, σ refers to the activation
function, W refers to the weight, l,m refer to the parameter
indexes of the convolution kernel, and k is the kernel size, I
refers to the input feature maps, and b is the bias.

III. PROPOSED METHOD

The proposed sea–land segmentation model, which is called
SANet, is introduced in this section. The structure of SANet
is first demonstrated in Section III-A, and then the innovative
AML module is presented in detail in Section III-B. Finally, we
introduce the enhancement mechanism of the weak sea–land
boundaries in SANet in Section III-C.

A. Overall Structure of SANet

We developed an end-to-end sea–land segmentation model.
As shown in Fig. 2, the input is a four-band remote sensing
image, and the output is a binary segmentation map in which
1 (blue pixels) represents sea and 0 (brown pixels) represents
land. SANet retains U-Net’s U-codec structure and skips con-
nections. However, SANet uses the proposed AML module to
perform feature extraction and fusion instead of the ordinary
serial convolution operations. The AML module can provide
multiscale receptive fields and adaptively adjust the weight of
the feature maps. Moreover, SANet adopts the SE modules to
bridge the corresponding layers of the codec. The SE module can
enhance useful features to obtain a sharper sea–land boundary.

B. Adaptive Multiscale Feature Learning Module

Inspired by the atrous convolution operation [35] and attention
mechanism [37], we propose an AML module to replace the
conventional serial convolution operations. The AML module
contains a multiscale feature extraction unit and an adaptive
feature fusion unit. In the feature extraction unit, a residual
branch and three atrous convolution branches with different
dilation rates are designed, and these four branches can work
in parallel to simultaneously extract detailed and multiscale
contextual information. The four branches can provide 3 × 3,
5× 5, 7× 7, and 11× 11 receptive field sizes. The feature fusion
unit uses two branches to generate a learnable weight vector
and joint feature maps and then fuses them by channelwise
multiplication and the convolution operation with a 1× 1 kernel.
Next, we will specifically introduce these two units.

As shown in Fig. 3, a convolution operation with a 1 × 1
kernel is first performed on the input feature map I to generate
the feature map F with the number of channels p as follows:

F = δ (W 1×1 ∗ I) (2)

where δ refers to the ReLU activation function, ∗ refers to
the convolution operation, and W is the weight of the current
convolution kernel. Through the above convolution operation,
the number of feature-map channels is adjusted to p. The feature
map F is then processed in parallel by a residual block and
three atrous convolutions to generate feature maps at four scales,
i.e., R,A(2),A(3) , and A(5). The residual block consists of a
convolution operation with a 3× 3 kernel size and a convolution
operation with a 1 × 1 kernel, which can be expressed as

R = F + δ (W 1×1 ∗ δ (W 3×3 ∗ δ (W 3×3∗F))) (3)

where δ refers to the ReLU activation function, ∗ refers to
the convolution operation, and W is the weight of the current
convolution kernel. To avoid the grid effect [38] and maintain the
continuity of information, the dilation rates of the three atrous
convolutions are set to 2, 3, and 5. This can be expressed as

A(d)
x,y = δ

⎛⎝ 2∑
i=0

2∑
j=0

W (i,j) · F(x+i∗d,y+j∗d) + b

⎞⎠ (4)

where x, y refer to the pixel indexes of output feature map, δ
refers to the ReLU activation function, i, j refer to the parameter
indexes of the convolution kernel, d refers to the dilation rate,
and b refers to the bias. After the multiscale feature extraction,
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Fig. 2. Proposed SANet for sea–land segmentation.

Fig. 3. Structure of AML module.

the feature maps generated by (5) and (6), respectively, added
and concatenated, which can be expressed as

A = R+A(2) +A(3) +A(5) (5)

C = δ
(
W 1×1 ∗

[
R
∣∣∣∣∣∣A(2)

∣∣∣∣∣∣A(3)||A(5)
])

(6)

where δ refers to the ReLU activation function, W is the weight
of the current convolution kernel, and || refers to concatenation
operation. After that, the feature map A is squeezed into a p-
dimensional vector V by the global average pooling operation
to generate a channelwise global feature, and then V is trained
by two dense layers to generate 4p-dimensional vector Ṽ, which
can be expressed as

Ṽ = σ (δ (W 1,V) ,W 2) (7)

where σ refers to sigmoid activation function, δ refers to the
ReLU activation function, and W is the weight of the current
convolution kernel. Through channelwise multiplication, vector
Ṽ is assigned to feature map C, and feature maps of different
scales are fused by a convolution operation with 1 × 1 kernel

size, which can be expressed as

F̃ = δ
(
W 1×1 ∗

(
C ◦ Ṽ

))
(8)

where δ refers to the ReLU activation function, W is the weight
of the current convolution kernel, and ◦ refers to the channelwise
multiplication. Finally,F and F̃ are added to generate output fea-
ture map O, thereby accelerating model learning and alleviating
gradient disappearance.

C. Sea–Land Boundary Feature Enhancement

In large-scale remote sensing images, there are usually some
weak sea–land boundaries, such as estuaries and silty coasts.
To address the problem of weak boundaries, through experi-
ments, we repeatedly observed the feature maps of various weak
boundaries output by the AML module. We found that some
feature maps have high response near the weak boundaries,
while others have low response near the weak boundaries. It
is obvious that the former contributes more to the recognition
of sea–land boundaries. Enhancing the feature maps with high
response to weak boundaries is very important for accurately
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Fig. 4. Squeeze-and-excitation module.

Fig. 5. Feature maps output by different layers with different weights. l refers
to the output layer index and w refers to the weight assigned to the feature map
by the SE module.

identifying the sea–land boundaries. In this article, we added
the SE module between the corresponding layers of the codec to
enhance the representation of weak boundaries.The structure of
the SE module is shown in Fig. 4. Given the input feature map
X ∈ RH×W×C , where H,W , and C refer to the height, width,
and the number of channels of feature maps, respectively. The SE
module operates as follows: First, global average pooling [39],
[40] is performed on each feature map to obtain the output
C − dimensional column vector z

zk = Fsqueeze (Xk) =
1

H ×W

H∑
i=1

W∑
j=1

Xk(i, j) (9)

where Xk refers to the kth feature map of X . Second, the output
z undergoes excitation operation containing two fully connected
layer and two activation functions to generate z̃

z̃ = Fexcitation (z,W ) = σ (δ (W 1, z) ,W 2) (10)

where σ refers to sigmoid activation function, and δ refers to
ReLU activation function. At last the Fscale operation rescales
the given feature maps X with z̃

X̃k = Fscale (Xk, z̃k) = Xk ◦ z̃k (11)

where Xk ◦ z̃k , {k|k = 1, 2, 3 · · ·C} refers to channelwise
multiplication. Through the above operations, the SE module
selectively enhances the feature maps with high response near
weak boundaries and suppresses those that have low response
near weak boundaries. We visualized some feature maps at each
layer. As shown in Fig. 5, the SE module assigns high weights to
feature maps with a higher response near the weak boundaries
in the first row, and assigns low weights to feature maps with a
lower response near the weak boundaries in the second row.

Fig. 6. Illustration of data preparation process.

IV. EXPERIMENTS AND EVALUATION

In this section, we construct a dataset to test the performance
and robustness of SANet. The dataset is introduced in Section IV-
A. Section IV-B introduces details of the experiment. Section IV-
C presents the experimental results.

A. Experimental Data Preparation

The experimental dataset was acquired from nine multispec-
tral remote sensing images shot by Gaofen-1 in the Lianyungang
coastal zone, Jiangsu Province, China. The Gaofen-1 images
contain four bands, namely, red, green, blue and near-infrared
bands, and the spatial resolution is 8 m. Each selected image
contains a different type of coastline. As shown in Fig. 6, the
remote sensing image around the coast is cropped and labeled by
experts through visual interpretation. The ground truth map is
a binary image, with 0 representing sea and 255 representing
land. The labeled image is divided into 256 × 256 samples
by checkerboard segmentation. The training set contains 1544
samples, the validation set contains 178 samples, and the test set
contains 192 samples.

B. Implementation Details

Setup: The experiment was conducted on a server equipped
with NVIDIA Tesla P100 GPU with 16 GB of graphics mem-
ory, and CentOS Linux 7.5 operating system. All models were
trained and tested with Keras framework [41], using TensorFlow
as the backend engine [42]. During training process, the Adam
algorithm was used to minimize the loss, and we set the initial
learning rate to 0.0001 and the number of epochs to 100.

Metrics: To evaluate our models, four metrics (accuracy rate,
precision rate, recall rate, and F1-score) were used to assess the
experimental results. The metrics are defined as follows:

Accuracy =
TP + TN

TP + FP + TN + FN
(12)

Precision =
TP

TP + FP
(13)

Recall =
TP

TP + FN
(14)

F1 = 2× Precision× Recall

Precision + Recall
(15)

where TP , TN , FP , and FN represent the number of true
positives, true negatives, false positives, and false negatives,
respectively.
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TABLE I
EVALUATION RESULTS OF DIFFERENT METHODS ON THE TEST SET

In each row, the number in bold is the largest value.

Fig. 7. Sea–land segmentation on test image 1. (a) Test image. (b) Ground
truth. (c) NDWI. (d) Multiresolution-segmentation. (e) SVM. (f) U-Net. (g)
SegNet. (h) DeepLabv3+. (i) DeepUNet. (j) SANet. The number 0.14 is the best
thresholding obtained in the experiment.

C. Experimental Results

We compared the thresholding segmentation method
(NDWI [4]), object-oriented segmentation method
(Multiresolution-segmentation [8], [9]), support vector machine
(SVM [11]), U-Net [15], SegNet [16], DeepLabv3+[17],
DeepUNet [20], and the proposed SANet in the same
experimental environment. Table I shows the quantitative results
of the above methods on the test set. The NDWI thresholding
segmentation method has the lowest accuracy. SANet’s accuracy
is 5.60% higher than that of multiresolution-segmentation,
8.89% higher than that of the SVM, 3.94% higher than
that of U-Net, 3.42% higher than that of SegNet, 3.61%
higher than that of DeepLabv3+, and 2.74% higher than
that of DeepUNet. SANet’s F1-score is 0.0606, 0.0917,
0.0405, 0.0359, 0.0380, and 0.0292 higher than those
of multiresolution-segmentation, SVM, U-Net, SegNet,
DeepLabv3+, and DeepUNet, respectively. Four representative
remote sensing images containing different types of coastlines
were shown to evaluate the performance of each method. The
sea–land segmentation results are shown in Figs. 7–14.

Test image 1 is a coastal zone containing a large number
of aquaculture ponds and silt. In Fig. 7(c) and (e), because
aquaculture ponds and seawater have similar spectral features,
and shoals composed of silt are similar to land in terms of
the spectral features, the NDWI and SVM methods classify
aquaculture ponds as sea and some of the shoals as land. In
Fig. 7(d), the multiresolution-segmentation method identifies
slender-scale canals and aquaculture fences as sea. In Fig. 7(g)
and (h), the extracted land boundary is not well aligned with the
boundary of the aquaculture pond, which may be because the
detailed information is not directly propagated to the decoders in
SegNet and DeepLabv3+. In the bottom rectangle of Fig. 7, the
results of various models for identifying the estuary with a large

Fig. 8. Segmentation details on area 1. (a) Test image. (b) Ground truth. (c)
NDWI. (d) Multiresolution-segmentation. (e) SVM. (f) U-Net. (g) SegNet. (h)
DeepLabv3+. (i) DeepUNet. (j) SANet.

TABLE II
EVALUATION RESULTS ON TEST IMAGE 1

In each row, the number in bold is the largest value

Fig. 9. Sea–land segmentation on test image 2. (a) Test image. (b) Ground
truth. (c) NDWI. (d) Multiresolution-segmentation. (e) SVM. (f) U-Net.
(g) SegNet. (h) DeepLabv3+. (i) DeepUNet. (j) SANet. The number 0.45 is
the best thresholding obtained in the experiment.

amount of suspended sediment are poor, and SANet performs
better than the other models. Fig. 8 shows the details of the
segmentation near the ring levee. In Fig. 8(c) and (f), NDWI
threshold segmentation and U-Net completely identify the water
area inside the ring levee as the sea. SegNet, DeepLabv3+,
and DeepUNet yield partial misclassification in this area. The
evaluation results on test image 1 are listed in Table II. The
indicators show that SANet’s accuracy is 5.72% higher than
that of multiresolution-segmentation, 7.47% higher than that
of the SVM, 7.08% higher than that of U-Net, 6.29% higher
than that of SegNet, 7.73% higher than that of DeepLabv3+,
and 6.35% higher than that of DeepUNet. SANet’s F1-score is
0.0581 higher than that of multiresolution-segmentation, 0.0772
higher than that of the SVM, 0.0649 higher than that of U-Net,
0.0559 higher than that of SegNet, 0.0731 higher than that of
DeepLabv3+, and 0.0560 higher than that of DeepUNet.

Test image 2 is an artificial coast with a port and a large number
of breakwaters. In Fig. 9(c) and (e), the NDWI and SVM methods
based on single-pixel spectral information achieve good results
for identifying breakwaters due to large differences in spectral
information between sea and land. For slender breakwaters, due
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Fig. 10. Segmentation details on area 2. (a) Test image. (b) Ground truth.
(c) NDWI. (d) Multiresolution-segmentation. (e) SVM. (f) U-Net. (g) SegNet.
(h) DeepLabv3+. (i) DeepUNet. (j) SANet.

TABLE III
EVALUATION RESULTS ON TEST IMAGE 2

In each row, the number in bold is the largest value.

to the loss of detailed information caused by multiple downsam-
pling, most deep learning-based methods yield poor recognition
results. In Fig. 9(d), the multiresolution-segmentation method
misclassifies small objects on land. In Fig. 9(a), the area marked
by the middle rectangle is a port, and its enlarged snapshot
is shown in Fig. 10. NDWI, multiresolution-segmentation, and
SVM methods exhibit better results on the sea–land boundaries.
SegNet misidentifies the shadow in the sea as land. U-Net,
DeepLabv3+, and DeepUNet segment the port incompletely.
SANet completely segments the entire port, but the edges are
relatively smoother than the ground truth. The spectral features
of the breakwater in the bottom rectangle are greatly affected
by seawater due to its slender structure. U-Net and DeepUNet
cannot recognize the slender structure of the breakwater due to
the small receptive field during the early low-level information
extraction process. SegNet and DeepLabv3+ lose the boundary
information of the breakwater, so cracked or fuzzy breakwa-
ters appear in the recognition results. SANet has dense-scale
receptive fields and retains boundary information well, so it
can identify most breakwaters. For test image 2, the evaluation
results are listed in Table III. The SVM method has the highest
accuracy. Compared with that of the SVM method, the accuracy
of SANet is only 0.07% lower. Compared with other deep
learning methods, SANet’s accuracy is 0.37, 3.83, 4.18, 4.92,
and 7.19 percentage points higher than those of multiresolution-
segmentation, U-Net, SegNet, DeepLabv3+, and DeepUNet,
respectively. SANet’s F1-score is 0.0114 lower than that of
NDWI and 0.0068, 0.0734, 0.0739, 0.0842, and 0.1454 higher
than those of multiresolution-segmentation, U-Net, SegNet,
DeepLabv3+, and DeepUNet, respectively.

Test image 3 is an artificial coast that contains some reclama-
tions and breakwaters. In Fig. 11(a), the rectangle is the recla-
mation area, the spectral information of the reclamation area is
similar to that of silty tidal flats, and the tidal flats were labeled

Fig. 11. Sea–land segmentation on test image 3. (a) Test image. (b) Ground
truth. (c) NDWI. (d) Multiresolution-segmentation. (e) SVM. (f) U-Net.
(g) SegNet. (h) DeepLabv3+. (i) DeepUNet. (j) SANet. The number 0.50 is
the best thresholding obtained in the experiment.

Fig. 12. Segmentation details on area 3. (a) Test image. (b) Ground truth.
(c) NDWI. (d) Multiresolution-segmentation. (e) SVM. (f) U-Net. (g) SegNet.
(h) DeepLabv3+. (i) DeepUNet. (j) SANet.

TABLE IV
EVALUATION RESULTS ON TEST IMAGE 3

In each row, the number in bold is the largest value.

as sea in the training set. Fig. 12 shows segmentation details
of the reclamation area. U-Net, SegNet, and DeepUNet lost the
structural information of reclamation, which led to the identifi-
cation of the reclamation area as sea. In Fig. 11(h), DeepLabv3+
can identify most reclamation areas, but the detailed information
of the breakwater is lost. Compared with other methods, SANet
can provide large receptive fields at an early stage to obtain
the spatial structure information of large ground objects such
as reclamation areas, which helps to avoid misclassification.
For test image 3, the evaluation results are listed in Table IV.
SANet’s accuracy is 1.08, 0.76, 0.86, 10.88, 5.96, 5.81, and 4.25
percentage points higher than those of NDWI, multiresolution-
segmentation, SVM, U-Net, SegNet, DeepLabv3+, and Deep-
UNet, respectively. SANet’s F1-score is 0.0078, which is 0.0089,
0.0064, 0.1416, 0.0723, 0.0440, and 0.0509 higher than those
of NDWI, multiresolution-segmentation, SVM, U-Net, SegNet,
DeepLabv3+, and DeepUNet, respectively. The NDWI method
has the highest precision, which is 0.14 percentage points higher
than that of SANet, while the recall rate is 1.70 percentage points
lower than that of SANet.
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Fig. 13. Sea–land segmentation on test image 4. (a) Test image. (b) Ground
truth. (c) NDWI. (d) Multiresolution-segmentation. (e) SVM. (f) U-Net.
(g) SegNet. (h) DeepLabv3+. (i) DeepUNet. (j) SANet. The number 0.23 is
the best thresholding obtained in the experiment.

Fig. 14. Segmentation details on area 4. (a) Test image. (b) Ground truth.
(c) NDWI. (d) Multiresolution-segmentation. (e) SVM. (f) U-Net. (g) SegNet;
(h) DeepLabv3+. (i) DeepUNet. (j) SANet.

Test image 4 contains an estuary and biogenic coast. In
Fig. 13(c), the NDWI method recognizes most aquaculture
ponds as the sea. In Fig. 13, the multiresolution-segmentation
method exhibits good classification for the sea part, but there
are still some classification errors due to the complex scale of
the inland objects. In Fig. 13(e), the SVM method misclassi-
fies suspended sediment and aquaculture areas. In the upper
rectangle of Fig. 13, DeepLabv3+ and SegNet cannot preserve
the coastal boundary due to insufficient detailed information. In
Fig. 13(a), the area marked by the bottom rectangle is an estuary
that contains several rivers, and Fig. 14 shows its segmentation
details. By convention, the part of the river between the estuary
and the first bridge is defined as sea. Compared with other
methods, SANet can better follow this convention to perform
sea–land segmentation. NDWI, multiresolution-segmentation,
and SVM methods identify the entire river as sea, and SegNet,
DeepLabv3+, U-Net, and DeepUNet identify all or most of the
rivers as land. At each layer of the model, there is a branch
that obtains detailed information of small-scale ground objects
and passes it to the decoder after being enhanced by the SE
module. Therefore, it performs well on ground objects such
as seaside estuaries. For test image 4, the evaluation results
are listed in Table V. SANet’s accuracy is 22.96, 6.24, 14.97,
2.50, 2.69, 3.20, and 2.12 percentage points higher than those of
the NDWI method, multiresolution-segmentation, SVM, U-Net,
SegNet, DeepLabv3+, and DeepUNet, respectively. SANet’s
F1-score is 0.2211 0.0512, 0.1294, 0.0164, 0.0193, 0.0247, and
0.0167 higher than those of the NDWI method, multiresolution-
segmentation, SVM, U-Net, SegNet, DeepLabv3+, and Deep-
UNet, respectively.

TABLE V
EVALUATION RESULTS ON TEST IMAGE 4

In each row, the number in bold is the largest value

Fig. 15. Input feature map, feature maps of different receptive fields, and
output feature map of the first AML module.

V. ANALYSIS AND DISCUSSION

A. Analysis

The Role of the AML Module: By providing multiscale re-
ceptive fields, the proposed AML module can extract and fuse
multiscale features for sea–land segmentation. In Fig. 15, we
visualized the input feature map, the feature map of each branch,
and the output feature map of the first AML module. The locally
enlarged area in Fig. 15 is an oil tank farm. In Fig. 15(b), the
feature map output by the residual branch of the AML module
contains rich detailed information. Due to the enlarged receptive
field, some of the detailed information of the oil tank in Fig. 15(c)
is lost. In Fig. 15(d), most of the detailed information of a single
oil tank has been lost, and the textural features of the entire
oil tank farm have become visible. In Fig. 15(e), the textural
features of the entire tank farm are more obvious. In Fig. 15(f),
the output feature map fuses feature maps of multiscale receptive
fields, which contain both the detailed information of a single
oil tank and the textural features of the entire oil tank farm. The
AML module can extract and fuse multi-scale representations at
each layer, so that SANet has more powerful feature extraction
capabilities.

Ablation Study: To thoroughly investigate the effectiveness
of the proposed method, we conduct ablation experiments by
removing specific components for comparison. As shown in
Table VI, the U-Net with AML module can achieve 3.35%,
2.07%, 9.75%, and 1.63% accuracy improvements on the four
test images. The U-Net with the SE module can achieve 2.38%,
1.81%, 7.08%, and 0.78% accuracy improvements on the four
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TABLE VI
ABLATION EVALUATION RESULTS

In each row, the number in bold is the largest value.

TABLE VII
AML MODULE EVALUATION RESULTS

test images. SANet combines the adaptive multiscale receptive
fields of the AML module and the attention mechanism of the SE
module, which can achieve 7.08%, 3.83%, 10.88%, and 2.16%
accuracy improvements on the four test images. The above data
fully illustrate the effectiveness and complementarity of the
AML module and SE module in the sea–land segmentation task.

Portability of the AML Module: We use SegNet and Deep-
UNet as the baseline networks to evaluate the performance
improvements contributed by the AML module. As shown in
Table VII, the SegNet with AML module can achieve 3.62%,
0.58%, 1.93%, and 1.46% accuracy improvements on the four
test images. The DeepUNet with AML module can achieve
1.52%, 2.07%, 1.20%, and 0.12% accuracy improvements on
the four test images. The results prove that AML modules can
be ported to other similar network architectures and contribute
to significant performance improvements.

Hyperparameter Settings: Hyperparameterp is used to control
the number of channels of the output feature map of each AML
module in SANet. In SANet, the respective numbers of output
channels of each AML module are p, 2p, 4p, 8p, 16p, 4p, 2p,
p, and 0.5p, respectively. We carried out experiments to reflect
the influence of different p-values on the overall accuracy. As
shown in Fig. 16, when p increases from 4 to 32, the overall
accuracy is continuously improved. When p = 32, the overall
accuracy reaches its peak. After that, as the value of p continues
to increase, the overall accuracy exhibits a downward trend.
Therefore, the optimal value of p is set to 32.

Using Skip Connections: The skip connections play an impor-
tant role in SANet. Experiments were carried out to explore the
influence of using skip connections on the overall accuracy. The
experimental results in Fig. 17 show that the overall accuracy
is significantly improved when skip connections are added to
SANet. As the number of skip connections increases, the overall
accuracy continues to improve, which shows the advantages of

Fig. 16. Overall accuracy of SANet with different values of hyperparameter p.

Fig. 17. Overall accuracy of SANet with different numbers of skip
connections.

TABLE VIII
TIME CONSUMPTION AND PARAMETER OF DIFFERENT MODELS

using multiple skip connections. Therefore, skip connections
are added to each corresponding layer between the codecs of
SANet.

Evaluation of Model Complexity: We compare the number
of parameters and runtimes of the different models. As shown
in Table VIII, SANet has more parameters than DeepUNet
and fewer parameters than U-Net, SegNet and DeepLabv3+.
Compared with those of other models, the training time of SANet
for each epoch increases slightly. However, as shown in Fig. 18,
SANet converges much faster than other models, which can
compensate for the shortcoming that each epoch takes longer
to run. In addition, in sea–land segmentation applications, we
need to pay more attention to the runtime of the test process, and
that of SANet is acceptable.
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Fig. 18. Loss of different models on the verification set.

B. Discussion

Sea–land segmentation has significant implications for
coastal zone management and coastal zone evolution research.
Sea–land segmentation is more complicated than water–land
segmentation. More semantic information must be combined
to determine whether the surface corresponding to each pixel
is land or sea. The thresholding segmentation methods only
consider the spectral features of pixels, which take waterline
extraction as the basis of sea–land segmentation [4]. However,
the threshold of these kinds of methods is difficult to determine.
The object-oriented segmentation methods can reduce the influ-
ence of the internal textural features of the ground objects on
the segmentation results [8]. However, for a large-scale remote
sensing image, the optimal segmentation scale is difficult to
determine, and steps such as classification are required after
object segmentation, making the process relatively complicated.
The methods based on machine learning need to define spectral
and spatial features in advance and to achieve good results, they
often need to combine multiple machine learning strategies [10].

Deep learning provides new ideas for sea–land segmentation
of large-scale remote sensing images. Researchers have im-
proved the deep semantic segmentation architecture for natural
images to make it suitable for sea–land segmentation tasks.
DeepUNet extends the depth of U-Net to extract deeper con-
text features and adopts the residual structure to avoid over-
fitting [20]. RDU-Net mainly considers feature reuse to make
full use of hierarchical features in the original images [21].
However, these methods did not pay special attention to the
coexistence of multiple types of coastlines in the same remote
sensing image. When the shape, size, and distribution of various
coastlines differ greatly, limitations are observed. In this article,
considering the alternating distribution of various types of coast-
lines in large-scale practical applications, SANet implements
adaptive learning of multiscale contextual semantic and detailed
information. Moreover, SANet adopts the SE module to enhance
weak sea–land boundary features. Therefore, SANet has more
robust feature extraction capabilities and more powerful gener-
alization capabilities, making it suitable for large-scale sea–land
segmentation tasks. Considering that the spatial resolution of the
images greatly influences the details of ground objects, in the
future, we will try to use panchromatic and multispectral fusion
images for sea–land segmentation. Moreover, based on the idea
of integrated learning, we will design an edge optimization

branch to guide the sea–land segmentation to further improve
the accuracy of boundary extraction.

VI. CONCLUSION

In this article, we design a novel deep learning model, called
SANet, for the sea–land segmentation of large-scale remote
sensing images. SANet has the following attractive properties:
1) The proposed AML module can extract and adaptively fuse
multiscale context representations, thereby improving the per-
formance and adaptability of the model in large-scale practical
applications in complex scenes. 2) By adopting the SE module,
SANet can adaptively strengthen weak sea–land boundaries,
so that the sea–land segmentation results have better spatial
consistency. The above two advantages enable SANet to adapt
to complex scenarios where various types of coastlines are
alternately distributed. To verify the network architecture, we
performed experiments on a set of Gaofen-1 remote sensing
images containing different types of coastlines, and the experi-
mental results show that the proposed SANet model significantly
outperformed the other models.
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