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Learning Slimming SAR Ship Object Detector
Through Network Pruning and
Knowledge Distillation

Shigi Chen ¥, Ronghui Zhan

Abstract—The deployment of deep convolutional neural net-
works (CNNs) in synthetic aperture radar (SAR) ship real-time
detection is largely hindered by huge computational cost. In this ar-
ticle, we propose a novel learning scheme for training a lightweight
ship detector called Tiny YOLO-Lite, which simultaneously 1)
reduces the model storage size; 2) decreases the floating point
operations (FLOPs) calculation; and 3) guarantees the high ac-
curacy with faster speed. This is achieved by self-designed back-
bone structure and network pruning, which enforces channel-level
sparsity in the backbone network and yields a compact model.
In addition, knowledge distillation is also applied to make up for
the performance decline caused by network pruning. Hereinto, we
propose to let small student model mimic cumbersome teacher’s
output to achieve improved generalization. Rather than applying
vanilla full feature imitation, we redefine the distilled knowledge
as the inter-relationship between different levels of feature maps
and then transfer it from the large network to a smaller one. On
account that the detectors should focus more on the salient regions
containing ships while background interference is overwhelming,
a novel attention mechanism is designed and then attached to the
distilled feature for enhanced representation. Finally, extensive
experiments are conducted on SSDD, HRSID, and two large-scene
SAR images to verify the effectiveness of the thinner SAR ship
object detector in comparison of with other CNN-based algorithms.
The detection results demonstrate that the proposed detector can
achieve lighter architecture with 2.8-M model size, more efficient
inference (>200 fps) with low computation cost, and more accurate
prediction with knowledge transfer strategy.

Index Terms—Attention mechanism, feature imitation,
knowledge distillation (KD), lightweight synthetic aperture
radar (SAR) ship detector, network pruning.

1. INTRODUCTION

OWADAYS, deep convolutional neural networks (CNNs)
N have gained much attention in the application of synthetic
aperture radar (SAR) field, such as automatic target recogni-
tion [1], urban interpretation [2], marine surveillance [3], and
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so on [4]. Among them, ship detection in SAR images has
been widely studied due to its indispensable role in military and
civil fields. Benefiting from the increase of high-quality satellite
data and CNN’s powerful capability of feature representation,
numerous deep learning-based methods have been proposed in
SAR ship detection.

Recently, many superior type of research have refreshed
results on general object detection in terms of both region
proposal based methods [5]-[7] and regression-based
methods [8]-[10], which have also justified the effectiveness
on SAR object detection. For instance, both Cui et al. [11]
and Chen et al. [12] have integrated attention mechanism into
the feature pyramid network for detecting multiscale SAR
ships. Cui et al. [13] also proposed an anchor-free detector and
introduced the spatial shuffle-group enhance attention module
for detection in large-scale SAR images. Besides, Wei e al. [14]
proposed a modified high-resolution ship detection network
(HR-SDNet) and adopted cascade structure for precise and
robust ship detection. Nevertheless, the above methods all have
huge backbone network and large model size, thus leading to
decrease in inference speed and difficulty in model deployment
of spaceborne platforms. Therefore, how to reduce the size
of trainable model parameters without notably sacrificing
detection performance becomes an urgent issue to be tackled.

Specifically, some attempts can be traced in YOLO series
models [8], [15], [16]. YOLT [17] combined two detection
models based on YOLO, which are trained on different image
scales to achieve better detection results for objects of dis-
parate sizes. Chang et al. [18] designed a YOLOv2-reduced
network for real-time SAR ship detection, which lowers compu-
tational complexity but still lacks theoretical explanation. Zhang
et al. [19] devised a depthwise separable CNN (DS-CNN)
and further merged it into YOLOvV3 framework to speed up
detection. Although multiscale detection, feature concatenation,
and anchor box mechanism are adopted to improve detection
accuracy, their model still involves partial heavy convolution
operators, declining the detection speed. They further proposed
HyperLi-Net [20] by integrating five internal mechanisms and
five external modules, which is more lightweight and accurate.
While these approaches are capable of simplifying network
structure, they may neglect that the balance between detection
accuracy and inference speed should be guaranteed. Substantial
efforts have been devoted to the speedup and compression of
CNN s for deploying a deep model on resource-limited devices.
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At present, model compression [21] is mainly divided into
four types, including pruning, quantization, low-rank factoriza-
tion, and knowledge distillation (KD). Model pruning [22] is a
method to trim the network by cutting off redundant connections
between weights or neurons of adjacent layers, and fine-tuning
is subsequently attached to the pruned model for improving the
performance. Then, quantization converts the weights of the
neural network from 32-b floating point to low-bit represen-
tation, thereby greatly reducing the size of the neural network
model [23]. The next one is low-rank factorization, which uses
matrix or tensor decomposition techniques to estimate and de-
compose the convolution kernel and thereby reducing network
parameters. First, introduced by Hinton et al. [24], KD exploits
the knowledge extracted from the high-performance teacher
model as guidance for improving the accuracy of a small student
model. Moreover, it can be used as a new training strategy to
elevate the network performance. Though recent works such

s [25]-[27] have proved its effectiveness on object detection,
there exist few applications adaptable to the direct compression
of large object detectors.

Therefore, in this article, we proposed to learn a simple but
efficient SAR ship detector through the combination of network
pruning and KD, which would facilitate the deployment of SAR
ship detection in practical applications and thereby improve the
model generalization ability. Here, a well-performed detector
YOLOV3 is applied as our reference detection framework for
its remarkable inference speed but with the following mod-
ifications. To strengthen the feature representation ability of
targets with large aspect ratio, an asymmetric convolution mod-
ule (ACM) is incorporated into the backbone network. Then, a
densely connected feature pyramid network is devised to fuse
features of different layers and enhance the semantic information
for each scale feature layer, which further boost the performance
of multiscale ship detection especially for small targets. Next,
motivated by the network slimming algorithm proposed by Liu
et al. [28], we prune the backbone of the modified detector to
obtain a compact feature extraction model.

To further improve the detection performance of pruned mod-
els, we propose feature map inter-relationship guided KD, a
novel model compression approach for efficiently training a slim
but effective ship detector. Specifically, the original novel detec-
tor denoted as DC-ACM YOLOVvV3 with complicated backbone
is defined as the teacher, while the target slim detector with rather
small backbone obtained by network slimming is defined as the
student. As a higher level of vision task, object detection predicts
both classification and localization information of each instance;
so distilling the soft target of classification branch does not lead
to promising results. Moreover, the extreme imbalance between
foreground and background instances makes it intractable to
capture the most representative knowledge from the teacher
network. It is intuitive to directly imitate the backbone features
of the teacher model in object detection; however, blindly trans-
ferring all learned features from the teacher model brings unnec-
essary computation of unrelated features and further restricts the
performance gain of the student model. The problem becomes
tougher especially when detecting inshore ships in SAR images
since the interference of backscattering points are stronger and
many complex surroundings may cause more false alarms. To
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address this dilemma, a novel graph-based feature KD strategy is
devised to perform imitations at the most discriminative features
from different levels. Meanwhile, the feature inter-relationship
graph is also constructed for generating the sufficient knowledge
so as to inspect the generalization ability over the teacher model.

Focusing on how to build a slim SAR real-time ship detector
with high accuracy, the main contributions of this article can be
summarized as follows.

1) For paying more attention to objects with multishapes and
multiscales, a novel backbone network is designed to enrich
features with more semantics and diverse shapes of receptive
fields. With less computation burden and more powerful feature
representation, the performance of YOLOV3 on small scale and
multishape targets can be elevated.

2) Different from the most network pruning approaches which
are attached with fine-tuning stage to make up for performance
decline, we present a novel KD strategy for model deployment
on spaceborne or missile-borne platform, which eliminates the
temporary performance degradation and further boost the detec-
tion performance.

3) Considering that the selection of transferred knowledge
should be more discriminative for object detection, we derive
a feature inter-relationship graph-based distillation framework
to adapt the feature interaction from different levels. Addition-
ally, a novel attention-based block is proposed to strengthen
distilled features according to the object-related regions,
which largely eliminates the interference of complex cluttered
background.

II. RELATED WORK

Here, we specifically discuss the works of literature that are
closely related to our work, including network pruning and KD
methods.

1) Network Pruning: As a feasible method of removing the
redundant branches in the networks, network pruning can be
categorized into weight pruning and structured pruning. The
first type of method prunes the unimportant connections with
small weights in the trained networks [29]; however, the speedup
can only be achieved by dedicated sparse matrix operation
libraries, and it is unfriendly to implementation on hardware
platforms. In comparison, structured pruning [30] is more likely
to reach a well-performed tradeoff between flexibility and ease
of implementation. Recent works [31] remove channels with
small incoming weights entirely instead of individual weights
and then fine-tune the network to regain accuracy. These meth-
ods [28], [32], [33] also utilize sparsity regularization on dif-
ferent levels of structures such as filters, channels, or layers in
CNNs. Among them, channel pruning based on scaling factors
in batch normalization (BN) layers is the most effective and
widely used method [28], which is applied to prune CNN-based
network in the image classification task. However, the ways of
measuring the importance of channels’ lack of universality and
flexibility, thus, seems to be less practical in SAR ship detection
applications. Furthermore, most of the existing pruning methods
mainly focus on classification, while object detection requires
not only semantic information but also localization information.
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As for object detection, Shih ez al. [34] use the pruning method
proposed in [28] to prune the backbone of the two-stage network.
Referring to the effective channel pruning method [35], some
approaches [36], [37] apply the global and local pruning scheme
to obtain a slim network model with good performance. Both
layerwise and channelwise pruning are utilized in [38] to lighten
the model parameters.

2) Knowledge Distillation: One promising direction of miti-
gating the high computational burden in deep CNNs is to transfer
knowledge in the cumbersome model into a small model. KD
methods assume the knowledge as a mapping function learned
from inputs to outputs and then transfer it by training the student
model under the supervision of the teacher’s outputs. KD is
originally used in the task of image classification [24], where
the student is supervised by both softened labels and ground
truth labels simultaneously. Romero et al. [25] propose FitNet,
which distills a thinner student model by imitating both the
softened class scores and intermediate feature representations of
the teacher model. Following this, some subsequent works [39],
[40] have also tried to mimic the intermediate layers of the
teacher network to that of the student network. Zagoruyko and
Komodakis [41] devise attention transfer on the basis of attention
maps to improve the performance of the student network. Yim
et al. [42] even distill the knowledge of pairwise similarity maps
between neighboring layers. To summarize, current distillation
frameworks either lack particular design for object detectors
or fail to select the most representative part for distillation.
Different from the above works, our distillation framework is
deliberately designed for SAR ship detection, which considers
the feature inter-relationship between different levels and avoids
the interference of less informative background area.

III. PROPOSED METHODOLOGY

In this work, we develop a simple-to-implement SAR
ship detection method through network pruning and make a

further step in detection accuracy via a feature inter-relationship
graph-guided KD strategy. First, we devise a novel detector
DC-ACM YOLOV3 as a promising reference detector, on which
our method is established for real-time SAR ship detection.
Then, DC-ACM YOLOV3 is initially trained with channelwise
sparsity regularization. Channel pruning is performed on convo-
lutional layers to remove the less informative feature channels
and, thus, form an object detector with less model volume and
computational costs. The original burdensome model and the
corresponding pruned one are selected as the teacher and the
student model, respectively. Finally, KD techniques are intro-
duced to help the training of the slim student object detector.
Each module would be elaborated in the following sections.

A. Pipeline of the Modified YOLO-Based Detector

This section first reviews the structure of YOLOV3 and then
describes the proposed network architecture named densely
connected and ACM-assisted YOLOv3 (DC-ACM YOLOv3).
The pipeline of the proposed detector is indicated in Fig. 1.
Specifically, YOLOv3 down-samples the input image by five
times corresponding to five stages in the backbone part and
selects three specific scales of feature layers for final predictions.
Three detection heads are separately built on top of these feature
maps and are responsible for detecting objects with different
sizes. More details about YOLOV3 can be traced in [16].

Although the backbone Darknet-53 exhibits good feature
extraction capability in YOLOV3, the performance is restricted
under the application scenario of SAR ship detection, in which
targets are with multiscales and multiaspect ratios. Furthermore,
the balance between accuracy and speed is also demanding.

Dealing with the above limitations, a more powerful and
lightweight backbone is designed to extract more representative
features, thus ensuring the precision of small ship detection
and improving the detection efficiency. A more optimal fea-
ture extraction network named Darknet-ARes, where A means
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Fig. 2.  Architecture of the asymmetric convolution module.

asymmetric, is designed to partly reduce the computational
complexity and parameter size of the network.

To maintain the multiscale object detection capability of the
YOLOV3 network, the modified structure retains the framework
of five stages in the backbone with three output branches. The
original backbone Darknet-53 in YOLOV3 uses five residual
modules (Resn where n means the number of Res Unit) for fea-
ture extraction, while Darknet-ARes is streamlined by replacing
the second convolution module in residual bottlenecks with 3 x
3 depthwise separable convolution (DSC), as shown in Fig. 1.

FPN-style [43] architecture is introduced in YOLOV3 to make
the deeper network contain both rich semantic features and abun-
dant spatial features, which has improved the accuracy of small
target detection, while exhibiting poor performance on medium-
or large-sized objects. To further improve the capability of mul-
tiscale detection, we draw the inspiration of dense connection
in [44] and integrate a novel feature fusion scheme into the last
three stages of Darknet-ARes, thus achieving multiscale dense
prediction.

For each feature level in the backbone, instead of merely
fusing two successive feature levels, we merge features from
other levels as well. The blue modules (m x) in Fig. 1 illustrate
the dense prediction scheme, in which the three-scale feature
maps used for prediction head are densely connected after being
up-sampled. Among them, m X represents up-sampling the fea-
tures with stride m and the up-sample layer is implemented by
a deconvolution operation with stride m. Our model integrates
the outputs of three different scales by up-sampling and con-
catenation through top-down pathway and dense connections.
Therefore, the low-resolution but semantically rich features are
adequately fused with high-resolution but locationally aware
features. In this way, each level is able to leverage both high-
level semantic and low-level fine-grained features, thereby being
beneficial for the detection of multiscale targets.

For the purpose of more efficiently and effectively capturing
long-range dependencies, He ef al. [45] exploited spatial pyra-
mid pooling (SPP) at the end of the backbone network, thus to
enlarge the receptive fields of backbone features and to aggregate
the most informative context features. However, the spatial
pyramid module only processes square receptive fields and the
performance would degenerate when detecting ships with large
aspect ratios. In this article, the ACM is designed to enrich
different shapes of receptive fields with minimal computation
costs. As can be seen from Fig. 2, two additional convolution
branches with kernel d x 1 and 1 X d are added in parallel with
d x d convolutional layer to enrich receptive fields. The pro-
posed ACM is attached at the end of the feature map processed by
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dense connection, thus enhancing the representation capability
of features with rectangular receptive fields.

B. Sparsity Training Channel Pruning

Due to the limited memory and computing power of embed-
ded devices, real-time ship detection of in-orbit missile-borne
or air-borne SAR is extremely challenging. Here, we follow
the pruning scheme illustrated below and construct a more
lightweight and efficient SAR ship detector through channel
pruning of convolutional layers in DC-ACM YOLOv3 network
model. To this end, we obtain Tiny YOLO-Lite by following the
procedure depicted in Fig. 3.

Aiming at providing a simple but effective scheme to achieve
channel-level sparsity in CNNs, sparsity regularization is en-
forced in the training objective. First, a scaling factor for each
channel is assigned to represent the channel’s importance. Then,
channelwise sparsity training is performed to discriminate im-
portant channels from unimportant ones. Finally, we set a global
threshold to determine the channels to be removed. Next, the
selection of scaling factor and the procedure of sparsity training
will be illustrated.

1) Scale Factors in BN Layers: As a powerful operator
which ensures fast convergence and improved generalization,
BN layer [46] is usually connected after a convolutional layer
in most conventional network structures. In particular, BN layer
normalizes the feature activations using mini-batch statistics,
which can be formulated as follows:

- Zin — M
Out_f)/\/o_274i>6

where 1 and o are the mean and standard deviation value of input
features in a mini-batch and ~ and 3 denote trainable scaling
factor and bias parameter.

Following the common practice, the BN layers in our back-
bone network are inserted after the convolutional layers with
trainable factors, of which the scaling factors are adopted as
indicators of channel importance.

Specifically, some special connections between layers are
required to be treated carefully. During pruning process, we
first construct a pruning mask for all the convolutional layers
according to the global threshold 4 and the local safety threshold
0. For a route layer, the pruning masks of its input layers are
concatenated in sequence and the output mask is taken as its
pruning mask. For shortcut layer which is similar with residual
bottleneck in ResNet, to match the channel numbers of layers
connected by this layer, we iterate through the pruning mask of
all connected layers and perform OR operation on these pruning

+ 8 ey
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Overview of the proposed ship detection distillation framework. The distillation method consists of three modules: distillation of backbone feature,

classification head, and bounding box regression head for each prediction level, as depicted in the yellow parts. Blue parts denote the schematic diagram of
DC-ACM YOLOV3 and they remain unchanged during distillation process, while orange parts are the student network supervised by the teacher network.

masks to generate the final pruning mask for these connected
layers.

2) Training With Channelwise Sparsity Constraint: During
the process of network slimming, we jointly perform training
of network weights and scaling factors, with L1 regularization
imposed on the latter in channelwise scheme. Specifically, the
training objective of channel pruning network is given by

L = lossgetecior + A Z f) @
yel’

where the first term denotes the normal training loss of a
CNN detector, f(y) = || represents L1 normalization which
is widely applied in achieving sparsity, and A balances the two
terms. In our implementation, subgradient method was utilized
to optimize the nonsmooth L1 penalty term as Liu et al. [28] did.
After channelwise sparsity training, a global threshold 4 is set
to pick out the feature channels to be pruned. Given the prune
ratio n, 7 can be denoted as the nth percentile of all v values.
Besides, a local safety threshold @ is also defined in a layerwise
manner. We prune the feature channels whose scaling factors are
less than the minimum value of 4 and 6. In detail, the channels
with near-zero scaling factors are pruned by removing all the
input and output connections and corresponding weights.

C. Knowledge Distillation Strategy

After training with channelwise sparsity-guided regulariza-
tion, we obtain a narrow network in which most scaling factors
are clipped to zero. Although network pruning helps obtain
a lightweight model and fine-tuning helps make up for some
decline in the accuracy, it does not offer satisfactory performance
on the pruned model and the upper limit of the performance gain
is largely dependent on that of the original model. In this article,
anovel KD strategy focusing on feature inter-relationship, called
FIR-KD, is adopted to achieve higher detection accuracy than
the original unpruned network. To introduce the FIR-KD scheme
in detail, this section first illustrates the idea of FIR-KD by

analyzing the weakness of existing methods. In the second part,
the feature inter-relationship established in the graph structure
(FIR-Graph) and the attention-enhanced mechanism in it are
described.

1) Overall Framework and Ideas of FIR-KD: The overall
framework of the proposed KD method is demonstrated in
Fig. 4. The upper blue network represents the teacher network,
while the lower orange one denotes the student network. Three
modules called distillation of backbone feature, classification
head, and bounding box regression head constitute the proposed
distillation framework, and three different levels of knowledge
are adaptively transferred from cumbersome network to the
lightweight one.

Existing works tried knowledge transfer of extracted features
by adding full feature imitation, but we find this kind of imitation
will bring minor performance gain for student model and it is
ambiguous how to deal with feature dimensions inconsistency
when performing distillation. In this work, we developed a
simple but effective feature imitation method utilizing feature
inter-relationship KD, called FIR-KD, which can provide more
sufficient and general information about the distribution and
mutual relationship between different feature levels.

Furthermore, directly doing full feature imitation will in-
evitably introduce large amount of noise from irrelevant areas,
especially for SAR ship detection where the cluttered back-
ground is diversified and overwhelming. Inspired by the atten-
tion mechanism which is proven to be helpful for boosting the
performance of SAR ship detection [11], [47], we embed a novel
attention-based block to guide the feature representation used for
knowledge transfer, which not only spotlights the pivotal pixels
but also restrains the uninformative ones.

2) Details of Attention-Based FIR-Graph: In this part, the
feature affinity graph called FAG is first constructed for
representing adequate knowledge between different levels of
feature maps. Subsequently, each feature in the graph structure
is strengthened by attention module, namely strip pooling based
attention module (SPAM). Finally, the overall loss is formulated
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on the basis of general detection loss functions and serves as the
supervisor for training the slim student network.

Given a training instance x;, the feature inter-relationship
graph will be calculated in both the teacher and the student
network. The graph structure can capture the similarities be-
tween features of different scales, which are then taken as the
high-level backbone feature knowledge to be distilled from the
teacher network.

Let f;(x;) denote the features of x; extracted from [th stage,
which means the intermediate feature maps of three levels in the
backbone network. The feature inter-relationships are formu-
lated as the adjacent matrix of the features from different scales,
referring to as A;. An example of FAG is shown in the right part
of Fig. 5. Then a feature affinity graph of the ¢th training sample
denoted as FAG;, which reflects the backbone feature space, is
expressed as

FAG; = (VmEn) = (fl(xi)vAl) (3)

where V,, is a set of nodes, each of which denotes the feature
distributions of each predicted level. In this case, n = 3 since
only output feature maps of three scales constitute the whole
graph. Each pair of nodes is connected by the edge set F,,
of which each element manifests the feature relationship ma-
trix, A;. We obtain the relationship matrix by calculating the
Euclidean distance between the features from two independent
layers, which can be formulated as follows:

A(m,n) = || fm(xi) = fal@)|3,m,n =1,2..,1. (@)

Next, the attention module is introduced into the feature
affinity graph to boost the salient features and suppress the
background clutters. Based on that, a finer representation of
features with higher potential to reflect pivotal pixels can be
generated.

The concept of strip pooling is first presented in [48], which
utilized a band shape pooling window to perform pooling along
the horizontal or the vertical dimension. Owing to the long and
narrow kernel shape, the object regions with banded shape are
easier to be described and long-range dependencies between
discretely distributed regions can be built. Then, we integrate
both horizontal and vertical strip pooling operations to the
spatial attention block [49]. Thus, an attention-guided feature
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inter-relationship graph is built, which serves as the final form
of feature distillation.

Once features are extracted by the backbone under three stages
with é, %, 3—12 of the input image size, those features are fed into
a conv layer and SPAM sequentially. The diagram of SPAM is
shown in Fig. 6, in which the conv layer is used to unify the
channel numbers for each feature level. To exploit the spatial
attention map Agm (X;) € RWr*Hrx1 a5 the feature importance
descriptor given input feature map X; € RWs*Hs*C the SPAM
first generates two pooled features P, Pyer along the channel
axis in two parallel pathways. In order to keep the same spatial
size of two pooled features from horizontal and vertical direc-
tion, they are fed into a 1-D convolutional layer with kernel size
3 for adjusting the current location and its adjacent features.
Then, it is followed by a convolutional layer and normalized by
the sigmoid function. The computation process can be computed
as follows:

Asam(Xi) = U(f1X1(Phori o Pver)) 5

where o denotes the sigmoid function and f1*! is a 1 x 1
convolution. In our implementation, o denotes the elementwise
addition. Finally, the attention-guided feature map Xg,, is ob-
tained by

Xsam - Asam(Xi) & (X’L) (6)

where @ refers to elementwise multiplication operation. For DC-
ACM-YOLOV3, the output of the last three modified residual
blocks is denoted as feature maps { F'1, F'2, F'3} and this makes
up a feature pyramid. Since feature maps in the pyramid are not
of the same resolution, we have to normalize the feature maps
to the same resolution, which is then utilized as the input of
each vertex of FAG. Therefore, we employ the max-pooling and
linear interpolation to simultaneously adjust the resolution and
achieve the preservation of feature information.

Here, given the multilevel feature sets { F, F, F3}, we nor-
malize them to the same resolution as F5. Thatis, F; and F3 are
down-sampled and up-sampled to the same scale as F5, resulting
in F'f, F5, and F3. Thus, the formulation of the affinity feature
map distillation can be redefined as

Aj(m,n) = |At(E:) — Att(F)) |2, mn=1,2...,1 (7)

where Att(e) means the attention block attached to feature maps
from different levels. Since the attention module is only attached
when training the student network, the parameters of this part
are trained from scratch.

In the above process, the feature importance of each position
in the output tensor can be reflected by feature reweighting,
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which preserves the salient features and suppresses the back-
ground noise. Note that the attention module only participates in
enhancing features to be mimicked when training the student net-
work. Compared to full feature imitation, the attention-guided
feature KD considers the strengthened feature of object-related
regions instead of the whole feature map, avoiding most unnec-
essary information to be mimicked from the teacher model.

The whole structure is optimized with different imitation
losses, in which the classification and regression loss keep the
same format as that in normal detection training loss. As shown
in Fig. 4, we add the supervision on the intermediate feature map
of backbone network, classification head, and bounding box
regression head. Integrating the above three distillation terms
generates the overall training targets of the student model, which
can be defined as follows:

L = ﬂLAl + Lgs + Lreg 3)

where [ is the balance parameter of affinity feature map distilla-
tion and L 4,, Leis, and Ly, constitute the distillation part from
three aspects.

We will show in the experimental section that such feature
transfers are beneficial to improve the performance of student
model.

IV. EXPERIMENTS AND DISCUSSIONS

Our experiments are implemented based on the deep learning
framework PyTorch and carried out on a PC with Intel (R) i7-
8700 K CPU, NVIDIA GTX-1080Ti GPU with CUDA 10.0,
and cuDNN v7. The PC operating system is Ubuntu 16.04.

In the following experiments, we set IOU = 0.5 as the detec-
tion threshold, which means if the overlap between a predicted
bounding box and a ground truth is higher than 0.5, then the
targets in this bounding box are successfully detected. For gen-
erating the final prediction results, the objectiveness confidence
and nonmaximum suppression threshold are set as 0.4 and 0.5,
respectively.

A. Datasets

In order to verify the effectiveness and superiority of the
proposed methods, this article conducts experiments and analy-
ses on two SAR ship datasets: SSDD [50] and AIR-SARShip-
1.0 [51]. The SSDD dataset contains SAR images with differ-
ent resolutions, polarization modes, or sensor types, or under
different sea conditions, scenarios, and so on. Additionally,
ships in SSDD also have many sizes, from the smallest scale of
7 x 7 to the largest scale of 211 x 298, which is convincing to
evaluate the multiscale detection performance of ship detectors
under complex scenarios. It contains 1160 images and 2456
ship instances in total, where the proportion of the training,
validation, and test sets are split with the ratio of 7:2:1. The
ablation studies are implemented on this dataset to identify the
contributions of each improvement. Besides, a high-resolution
SAR dataset called HRSID [52] is also adopted for the visu-
alization of detection results due to the characteristic of small
and different shapes of objects in large detection scenes. Apart
from this, we apply AIR-SARShip-1.0 dataset to evaluate the
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generalization of our method. It comprises 31 single-polarized
and high-resolution SAR images acquired from GF-3 satellite.
Considering the restricted GPU memory, each large-scale image
is cropped into 512 x 512 image blocks with the overlap of
256 pixels for testing.

B. Model Definition

1) Baseline Models: Several models based on YOLO-
series, i.e., YOLOV3, YOLOv3-tiny, YOLOv3-mobilenet, and
YOLOV3-SPP, are selected as baseline models. YOLOv3-tiny
and YOLOv3-mobilenet are YOLOv3-based methods with dif-
ferent backbones, both of which are lightweight and are much
faster with less accuracy than YOLOv3. YOLOv3-SPP repre-
sents a revised version of YOLOv3, which inserts one SPP
module in front of the first detection header.

2) DC-ACM YOLOv3: The self-designed detector based on
YOLOV3 is implemented by incorporating asymmetric convo-
lutional block to the end of the fused feature maps used for dense
prediction. The main difference of our model from the baseline
model lies in a novel backbone network design and the capability
of multiscale prediction realized by dense connection.

3) Tiny YOLO-Lite: Tmplemented by channelwise pruning
and KD, Tiny YOLO-Lite denotes the final lightweight model
with slim network structure and high detection accuracy. After
channelwise pruning, several tiny models are obtained by setting
different pruning ratios, and the local safety threshold 6 is
empirically set as 90th percentile of all || in each layer to keep
at least 10% of channels unpruned in a single layer. Finally, KD
strategy further facilitates the performance of pruned model and
results in the final model called Tiny YOLO-Lite.

C. Training details

1) Normal Training: Following the default configuration in
Darknet-53 [16], we train the YOLOv3-based methods using
stochastic gradient descent with the momentum of 0.9 and
weight decay of 0.0005. The initial learning rate is set as 0.001,
which is altered by a cosine annealing scheduler during sinusoid
training. For both dataset, we train our models for a total of 100
epochs, with a batch size of 8. For the comparison methods, we
set the size of input image as 416 for YOLOv3-tiny and 608 for
YOLOV3 and YOLOv3-SPP.

2) Sparsity Training: Since more adequate training is re-
quired to maintain the sparsity of the pruned network, we per-
form sparse training of the pruned DC-ACM YOLOv3 for 200
epochs. When training with channelwise sparse regularization,
the penalty factor A, which controls the tradeoff between normal
detection loss and sparsity regularization loss, is set as different
values for achieving the best performance of sparsity. All the
remaining settings are kept the same as in normal training.

3) Fine-Tuning or KD Training: After the pruning process,
we obtain a narrower and more compact model, which is then
fine-tuned or trained again with the assistance of KD strategy.
Both of them use the same optimization setting as in training.

Due to the good sparsity of the model generated in the sparsity
training stage, our pruned model can converge fast and achieve



1274

even better results than the original model after introducing KD
strategy.

D. Evaluation Metrics

In this article, the commonly used evaluation indicators such
as average precision (AP), precision—-recall curve, and F1 score
are utilized to reflect the holistic performance of SAR ship
detector. Plotted by calculating the precision—recall pair un-
der different confidence thresholds, the PR curve reveals the
relationship between precision and recall, and the larger the
area it covers, the better the detection results can be obtained.
The precision indicates the correctness of the detection results,
computed by the fraction of positive samples that are correctly
identified. Whereas, the recall reveals the completeness of the
detection results, calculated by the ratio of true positives in all
the detection results. These two metrics can be computed as
follows:

Nrtp
Recall = ———— 9
Nrp + Npn ©)
. Ntp
Precision = ——— (10)
Nrtp + Npp

where Ntp, Ngp, and Ngy denote the number of the correctly
detected ships, the false alarms, and the undetected ship targets.
F1 which combines the precision and recall metrics into a single
measurement is formulated as follows:

Pl — 2 * precision * recall

an

precision + recall

The F1 score measures the detection performance of the model
with a single threshold, while the AP metric evaluates the integral
detection performance under a set of threshold values. It is
measured by the area under the PR curve, which can be defined
as follows:

1
AP = / p(r)dr (12)
0

where p and r denote the precision and recall, respectively.
In addition, to validate the effectiveness of Tiny YOLO-Lite
for real-time SAR application, other indicators such as model
volume, parameter size, floating point operations (FLOPs), and
inference time (7' ~ ms), which are also represented by frames
per second (FPS), are introduced for evaluation.

E. Qualitative and Quantitative Analyses of Results

1) Backbone Impact and YOLOv3 Baseline: We first investi-
gate the impact of two novel submodules in DC-ACM YOLOv3
by successively adding them to the baseline backbone network.
Here, we view the original backbone structure Darknet-53 with-
out the self-designed modules as our baseline and evaluate
the following design choices: 1) densely connected pyramid
(DCP)—the proposed method that rebuilds the feature pyramid
with dense connections and we denote it as DCP; 2) ACM—the
proposed ACM which is attached at the output of the fused
feature from different levels.

Fig. 7 shows the superiority of DCP in the detection of small
targets compared with the typical feature pyramid structure. As
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shown in Fig. 7(b), several small-scale ships are neglected in
both open sea area and inshore area. In contrast, the network
with DCP exhibits a better performance when dealing with small
chips. In terms of detecting inshore ships with small scale, it is
apparent that some densely distributed ships are easier to be
detected under DCP structure. Seen from the fourth column
in Fig. 7, when ships are arranged end to end on the shore,
they can be well distinguished if DCP is introduced, while
two neighboring ships are taken as one target in the baseline
model. This is advantageous because each feature level is given
a much richer information flow from all its bottom layers rather
than only the adjacent layer. Note DCP has negligible extra
consuming time and only costs 0.5 ms more time for an input
image of size 416 x 416, making it have an ignorant impact on
the speed of the whole network. Since multiscale feature fusion
in the format of dense connection is beneficial for generating
more discriminative features especially for small targets, DCP
is employed as the auxiliary strategy to boost the performance
of Darknet-ARes.

Furthermore, we also analyze some typical detection results to
verify the effectiveness of ACM block. Various shapes of ships
are ubiquitously located in the inland area, as demonstrated in
Fig. 8. It is distinct that some missing detections exist in the in-
shore area, such as ships in the first and second columns of Fig. 8.
This may be because the general convolutions with fixed kernel
size show limited capability of extracting enough receptive fields
for targets with relatively large aspect ratio. Besides, take ships
in the last two columns of Fig. 8(b), for instance; although some
parts of ships are involved in the predicted bounding boxes, the
boundary areas are inadequately represented and object parts
far from the center are not properly enclosed. We argue that this
phenomenon lies in the insufficient semantic representation of
the areas between objects and the complex surroundings such
as docks, buildings, and other man-made facilities since the
targets are prone to be affected by interference with similar
scattering characteristics. Enabled with more appropriate fea-
ture representation brought by specific convolutional operations
with asymmetric kernel sizes, more accurate localization which
reflects the actual shape of ships can be obtained. Nevertheless,
there is still some missing detections in terms of densely packed
ships, which will be later discussed.

2) Ablation Experiments: To verify the importance of each
component, we show a comprehensible ablation study in this
section. The baseline of the ablation experiment is the pro-
posed DC-ACM YOLOV3. We gradually add sparsity training,
channelwise pruning and KD according to the order of network
compression.

a) Effect of channel sparsity training: During the sparsity
training, we visualize the scaling factors in all BN layers of
our backbone network to trace the change in the distribution
of scaling factors under different A values. Although sparsity
training is effective in reducing the scaling factors, finding the
most optimal penalty factor A in (2) is good for sparsification
process and conducive to subsequent channel pruning. As can
be observed in Fig. 9, the number of smaller scaling factors
increases gradually, while the number of larger factors decreases
with the training continues.
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Fig. 7.
structure. (c) Results of densely connected FPN structure.

With the increase of A, the scaling factors become more clus-
tered near zero. When A = 0, there exists no sparsity regulariza-
tion and the distribution is relatively flat. When A = 5 x 1074,
the sparsity of scaling factors cannot be fully guaranteed and
the model starts failing with underfitting. When A = 0.001,
nearly all scaling factors fall into the region near zero. This
process can be interpreted as a feature selection happening in
the intermediate layers of deep CNNs, where we only retain the
channels with nontrivial scaling factors. After sparsity training, a
slightly performance drop can be captured, which will be further
compensated by subsequent training stage. In our implementa-
tion, the DC-ACM YOLOWS3 is trained with . = 107> to achieve
channel sparsity.

b) Effect of channelwise pruning: In our experiments, we
obtain several models under different pruning ratios. A variety of
global thresholds corresponding to the prune ratios ranging from
0.5 to 0.97 are adopted to perform aggressive channel pruning,
where prune ratios denote the percentile of pruned channels.
The relationships between AP versus parameter size and versus
FLOPs are demonstrated in Fig. 10 for explicit comparison.

For instance, compared with the unpruned model DC-ACM
YOLOV3, channelwise pruning with pruning ratios of 0.5,

Comparison of detection results under different methods on SSDD and HRSID chip images. (a) Ground truths. (b) Results under ordinary pyramidal

0.8, and 0.95 actually decreases the model parameters size by
65.22%, 96.54%, and 99.18% and reduces FLOPs by 53.07%,
80.87%, and 92.65% (when the input size is 416 x 416). Under
the moderate pruning ratio 0.6, the pruned model volume shrinks
to 39.4 M, which is approximate to that of YOLOvV3 tiny. This
again verifies the effectiveness of channel pruning scheme in
compressing the model size. On the other hand, although channel
pruning enables fewer training parameters in the network, the
detection accuracy exhibits a sharp decrease from 0.8907 to
0.8851, 0.8456, and 0.3698, respectively. When the prune ratio
increases to 0.9, the detection performance is getting worse to
0.7075 AP, which is much poorer than that of YOLOv3-tiny
(0.8241). One of the reasons for this phenomenon might be
that too shallower structure will degenerate the detection per-
formance and the loss of accuracy caused by pruning should
be compensated by fine-tuning stage. In addition, the inference
time under the input size of 416 x 416 evaluated on a NVIDIA
GTX1080Ti GPU is reduced by 38.48%, 42.33%, and 43.90%
accordingly. Owing to the pruning of less important channels,
the slim detector under the prune ratio 0.95 runs about 1.8 times
faster than the original model. In our implementation, we choose
the prune ratio as 0.95 for balance of speed and accuracy.
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Fig. 8.

Comparison results of the detector without and with ACM in the backbone network. The blue rectangles are the detection results and the green numbers

above the detection boxes represent the confidence score. (a) Ground truths. (b) Results of the baseline. (c) Results of the baseline with the addition of ACM block.

A'=5%¢71074

15

Number
Number

o
050 0.75 100 125 150 175 200 225 250 0.00 0.25 0.50
Scaling factor value

Fig. 9.

Scaling factor value

200

Number

II | | IIII 1 1
0.75 1.00 125 1.50

0 .
0.00 0.05 0.0 015 020 025 030 035 0.40
Scaling factor value

Distributions of scaling factors in a trained DC-ACM YOLOV3 under different degrees of channelwise sparsity regularization (controlled by A). A = 0

means the base training process. Too small A shows little impact on sparsity while the increase of A is conducive for making scaling factors more sparser.

c) Effect of knowledge distillation: As can be seen from
Fig. 10, model pruning leads to potential performance degra-
dation especially when the prune ratio is high; however, this
accuracy gain compensated by fine-tuning on the pruned net-
work is restricted. In this part, KD strategy is applied to retrain
the lightweight detection model obtained in the previous stage.
To validate the effectiveness of feature map graph-based KD,
we conduct experiments with different configurations to reveal

the specific role of each component in improving the detection
performance. Several distillation components contain 1) full
feature imitation denoted as FFI, which serves as the baseline
KD strategy; 2) feature inter-relationship imitation under graph
structure denoted as FIR; 3) attention-strengthened feature imi-
tation in which attention refers to the SPAM, and this is denoted
as SPAM-FI; and the combination of 2) and 3) denoted as
SPAM-FIR. The overall comparative evaluations are reported
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TABLE I
EFFECT OF MODULES PROPOSED IN KD STRATEGY IN TWO DIFFERENT SCENES. BOLD VALUES MEAN THE BEST AP UNDER THE INSHORE SCENE AND OFFSHORE
SCENE
Scene Offshore Inshore
KD Strategy FFI FIR SPAM-FI ~ SPAM-FIR FFI FIR SPAM-FI ~ SPAM-FIR
Attention Module X X v v X X v v
Inter-relationship Graph X v X v X v X v
Precision 0.954 0.956 0.943 0.968 0.686 0.628 0.729 0.712
Recall 0.970 0.975 0.980 0.975 0.838 0.792 0.808 0.838
F1 0.962 0.966 0.961 0.972 0.754 0.701 0.766 0.770
AP 0.9676  0.9794 0.9774 0.9799 0.7833  0.7941 0.8010 0.8247
1.0 L 60 PR curves of different modules in KD under offshore scene
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Fig. 11.  Precision-recall (PR) curves of different components in KD tested on

Fig. 10. Histogram of the relationship between model property and average
precision under different pruning ratios. (a) Parameter size versus average
precision. (b) FLOPs versus average precision.

in Table I, and the corresponding PR curves of different settings
tested on inshore and offshore ships are presented in Fig. 11(a)
and (b), respectively.

As can be seen in Table I, SPAM-FIR consistently
outperforms the other methods. With the combination of feature
inter-relationship graph structure and attention mechanism, the
KD strategy SPAM-FIR displays different degrees of improve-
ment on the FFI baseline, such as 1.0%, 1.23% higher F1, AP

offshore and inshore ships. (a) PR curves of FFI, FIR, SPAM-FI, and SPAM-FIR
tested on offshore ships. (b) PR curves of FFI, FIR, SPAM-FI, and SPAM-FIR
tested on inshore ships.

on offshore scene and more distinct discrepancy of 1.6%, 4.14%
higher F1, AP on inshore scene.

In terms of offshore ships, the PR curves of FIR versus SPAM-
FIR and FFI versus SPAM-FI are similar to each other, while
the improved ones are all slightly better than that of FFI. This
means different KD strategies have insignificant impact when
detecting those offshore ships. Nevertheless, apparent difference
can be observed among the PR curves of these strategies when
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TABLE II
EVALUATION RESULTS OF BASELINE MODELS WITH DIFFERENT BACKBONES AND PRUNED MODELS WITH KD STRATEGY. THE MOST LIGHTWEIGHT MODEL
VOLUME AND PARAMETER SIZE ARE MARKED AS BOLD

Model Name YOLOv3- YOLOv3- YOLOv3- YOLOvV3- DC-ACM Pruned DC-ACM Pruned DC-ACM Tiny YOLO-
Darknet53 SPP tiny mobilenet YOLOv3(Teacher) YOLOv3(student) YOLOv3(+finetune) Lite(Student+KD)

Precision 0.936 0.928 0.835 0.973 0.855 0.042 0.773 0.896

Recall 0.938 0.944 0.827 0.886 0.936 0.831 0.939 0.938

AP 0.944 0.947 0.814 0.872 0.934 0.369 0.924 0.946

Fl-score 0.937 0.936 0.831 0.927 0.984 0.079 0.848 0.917
Inference time(ms) 30.8 30.9 14.0 18.8 26.8 2.5 3.8 39

FPS 32.48 32.40 71.18 53.27 37.24 397.48 258.26 258.61
Parameter Size(M) 58.67 59.68 8.27 22.68 47.23 0.61 0.61 0.61
Model Volume(M) 246.4 250.7 34.8 95.5 202.3 2.8 2.8 2.8

TABLE III

COMPARISON OF EVALUATION RESULTS UNDER DIFFERENT OBJECT DETECTORS ON SSDD. NOTE THAT THE COMPUTATION COST REPRESENTED BY FLOPS 1S
CALCULATED AT THE INPUT SIZE OF 416 x 416 WHEN YOLO-SERIES METHODS ARE EVALUATED, WHILE THE INPUT SIZE IS SET AS 512 x 512
WHEN OTHER METHODS ARE INVOLVED. THE BOLD VALUE ALSO MEANS THE BEST PERFORMANCE

Detection Method AP Fl-score  FLOPs(G) FPS Inference Time(ms)  Parameter Size(M)  Model Volume(M)
Faster R-CNN 0.827 0.831 49.37 16.0 62.5 40.2 323.0
FPN 0.893 0.839 63.25 15.6 64.2 41.1 330.2
SSD 0.904 0.893 59.86 20.1 49.8 36.0 225.1
RetinaNet 0.921 0.862 61.22 18.0 555 37.7 290.0
RefineDet 0.932 0.898 64.05 17.7 56.4 39.3 299.6
YOLOV3 0.944 0.937 30.51 325 30.8 58.7 246.4
DAPN 0.898 0.841 62.87 14.2 70.4 38.8 270.3
DS-CNN 0.917 0.906 9.54 71.3 12.9 32 13.7
HR-SDNet 0.943 0.938 91.29 11.4 87.7 69.2 5575
Tiny YOLO-Lite(Ours)  0.946 0.917 1.94 258.6 3.9 0.6 2.8
detecting inshore ships [see Fig. 11(b)]. The precision rate under 1.0
the SPAM-FIR strategy is always higher than those of FFI, FIR,
and SPAM-FI especially when the recall rate is higher than 0.8. 08 4
The significant improvement of our method mainly comes DS-CNN
from two aspects: 1) The feature map graph structure considers HR-SDNet
the relationship between different levels of feature maps, which B4 i b
. @ RefineDet
not only ensures more sufficient knowledge can be extracted S
Lo . 19 —— Faster R-CNN
from the teacher but also means the imitation will be less £ 0.4- RetinaNet
influenced by the size inconsistency of feature map scales. 2) —— FPN
The attention module used in the graph structure effectively 02/ — SSD
reinforces the feature of object-related area for more accurate —— DAPN
imitation and, thus, suppresses the undesirable background clut- Ours
ter while maximally retaining the target information. L in 05 5% oie e i
Furthermore, we also implement some YOLO-series methods Recall
based on backbones with different model volumes, such as
Fig. 12.  Comparison of different CNN-based methods on SSDD.

YOLOv3-tiny, YOLOv3-mobilenet, and some improved ver-
sions of YOLOV3 such as YOLOv3-SPP for fair comparison.
The backbone network in the above models is pretrained using
the ImageNet dataset, while the proposed detector using the
self-designed backbone is trained from scratch. The DC-ACM
YOLOV3 based on Darknet-ARes is used as the teacher network
to examine the difference of performance according to the
teacher architecture, while the lightweight model pruned from
the teacher network is utilized as the student networks. With the
participation of KD strategy, the final tiny model is denoted as
Tiny YOLO-Lite.

Table II shows the comparison results in terms of accuracy,
speed, computational cost, and model volume, in which the
evaluation metrics of directly using teacher and student without
KD are also depicted as baseline. Compared with the original

YOLOv3-based methods (see the second and third columns of
Table II), the proposed tiny model enjoys 0.264% better AP than
YOLOV3, while 0.084% slightly lower AP than YOLOv3-SPP.
In contrast with some relative lightweight backbone models,
Tiny YOLO-Lite shows about 16.30% and 8.53% more excellent
performance than YOLOv3-tiny and YOLOV3-mobilenet in de-
tection accuracy, respectively. Meanwhile, 92.66% and 97.30%
fewer trainable parameters are lessened and 2.63 and 3.85 times
faster inference speed can be guaranteed. When DC-ACM
YOLOV3 is pruned without KD, although the fastest inference
speed can be ensured, the precision rate decreases sharply
accordingly. This is because a too small network shows limited
capability of feature representation. Admittedly, fine-tuning
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Fig. 13.

Comparison of ground truths and visual detection results under different CNN-based methods on SSDD inshore ships. Rectangles with green color

mark the ground truths, and those added with green number mark the prediction results with confidence scores. (a) Ground truths. (b—d) Results of DS-CNN,

YOLOvV3-mobilenet, and our method, respectively.

stage helps elevate the detection performance to a certain degree;
however, KD strategy can further achieve up to 2.2% accuracy
gain than using fine-tuning alone. In addition, the proposed tiny
model can achieve better results than that of both the teacher and
student baseline, especially in the aspect of reduced computation
cost, compressed model size, and raised inference speed. This
indicates that employing feature inter-relational information
transferred from a deep teacher model to a lightweight student
will significantly make up for the performance loss caused by
pruning and even attain 1.24% performance enhancement in
terms of AP, which is even beyond the teacher baseline.

F. Comparison of State-of-the-Art Methods

In this section, SSDD test set is adopted to verify the superior-
ity of the proposed method compared with other state-of-the-art
CNN-based methods. As shown in Table III, the detection

performance of classical CNN-based methods in terms of speed,
accuracy, and computational complexity are presented in the first
six rows, while the seventh to ninth rows denote the results of
some newest methods specially designed for SAR ship detection.

What stands out in this table is the slow decrease in the
performance of Tiny YOLO-Lite model with large compress
ratio of model parameters. The AP and F1-score of our method
cannot reach the optimal at the same time; nevertheless, the best
performance attained in other evaluation indexes can compen-
sate it. More prominently, with only a tiny model of 2.8 M,
the detection speed of the proposed method is faster than all
the others by several or even tens of times. Thus, a good balance
between speed and accuracy can be well ensured in Tiny YOLO-
Lite. Finally, from the perspective of lightweight attribute, we
compare computational cost, parameter quantity, as well as
model volume of different methods. From Table III, compelling
results are achieved by the proposed model in comparison with
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(b)

Fig. 14.

the unpruned counterpart YOLOV3, including ~93.6% decrease
of FLOPs, ~98.9% decline of parameter size, and only ~0.01 x
model volume.

Although DS-CNN, which is mainly composed of depthwise
convolutions and other regular strategies used in YOLOV3, also
enables high-speed SAR ship detection, our model still surpasses
itin terms of 2.9% higher AP, 1.1% improved F1-score and even

Results on AIR-SARShip-1.0. The green rectangles represent the detection results. The orange ellipses denote the missing ships. (a) Image 1. (b) Image 2.

about 3.35 times faster speed, 0.19 times smaller model size.
Therefore, Tiny YOLO-Lite indeed achieves the lightest and
the minimum calculated SAR ship detection framework which
combines the advantage of both high accuracy and fast speed.
More intuitive performance comparisons such as PR curves
are demonstrated in Fig. 12. Apparently, our method improves
both the precision and recall rate considerably, reaching the best
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performance in terms of speed and accuracy. Overall speaking,
our approach can meet the requirements of accurate detection
in real-time applications and is suitable for scenarios where the
hardware resources on the satellite are constrained.

Fig. 13 displays the detection results of inshore ships tested
in complicated scenarios. The ships are intensively packed in
a complex background and we only choose some lightweight
models for fair comparison. Comprehensive detection results
indicate that when the scene is complicated, both YOLOv3-
mobilenet and DS-CNN have the phenomenon of missing detec-
tion (from the first three rows) and false alarms (from the last two
rows). Some two parallel parking ships are detected as one ship,
or the prediction boxes of them are severely overlapped. This is
partly due to the unclear boundary between densely parked ships,
which leads to semantic feature under-representation of the
whole ship. In the proposed detector, we can obtain the predicted
boxes with higher quality and more compact representation,
which is extremely beneficial for distinguishing the parallel
parking ships distinctively. Additionally, more false alarms such
as isles and man-made facilities appear in the context of inland
area. The reason may be that the adjacent interference with
similar scattering intensity degrades the performance, while the
powerful feature attentive mechanism in KD strategy helps our
model spotlight pivotal pixels while restraining uninformative
ones and, thus, discriminate ships against the background scat-
ters more easily. To conclude, owing to the collective effect of
channel pruning and KD, our method is simple and computa-
tionally efficient to achieve the outstanding detection results.

G. Generalization Ability Verification

In order to confirm the robustness and generalization ability
of the proposed method, we perform ship detection in two
large-scene SAR ship images in AIR-SARShip-1.0 dataset. The
following figure shows their detection results. From Fig. 14,
most ships in these two images can be successfully detected. In
the first image, there are three missing detection cases mean-
while two false alarm cases. In the second image, there are
seven missing detection cases while only one false alarm case.
Both of them are quite complex and contain almost all types
of missing detections and false alarms, which fully reflects the
generalization ability of the proposed detector. Although the
detection results are slightly inferior than that on the trained
dataset, the migration capability is prospective to be improved.

V. CONCLUSION

Due to the large model size, SAR ship object detector based on
deep learning cannot be deployed on hardware devices with con-
strained computational resources. In this article, a lightweight
object detector named Tiny YOLO-Lite is proposed to achieve
efficient SAR ship detection with both high speed and high
accuracy. First, we redesign a novel detection framework DC-
ACM YOLOV3 according to the multiscale and multiaspect ratio
characteristic of SAR ships. Then, channel pruning scheme is
applied to drastically reduce the number of parameters and com-
putations. To compensate the accuracy loss caused by network
compression, a novel KD strategy is introduced to maintain
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a competitive detection performance. Our feature distillation
method is a general framework which attentively imitates in-
formative features and suppresses noninformative ones in the
format of feature inter-relationship graph and can be universally
applicable for many modern detectors. To this end, a slim
SAR ship detection network with only 2.8 M model size is
obtained, which is only 1% of the original YOLOvV3 in terms
of model volume. Tiny YOLO-Lite is built from scratch with
significant fewer network parameters, lower computation costs,
and lighter model volume. Experiments conducted on two SAR
ship benchmark datasets have proven the superiorities of our
method compared with other state-of-the-art CNN-based meth-
ods. In the future, more efficient distillation methods without
time-consuming training will be explored in the combination of
pruning methods to make the model compression more diversi-
fied and easier for transplantation.
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