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Abstract—Soil moisture (Mv) estimation and monitoring over
agricultural areas using Synthetic Aperture Radar (SAR) are often
affected by vegetation cover during the growing season. Volume
scattering and vegetation attenuation can complicate the received
SAR backscatter signal when microwave interacts with the vegeta-
tion canopy. To address the existing problems, this article employed
the model-based polarimetric decomposition method considering
the two-way attenuation to remove the volume scattering and vege-
tation attenuation. A deorientation process of SAR data was applied
to remove the influence of randomly distributed target orientation
angles before the polarimetric decomposition. To parameterize the
two-way attenuation, Radar Vegetation Index derived from the
SAR intensity images was adopted. The Dubois model was used
to describe backscattering from the underlying bare soil. Since the
soil roughness parameters are difficult to measure under vegetation
cover, the optimum surface roughness method was used to parame-
terize the Dubois model. This soil moisture retrieval algorithm was
applied to the polarimetric multitemporal RADARSAT-2 SAR data
over soybean fields. The validation indicates the root-mean-square
error of 9.2 vol.% and 8.2 vol.% at HH and VV polarization,
respectively, over the entire soybean growing period, suggesting
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that the proposed method is capable of reducing the effect of
vegetation cover for soil moisture monitoring over the soybean field.

Index Terms—Deorientation process, Dubois model, optimal
surface roughness, polarimetric decomposition, soil moisture,
vegetation attenuation.

I. INTRODUCTION

SOIL moisture (Mv) is a crucial factor in many applications
such as agriculture, environment, hydrology, ecology, and

water management [1]–[6]. For example, soil moisture greatly
governs crop growth and nutrient uptake, which in turn affects
the final crop yield [7], [8]. Traditionally, the soil moisture
is measured by in situ field campaign, which is very time-
consuming and difficult to carry on over a large area. Remote
sensing provides an effective method to estimate and moni-
tor soil moisture at different spatial and temporal scales [7],
[9], [10]. Particularly, due to the penetration ability and high
sensitivity to soil moisture, synthetic aperture radar (SAR) has
been widely used for soil moisture retrieval at high spatial and
temporal resolution [11], [12].

The study of soil moisture estimation has been ongoing for
decades and can be divided into two categories: soil moisture re-
trieval over bare soil and under vegetation cover. Over bare soil,
the backscatter signal received by the SAR sensor is determined
by surface parameters (surface roughness, soil moisture, etc.).
To retrieve soil moisture over bare soil, several models such as
Oh, Dubois, and IEM have been proposed with desirable results
since the last century [13]–[15]. The soil moisture retrieval over
bare soil depends on the measurement of soil surface roughness.
However, soil surface roughness parameters are difficult to mea-
sure accurately due to measurement technique [16] and profile
length [17]. Furthermore, dense vegetation cover during peak
growing season can also obstruct soil roughness measurements.
Several studies have focused on developing new algorithms to
avoid in situ measured soil roughness parameters [2], [18]–[20].
Su et al. proposed the calibrated (effective) roughness parame-
ters [20], which used the estimated surface roughness parameters
from previous acquisitions to derive the radar backscatter models
for subsequent SAR data analysis [20]. In 2016, Bai et al. [9]
proposed the optimal roughness parameters, in which roughness
parameters having the best-retrieved soil moisture were selected
as the optimal ones, and a desirable retrieved soil moisture was
achieved [9].
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Over vegetated areas like agricultural field, SAR backscat-
tering signal is more complex than that of bare soils due to
vegetation effect [7], where it mainly affects SAR backscattering
signal in two ways. First, when the microwave signal passes
through vegetation canopy, volume scattering will be mixed into
the received total backscatter signal leading to an increase of
the total backscattering power [21], [22]. In addition, vegetation
water content (VWC) of the crop canopy also attenuates the SAR
signal [23], [24], which will decrease the received backscattering
power [25].

In general, primary algorithms used for soil moisture retrieval
under vegetation cover are microwave radiation transfer model
(RTM) and polarimetric SAR (PolSAR) decomposition. Early
studies of soil moisture retrieval under vegetation cover are
mainly concentrated on RTM [26]–[30]. Among the RTMs, the
semi-physical classical water cloud model (WCM) is extensively
used, which assumes that vegetation consists of a collection
of spherical water droplets that are structurally held in place
by dry matter [26]. The received total backscatter coefficient
is modeled as the summation of the contributions from the
vegetation canopy, the attenuated underlying soil contribution,
and the double-bounce backscatter caused by the interaction
between vegetation and soil. With the advancement of SAR
sensors, PolSAR shows increasing potential for soil moisture
retrieval due to the rich dielectric and crop structural infor-
mation captured by the full polarization signal [23]. However,
the retrieval of soil moisture through RTMs under vegetation
cover rarely incorporates the polarimetric properties, limiting
the interpretation of the PolSAR signals.

Apart from retrieving through RTMs, soil moisture can also
be estimated using the polarimetric model-based decomposi-
tion, which is a powerful method to interpret PolSAR signal
compositions. Hajnsek et al. first investigated the potential of
the model-based decomposition on soil moisture retrieval under
different crop covers at L-band [21]. In their study, the soil
moisture was derived from both surface scattering component
by the X-Bragg model and dihedral scattering component by the
Fresnel model. However, due to different scattering properties
and penetration ability between L-band and C-band SAR, the
L-band polarimetric decomposition method might not be valid
for C-band SAR data [24]. To retrieve soil moisture through
polarimetric decomposition at C-band, the X-Bragg model in
the L-band polarimetric decomposition method was replaced
by surface scattering models (IEM, Oh, etc.) in several studies
[24], [31]. Wang et al. considered the vegetation attenuation
at C-band and neglected the dihedral scattering component,
which has greatly simplified the soil moisture retrieval using
the polarimetric decomposition [24].

In this study, the model-based polarimetric decomposition
method was used to remove the vegetation volume scattering.
Compared with L-band, the dihedral scattering component of
C-band is rather weak over soybean fields. Thus, the same
strategy proposed in [24] was adopted in this study, where the
dihedral scattering was omitted. The deorientation process [32]
of SAR data was applied before polarimetric decomposition to
remove the influence of randomly distributed target orientation
angles and overestimation of the volume scattering compo-
nent. The vegetation attenuation effect was modeled through

Fig. 1. Location of the study area and soybean fields. The background image
is from Google Earth.

a two-way attenuation parameter described used in the WCM
[26]. Compared with parameterizing the vegetation attenuation
using optical vegetation indices such as VWC, leaf area index
(LAI), etc., the radar vegetation index (RVI) derived from SAR
itself was used in this study, which avoids the dependence on
prior optical vegetation indices. After the removal of volume
scattering, the Dubois model [14] was used to describe the
backscattering of the underlying soil for the following reasons.
First, the desirable validity range (mv < 35 vol.%, k·s < 2.5,
θ > 30°) of the Dubois model covers a large range of soil
moisture and roughness conditions over agricultural fields in
the temperate climate zone [14]. Second, compared with the Oh,
IEM model, etc., the relationship between soil dielectric constant
and SAR backscatter coefficient is reversible; through which
soil moisture can be derived directly by the dielectric constant
models [33], [34]. Since the soil surface roughness parameters
greatly affect the soil moisture retrieval due to the difficulty in
getting precise measurements, the optimal surface roughness
method proposed by Bai et al. [9] was used in this study to
parameterize the Dubois model. Multitemporal RADARSAT-2
images together with in situ soil moisture measurement over
soybean fields in southwest Canada were used for validation.

The rest of the article is structured as follows. Section II
introduces the study area and data including in situ measured soil
moisture and time-series RADARSAT-2 images. Sections III
and IV describe the proposed soil moisture retrieval method.
Results and discussion are presented in Section V. Conclusions
are given in Section VI.

II. STUDY SITE AND DATA COLLECTION

A. In Situ Soil Moisture Data Collection

An agriculturally productive area was selected as the study
site, which is located near London in southwestern Ontario,
Canada (see Fig. 1 ). Major crops in this region include soybean,
winter wheat, and corn. In this study, only soybean fields were
used for model development and validation. Soybean in this area
is rain-fed and sown in May and harvested in late September or
early October. Fig. 2 shows ground truth photos of soybean. The
terrain of the soybean fields is generally flat and only about a
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Fig. 2. Ground truth photos of soybean on (a) July 17, (b) August 10, (c) September 13, (d) October 1.

TABLE I
COLLECTED SOIL MOISTURE

quarter of the land is on a gentle slope. Ground measurements
were taken by the team members of Geographic Technology
and Application Laboratory at the University of Western Ontario
during the 2015 growing season. Field campaign was conducted
throughout the soybean growth period close to the RADARSAT-
2 satellite overpassing time. In this study, a total of three soybean
fields (namely S09, S20, S114, respectively) shown in Fig. 1
were selected for model validation. The distance between every
two fields is more than 2 km. A total of seven campaigns paired
with concurrent RADARSAT-2 data acquisition from July 2015
to October 2015 were used for validation. Within each field, three
to eight sample sites were selected to capture the within-field soil
moisture variability, resulting in 11 to 24 samples per satellite
acquisition and a total of 147 samples for the entire season.
During the field campaign, each sample site was placed at least
50 m apart from the other sites to avoid spatial correlation.

During the field campaign, several parameters including veg-
etation cover fraction, plant area index (PAI), and the BBCH (Bi-
ologische Bundesantalt, Bundessortenamt, und CHemische In-
dustrie) phenology were measured. Soil moisture was measured
using a Delta-T ML3 Theta-Probe. The soil moisture sensor has
three 6 cm rods, resulting in an integrated measuring depth of
0–6 cm. At each sampling site, seven measurements were taken,
and their average value was used as the true value for the site. The
geolocation of each sampling site was identified using a global
positioning system . Soil and crop measurements were randomly
taken within a 10 m by 10 m area of each georeferenced site.
PAI and vegetation cover fraction were also measured at each
sampling site using a Nikon D300S camera equipped with a
10.5 mm fisheye lens [35]. In this study, as RVI was adopted to
parameterize vegetation attenuation, only the in situ measured
soil moisture was used for model calibration and verification,
and the BBCH was used to characterize the phenological stages
of the soybean field. Details of field measured soil moisture and
BBCH are shown in Table I.

B. Synthetic Aperture Radar Data and Preprocessing

RADARSAT-2 was a commercial remote sensing satellite
launched on December 14, 2007 by the Canadian Space Agency.
It is equipped with a high-resolution C-band (approximately 5.6
cm wavelength) SAR sensor capable of multiple configurations
and polarizations. In this study, a total of seven Single Look
Complex (SLC) RADARSAT-2 fine-quad polarization (FQP)
images covering the three soybean fields acquired from July to
October 2015 were used. The FQP has a spatial coverage of 30
×50 km and incidence angles range from 19.5° to 42.3° (see
Table II). The nominal spatial resolution of these images was
approximately 8 m.

Preprocessing of the RADARSAT-2 data in this study using
PolSARpro6.0 [22] includes three steps. First, the T3 matrix
was extracted from the original SLC images of RADARSAT-2
acquisitions. Then, in order to reduce the speckle noise, a boxcar
filter with 7×7 window size was applied. Finally, the geocoding
process was applied to make the T3 matrix corresponding to the
radar ground range. The SAR local incidence angle was also
obtained for the SAR signal radiometric correction.

III. POLARIMETRIC DECOMPOSITION

The H/α decomposition was introduced first, which is used
in this study to help understand the scattering mechanism in
soybean fields. Then, the Freeman–Durden three-component
polarimetric decomposition was introduced. Based on that, the
model-based decomposition method used in this study was
presented.

A. H/α Decomposition

The H/α decomposition proposed by Cloude and Pottier [36]
provides a means to understand the scattering mechanisms based
on eigenanalysis of the covariance or the coherence matrix. Two
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TABLE II
COLLECTED SAR DATA

parameters are used to characterize the scattering mechanism,
namely, entropy H, and polarization angle α, which are derived
from the eigenvalues and eigenvectors of the coherency matrix

H =

3∑
i=1

−pilog3pi

α =
3∑

i=1

p3a cos(|ei1|)

pi =
λi∑3
i=1 λi

ei = [ei1ei2ei3]
T (1)

where H is the entropy, α is the polarization angle,
λi (i = 1, 2, 3) is the eigenvalue of the coherency matrix,
while ei (i = 1, 2, 3)is the corresponding eigenvector. The
H/α decomposition was used to help interpret the scattering
mechanism of the soybean fields on different dates.

B. Freeman–Durden Three-Component Decomposition

The Freeman–Durden three-component decomposition de-
composed the measured coherency matrix [T3] into surface
scattering component (modeled by Bragg), dihedral reflection
component (modeled by Fresnel), and volume scattering com-
ponents with randomly oriented dipole scattering elements

T3 =

⎡
⎢⎣

T11 T12 0

T12
∗ T22 0

0 0 T33

⎤
⎥⎦ = Ts + Td + Tv

= fs

⎡
⎢⎣
1 β∗ 0

β |β|2 0

0 0 0

⎤
⎥⎦+ fd

⎡
⎢⎣
|α|2 α 0

α∗ 1 0

0 0 0

⎤
⎥⎦+

fv
4

⎡
⎣
2 0 0

0 1 0
0 0 1

⎤
⎦ (2)

where T3 is the coherency matrix measured by the SAR sensor,
which is assumed to satisfy the reflection symmetry. Ts, Td, Tv
represent the surface, dihedral, and volume scattering compo-
nent coherency matrix, respectively, β denotes the normalized
difference of the Bragg scattering in H and V polarization, α is
the normalized difference of the combined ground-stalk Fresnel
reflection in H and V polarizations, the fs, fd, and fv are the
intensity coefficients of these three scattering components, and
the superscript ‘∗’ denotes the complex conjugate.

The scattering power of surface component (Ps), dihedral
component (Pd), and volume component (Pv) are given by the
following:

Ps = fs(1 + |β|2)
Pd = fd(1 + |α|2)
Pv = fv. (3)

C. Model-Based Polarimetric Decomposition
Used in This Study

An improved model-based decomposition for coherency ma-
trix is adopted in this study, which is based on the Freeman–
Durden decomposition. Three main improvements applied on
the Freeman–Durden polarimetric decomposition were included
in this decomposition method and will be introduced.

The first improvement is adding the deorientation process
since each PolSAR pixel may have different orientation angles
[32]. This process was applied to our research area since about
a quarter of land has a gentle slope. The fluctuation of ran-
domly distributed orientation angles can introduce uncertainty
in polarimetric decomposition, leading to a decreased accuracy
of the soil moisture retrieval. Thus, the deorientation method
proposed by An et al. [32] was applied to the PolSAR data
before polarimetric decomposition. In the deorientation process,
the measured coherency matrix T3 is rotated around the Line of
Sight with an angle φ as follows:

T3(φ) =

⎡
⎢⎣
1 0 0

0 cos(2φ) sin(2φ)

0 − sin(2φ) cos(2φ)

⎤
⎥⎦ · T3

·

⎡
⎢⎣
1 0 0

0 cos(2φ) − sin(2φ)

0 sin(2φ) cos(2φ)

⎤
⎥⎦ (4)

φ ranges from −π/4 to π/4 and is determined through the
following equations:

cos(4φ) =
B√

B2 + E2

sin(4φ) =
E√

B2 + E2
. (5)
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B and E are derived from the original T3 matrix through the
following equations:

B = (T22 − T33)/2

E = R(T23) (6)

where Tij denotes the ith row and jth column element of the
original measured T3 matrix; the sign R denotes the real part of
the complex number.

After the deorientation process, the cross-polarization scatter-
ing power is minimized and the copolarization scattering power
increases.

The second improvement is the determination of the volume
scattering intensity fv through the nonnegative eigenvalue de-
composition (NNED) method proposed by Van Zyl et al. [37]
rather than solving the linear equation (2). According to this
method, fv takes the minimum value that makes the minimum
eigenvalue of remaining coherency matrix (i.e., T3–Tv) zero.
Three solutions were obtained from (2) shown as follows, and
the minimum of them was selected:

fv1 =
(T11V22 − 2R(T12)V12+T22V11+

√
AT

2(V11V22 − V12
2)

fv2 =
(T11V22 − 2R(T12)V12+T22V11 −

√
AT

2(V11V22 − V12
2)

fv3 =
T33

V33

AT = T11
2V22

2 − 4T11R(T12)V12V22 − 2T11T22V11V22

+ 4T11T22V12
2+4�(T12)

2V11V22 − 4�(T12)
2V12

2

+ 4R(T12)
2V11V22−4R(T12)T22V11V12+T22

2V11
2

fv = min(fv1, fv2, fv3) (7)

where Tij denotes the ith row and jth column element of the
measured T3 matrix; Vij denotes the ith row and jth column
element of the volume scattering coherency matrix; the sign R
and� denote the real and imaginary part of the complex number,
respectively.

The third improvement is to ignore the dihedral scattering
component in the polarimetric decomposition. The rationality
of this modification has been justified in [24], and ignoring the
dihedral component could greatly reduce the complexity of soil
moisture retrieval from the remaining scattering component.
Thus, the coherency matrix of the agricultural field can be
expressed as follows:

T3 = Ts + Tv = Ts+
fv
4

·

⎡
⎢⎣
2 0 0

0 1 0

0 0 1

⎤
⎥⎦ . (8)

After applying the improved model-based decomposition on
RADARSAT-2 data, the coherency matrix corresponding to sur-
face scattering component could be obtained and the attenuated
surface backscattering coefficients could be derived using the
following equation:

σo
HH_surface = (Ts11 + Ts12 + Ts12

∗ + Ts22)/2

σo
V V _surface = (Ts11 − Ts12 − Ts12

∗ + Ts22)/2 (9)

where Tsij denotes the ith row and jth column element of
the Ts matrix, σo

HH_surface, σo
HV _surface, σo

V V _surface denote the
surface backscattering coefficients in power after the removal of
volume scattering effect.

SAR local incidence angle generally has a significant impact
on the observed backscattering coefficient, which cannot be
ignored in soil moisture retrieval. To constrain the effect of the
different local incidence angles, a theoretical approach proposed
by Ulaby et al. [38] was adopted to reduce the effect of local
incidence angle after decomposition

σo
θref

= σo
θ

cos2θref
cos2θ

(10)

where θref represents the reference incidence angle, and θ is the
local incidence angle. According to the incidence angle range
of time-series RADARSAT-2 images and the application range
of the Dubois model [14], [39], the reference incidence angle
θref was set to 40° in this study.

IV. SOIL MOISTURE RETRIEVAL AFTER DECOMPOSITION

A. Soil Surface Backscattering Modeling

The Dubois model was employed in this study to determine
the backscattering of the underlying soil of agricultural fields
for mainly two reasons. First, the modeling results under the
condition that mv < 35 vol.%, k·s < 2.5, and θ > 30° [14], [39]
greatly fit the agricultural field condition in this study. Second,
the relationship between soil dielectric constant and backscatter
coefficient is reversible, through which soil moisture can be
obtained directly without any look-up table construction. The
Dubois model expresses the backscatter coefficient as a function
of surface parameters (RMS height, soil dielectric constant)
and radar sensor parameters (polarization, incidence angle, and
wavelength) shown as follows:

σo
hh = 10−2.75 cos

1.5θ

sin5θ
100.028ε tan θ(ks× sin θ)1.4λ0.7

σo
vv = 10−2.35 cos

3θ

sin3θ
100.046ε tan θ(ks× sin θ)1.1λ0.7 (11)

where ε is the soil dielectric constant, which can be transformed
to soil moisture through a dielectric constant model [33], [34]; s
is the root mean square (RMS) height of the surface roughness
in cm; k is free space wave number given by k = 2π/λ; λ is
the wavelength in centimeter; and θ is the incidence angle.

B. Vegetation Attenuation Effect Compensating

Due to limited penetration depth of the C-band SAR, vegeta-
tion attenuation is significant and should not be ignored in soil
moisture estimation. The two-way attenuation parameter of the
surface vegetation layer in WCM [26] was adopted to describe
the vegetation attenuation effect:

τ2 = e−2b·V /cos θ (12)

where τ2 is the two-way attenuation parameter; b is an empirical
coefficient requiring calibration using in situ measurements; V
is the vegetation canopy description that is parameterized by
vegetation index such as VWC, LAI, and Normalized Difference
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Vegetation Index, etc. As microwave signal is sensitive to water
content, VWC is usually selected to parameterize the signal;
however, the VWC usually relies on in situ measurement or
optical remote sensing. Kim et al. found a strong relationship
between RVI and VWC, demonstrating that RVI is a robust
method for characterizing vegetation canopy [40]. Thus, RVI
was used to parameterize the two-way attenuation in this study.
The RVI is given by the following:

RV I =
8σo

HV

σo
HH + σo

V V + 2σo
HV

(13)

where σo
HV is the cross-polarization backscatter coefficient in

power; and σo
HH , σo

V V are the co-polarization backscatter coef-
ficients.

Through the two-way attenuation parameter, the relationships
between surface backscatter coefficients after polarimetric de-
composition and the Dubois modeled backscatter coefficients
are established

σo
HH_surface=τ2 · σo

HH_dubois=e−2b·RV I/cos θ · σo
HH_dubois

σo
V V _surface=τ2 · σo

V V _dubois=e−2b·RV I/cos θ · σo
V V _dubois.

(14)

Furthermore, by substituting (11) into (14) and inverting the
equation, the relationships between backscattering coefficients
and soil dielectric constant can be expressed as follows:

ε(HH) = log10[
σo
HH ·sin3θ

10−2.75·e−2b·RV I/cosθ ·λ0.7·cos1.5θ·(ks·sin θ)1.4

]/
0.028 tan θ

ε(V V ) = log10[
σo
V V ·sin3θ

10−2.35·e−2b·RV I/cosθ ·λ0.7·cos3θ·(ks·sin θ)1.1

]/
0.046 tan θ.

(15)
Soil moisture Mv can be calculated through Topp’s dielectric

mixing model [33]

Mv = − 5.3× 10−2 + 2.92× 10−2ε− 5.5

× 10−4ε2 + 4.3× 10−6ε3. (16)

For convenience, the established relationship is referred as the
coupled model, through which the soil moisture can be directly
obtained by surface backscatter coefficients after polarimetric
decomposition.

C. Optimum Surface Roughness Parameter

Apart from vegetation cover effect, soil moisture retrieval is
also largely influenced by surface roughness parameters. How-
ever, precise measurement of surface roughness is very difficult
due to the measurement technique and dense vegetation cover
[16]. Therefore, optimum surface roughness proposed by Bai
et al. [9] was used to parameterize the Dubois surface scattering
model.

The procedure for determining the optimal roughness param-
eter is a process of selecting the optimal roughness value in a
predefined range. In this study, the predefined range of optimal
roughness (i.e., RMS height s) is set from 1 to 30 mm with�s=
1 mm, suitable for typical roughness condition over agricultural
fields [41].

Fig. 3. Schematization of the proposed soil moisture retrieval method.

D. Process of the Soil Moisture Retrieval Algorithm

The soil moisture retrieval algorithm proposed in this study
includes the following four major steps as illustrated in Fig. 3.

1) Perform the deorientation process on RADARSAT-2 data
before the model-based decomposition. Then the mea-
sured coherency matrix T3 without the effect of orientation
angle could be derived.

2) Perform polarimetric decomposition on measured T3 ma-
trix after deorientation, including the determination of
volume scattering intensity and deriving surface scatter-
ing coherency matrix. Surface scattering backscattering
coefficients are subsequently obtained.

3) Determining optimum surface roughness and calibrating
the coupled model (details are shown in Fig. 4). First, the
decomposed surface backscatter coefficients σo

HH_surface,
σo
V V _surface, measured soil moisture, RVI and the RMS

height s in the predefined range (i.e., s = 1 to 30 mm)
are used to calibrate the coupled model through the least-
squares fitting method. Retrieved soil moisture are subse-
quently obtained and RMSE is calculated using in situ soil
moisture measurements. Then update the RMS height s in
the predefined range until s reaches up to 30 mm. The value
of RMS height s corresponding to minimum RMSE is
selected as the optimal surface roughness. Then, calibrate
the coupled model using the optimal surface roughness.

4) Retrieve soil moisture using the determined optimal
roughness parameter and the established coupled model.
After that, the result is validated using the in situ
measurements.

V. RESULT AND DISCUSSION

A. Scattering Mechanisms Analysis

The H/α decomposition introduced in Section III-A was used
to help understand the scattering mechanisms in the soybean
fields, and the H/α plane on different dates are shown in Fig. 5.
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Fig. 4. Schematization of optimum surface roughness determination and the
coupled model calibration.

From July 17 to September 13, the scatters in the H/α plane
were relatively dense, mainly distributed in Z6, Z5, and Z2.
This suggests that the dominant volume scattering or dominant
surface scattering with the effect of vegetation attenuation. From
September 17 to October 1, the scatters in the H/α plane became
more dispersed. More scatters are located in Z9 with a lower
value of H and α, showing dominant surface scattering.

According to ground data, soybean was sown in May and its
canopy was relatively dense in July. From July 17 to September
13, the soybean canopy was well developed with relative high
vegetation coverage. Since September 17, the vegetation cover
value decreased rapidly, indicating the coming of late growth
stage. The temporal evolution of H/α agreed well with its growth.

Meanwhile, it is noted that the scatters on the H/α plane for
September 13 were less located in Z6 compared with July 17,
August 10, and September 3. This is due to the relatively high
incidence angle (around 40°) of the RADARSAT-2 image on
this date compared with the SAR data on other acquisition dates
(around 20° or 30°) as the surface scattering component is more
significant at low incidence angle [11].

In addition to the H/α decomposition, the Freeman–Durden
three-component polarimetric decomposition with the first and
second improvement in Section III-C (i.e., deorientation process
and determine fv by NNED) was used to further explain the
scattering mechanisms. Fig. 6 illustrates the percentage of the

Fig. 5. H and α plots over soybean fields in different date. (a) July 17,
(b) August 10. (c) September 03. (d) September 13. (e) September 17.
(f) September 27. (g) October 01.

surface, dihedral and volume scattering power on different dates
in these three soybean fields. The scattering power of volume
scattering from July 17 to September 3 was higher than Septem-
ber 17 to October 1, while the percentage of surface component
scattering power shows a reversed tendency. This phenomenon
is consistent with the temporal evolution of H/α as well as the
vegetation phenology change. Meanwhile, it is observed that the
surface scattering power on September 13 was obviously lower
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Fig. 6. Time-series distribution of dihedral, volume, and surface scattering
power in percentage.

than July 17 to September 3, agreeing with the result by H/α
decomposition.

Besides, it is worth noting that over the entire soybean growing
period, the dihedral scattering component only accounted for
a small fraction (3.1% to 9.9%) of the total scattering power.
Therefore, it is reasonable to ignore the dihedral scattering
component in the polarimetric decomposition to greatly simplify
the procedure of soil moisture retrieval through the remaining
components.

B. Vegetation Orientation Analysis

The copolarization power ratio Pr proposed in [42] was used
to analyze the orientation of dipoles in soybean fields, which is
defined as follows:

Pr = 10 · log < |SV V |2 >

< |SHH |2 >
. (17)

If Pr is less than –2 dB, vertically oriented dipoles are as-
sumed; if Pr is between –2 and 2 dB, randomly oriented dipoles
are assumed; for Pr that is higher than 2 dB, horizontally oriented
dipoles are assumed.

The percentages of vertical, random, and horizontal vegeta-
tion orientation points at different growth stages are illustrated in
Fig. 7. Throughout the entire soybean growing period, although
the phenology and crop structure vary with vegetation growth,
random orientation is dominant, accounting for a fraction of
67% to 100%. Overall, the sample sites with random orientation
vegetation take up to 81.3% of the total sample sites of all dates.
This result is consistent with the conclusions reported by Moran
et al. that soybean is mainly characterized by random scatters
[43]. Thus, unlike selecting the adaptive volume coherency
matrix dynamic [24], [31], we only used the random scattering
coherency matrix to describe volume scattering due to random
orientation accounts for the vast majority in total.

C. Sensitivity of Soil Moisture to RMS Height

As mentioned in Section IV-C, soil moisture retrieval over
vegetation areas also greatly influenced by surface roughness.

Fig. 7. Time-series distribution of vertical, random, and horizontal vegetation
orientation percentage.

Fig. 8 illustrates the relationship between the retrieved soil
moisture and SAR backscatter coefficients through the Dubois
model and Topp’s dielectric mixing model with different RMS
height s. RMS height was set from 0.5 to 1.4 cm, with a step size
of 0.3 cm (corresponding to different curves in Fig. 8). Other
parameters were set to constants according to RADARSAT-2
configuration and field situation as follows: incidence angle:
40°, wavelength: 5.5504 cm, wavenumber: 1.132 rad/cm.

As illustrated in Fig. 8, the sensitivity of backscatter coeffi-
cients to soil moisture increases as soil moisture increases. When
soil moisture is high (Mv > 40 vol.%, even sometimes Mv >
0.35 vol.%), the sensitivity of backscattering coefficients to soil
moisture is extremely high which makes it difficult to estimate
soil moisture through the coupled model. For dry soil (Mv <
10 vol.%), the backscattering coefficients are less sensitive to
soil moisture changes. Thus, a small variation in backscatter
coefficients will lead to a significant change in the estimated
soil moisture, introducing more uncertainties in the retrieved
soil moisture.

Besides, the RMS height has a great impact on the soil
moisture (illustrated by the different curves in Fig. 8). As the
RMS height increases, smaller soil moisture would be derived
for a certain backscatter coefficient. Furthermore, the sensitivity
of the backscattering coefficients to soil moisture also varies
with RMS height. As the backscatter coefficients increase, the
radar backscatter signal will saturate quickly with a higher
RMS height value. A small change in RMS height can lead
to a significant difference in the retrieved soil moisture for a
certain backscattering coefficient. Therefore, optimum surface
roughness proposed by Bai et al. [9] was used to the Dubois
model for subsequent soil moisture retrieval.

D. Validation of Underlying Backscattering Modeling and
Deorientation Process

To evaluate the Dubois model for describing the underlying
soil backscattering, modeled backscatter coefficients were de-
rived using the coupled model with measured soil moistures
as inputs. Fig. 9 shows the scatterplots between the modeled
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Fig. 8. Relationship between soil moisture and backscatter coefficients at
different RMS height at (a) HH polarization and (b) VV polarization.

backscatter coefficients and backscatter coefficients after po-
larimetric decomposition. The RMSE between the modeled and
decomposed backscatter coefficients were 3.16 and 2.18 dB
at HH and VV polarization, respectively, indicating a better
performance of the coupled model in VV polarization. It is
found in Fig. 8(a) that several points have a bigger bias between
the modeled and decomposed HH backscatter coefficients. This
phenomenon could have been attributed to the extremely small
value of the decomposed backscatter coefficients at these points,
exceeding the validity range of the Dubois model. Overall, the
discrepancy between the modeled and decomposed backscatter
coefficients is acceptable with relatively low RMSE value.

E. Deorientation Process and the Choice of
Reference Incidence Angle

Fig. 10 illustrates the histogram of the orientation angles for
all seven SAR images. The random distribution of orientation
angles is obvious, consistent with the topography in our study
that about a quarter of fields have a gentle slope, and it also
confirms with the requirement of the deorientation process.
The soil moisture retrieval results before and after applying the

Fig. 9. Scatterplots between modeled backscatter coefficients and backscatter
coefficient after polarimetric decomposition at (a) HH polarization and (b) VV
polarization.

TABLE III
SOIL MOISTURE RETRIEVAL RESULT BEFORE AND AFTER APPLYING

DEORIENTATION

deorientation process on T3 matrix are shown in Table III.
Correlation coefficient R and RMSE were used to evaluate the
accuracy of the retrieved soil moisture. As shown in Table III, the
accuracy of the retrieved soil moisture is improved for both HH
and VV polarization after applying the deorientation process.
This can be attributed to the more accurate polarimetric decom-
position result using T3(φ). The deorientation process of the
measured coherency matrix T3 can minimize the cross-polarized
scattering power and increase the copolarized scattering power.
The rotated T3(φ) is assumed to satisfy the reflection symmetry
better, which is a premise of the model-based polarimetric
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Fig. 10. Histogram of the orientation angles for all seven SAR images.

TABLE IV
RMSE OF BETWEEN RETRIEVED AND MEASURED SOIL MOISTURE

decomposition. Thus, the introduction of deorientation process
does benefit soil moisture retrieval through polarimetric decom-
position.

As reported in [44], apart from volumetric scattering, there
are three possible reasons for the presence of cross polarization:

1) presence of oblique dihedral;
2) presence of azimuth terrain slope; and
3) presence of soil surface roughness.
The first one is not of interest in agricultural applications.

The second one is relieved by the deorientation process. The
third one is neglected in our study. Although this might bring
some uncertainties, we assume the neglection is acceptable since
the soybean fields in our study site usually go through seedbed
preparation before sowing; hence, the field is rather smooth.

The choice of the reference angle related to the used surface
backscattering model. Considering the validity incidence angle
range of the Dubois model (θ > 30°) and our dataset. Soil
moisture was retrieved under three incidence angles (30°, 35°,
and 40°). The RMSE of the retrieval result at different angle
in HH and VV polarization was illustrated in Table IV. From
Table IV, it is observed that the soil moisture retrieval method
performed better at a higher reference incidence angle. This is
consistence with Dubois model’s validity range. At HH polar-
ization, the better modeling result when θ ≥ 34° also explained
this phenomenon [45]. Thus, the reference incidence angle was
chosen to be 40°.

F. Retrieved Soil Moisture

In order to evaluate the performance of the proposed
method for soil moisture retrieval under vegetation cover, the

Fig. 11. Scatterplots between measured and retrieved soil moisture through
(a) HH polarization and (b) VV polarization.

leave-one-out-cross-validation (LOOCV) method was adopted.
For the sample sites corresponding to a specific date, only one of
the data samples was used as the validation set and the remaining
n-1 data samples were used as the training set. This is repeated in
all ways until all sample sites have been used as the validation set
once. The result of this LOOCV evaluation is generally regarded
as a more conservative estimate of the model performance than
that trained on all samples [46]. Over a very few sample sites,
typically where in situ measured soil moisture near zero, the
retrieved soil moisture is negative. However, soil moisture is
always a nonnegative value according to its physical implication.
Thus, these negative values were set to zero.

The retrieved soil moistures with their respective measured
soil moistures of three soybean fields (S09, S20, S114) are
illustrated in Fig. 11. The retrieval results using HH and VV
polarization are shown in Fig. 11(a) and (b), respectively. The
linear relationship between the estimated and measured soil
moisture was observed with a correlation coefficient R of 0.68
and an RMSE of 8.2 vol.% at VV polarization, revealing that
the method proposed here is capable of estimating soil moisture
for soybean field during the growing season. The accuracy of
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TABLE V
RMSE OF BETWEEN RETRIEVED AND MEASURED SOIL MOISTURE

retrieved soil moisture is slightly lower at HH polarization than
at VV polarization with a correlation coefficient R of 0.64 and
an RMSE of 9.2 vol.%. Better performance of the proposed soil
moisture retrieval method at VV polarization than at HH polar-
ization was found, with or without applying the deorientation
process on the SAR data. The reason lies in two main aspects.
First, better performance of the Dubois model at VV polarization
than at HH polarization was found in [45]. Besides, the weaker
double-bounce scattering power at VV polarization than HH
polarization also contributes to this phenomenon [47].

For dry soil, especially when in situ measured soil moisture is
below 10 vol.%, several estimated soil moisture values are zero
as illustrated in Fig. 11. This is mainly due to the extremely low
sensitivity of the SAR backscatter coefficients to soil moisture
changes under dry soil conditions (as illustrated in Fig. 8). Thus,
the backscatter coefficient is hard to reveal the soil moisture
variability under this condition, which brings in more uncer-
tainty in the retrieved soil moisture. Among the three fields,
S09 outperformed S20 and S114 (see Table V). Field condition
might have contributed to this variation in model performance.
The soybean growth in field S09 was more uniform than that in
the other two fields.

Fig. 12 depicts the temporal evolution of the retrieved soil
moisture and measured soil moisture. Within the data acqui-
sition period from July 2015 to October 2015, the trend of
the time-series of measured soil moisture was well reproduced
by the estimated soil moisture, especially at VV polarization.
However, soil moistures were found to be overestimated at late
growth stage when vegetation cover was sparse because the
soybean plants had shed their leaves. This might be attributed
to the deorientation process before polarimetric decomposition.
To our knowledge, the deorientation process applied on T3
matrix can minimize T33, through which the volume scattering
was determined. Thus, the polarimetric decomposition might
underestimate the volume scattering power while overestimate
surface scattering power, leading to an overestimate of retrieved
soil moisture at late growth stage. To help understanding the soil
moisture variabilities, the retrieved soil moisture images through
VV polarization are depicted in Fig. 13.

Fig. 14 illustrates the RMSE between the retrieved and mea-
sured soil moistures on different dates. On most dates, the VV
polarization has a better performance than HH polarization.
During the entire growing season, the RMSE of the retrieved
soil moisture at VV polarization varies little. Even during
the mid-growth stage when vegetation cover was dense, the

Fig. 12. Temporal evolution of measured and retrieved soil moisture (a) Total.
(b) S09. (c) S20. (d) S114.

RMSE of the retrieved soil moisture is still satisfactory. Thus,
the proposed method is capable of monitoring soil moisture
variation throughout the soybean growing season. However,
although vegetation cover is sparser at late growth stage than
at mid-growth stages, a better retrieval result was not achieved.
This might because soybean plants were senescent and very dry,
resulting in an underestimate of volume scattering component
and subsequently affects the retrieved soil moisture accuracy.

Our soil moisture retrieval results are comparable with the
results achieved by Wang [24] (RMSE of retrieved soil mois-
ture is no more than 7.4 vol.%), which used the Oh model to
describe surface scattering under vegetation cover and VWC
to parameterize the vegetation attenuation. In our study, RVI
and optimal surface roughness were adopted to parameterize the
vegetation two-way attenuation and Dubois model, respectively,
without having to rely on prior vegetation indices and roughness
parameter.

In this study, the RMSE of soil moisture estimation came
mainly from the following.

1) Underlying soil backscattering modeling: the Dubois
model is inherently a semi-empirical model that needs
calibration before applying it to new study sites.

2) Optimal surface roughness: the complex field situation in
which the surface roughness condition is not uniform can
limit the accurate estimation of soil moisture.

3) The calibration process of the coupled model: the least-
squares fitting method may capture the local minima
which does not correspond to the global optimum [48].

4) Parameterizing two-way attenuation index through RVI:
this might have been affected by the extremely low mois-
ture content of the soybean plants once senesced at late
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Fig. 13. Soil moisture in S09 (left column), S20 (middle column), and S114
(right column) on different dates (a) July 17. (b) August 10. (c) September 3.
(d) September 13. (e) September 17. (f) September 27. (g) October 1.

growth stage. These issues need to be further investigated
in future studies.

5) The negligence of soil roughness effect in decomposition:
this might lead to an overestimation of volume scattering
component and could be solved by using more refined
models (X-Bragg, polarimetric two-scale model (PTSM)
[49], etc.).

Given the aforementioned uncertainties in the retrieved soil
moisture, however, these sources of error are minor. The soil

Fig. 14. RMSE and bias between the retrieved and measured soil moisture in
different vegetation phenology.

moisture retrieval method proposed in this study is capable of
estimating soil moisture over soybean fields during growing
season. The main benefit of the proposed method is that only
in situ measured soil moisture is required for calibrating the
coupled model, which can greatly reduce the dependence on
prior roughness parameters and vegetation indices.

VI. CONCLUSION

This study acknowledged the problem that soil moisture
retrieval using SAR in agricultural area is challenged by vol-
ume scattering and vegetation attenuation during the growing
season. To remove the effect of vegetation volume scattering,
a model-based polarimetric decomposition was adopted, and
the deorientation process of SAR data was applied before po-
larimetric decomposition to remove the influence of randomly
distributed target orientation angles for improved decomposition
accuracy. To compensate the effect of vegetation attenuation, a
two-way attenuation parameter in WCM was adopted, which
is parameterized by RVI in this study. The Dubois model was
adopted to model the underlying soil backscattering. Besides,
the optimal surface roughness and Topp’s dielectric mixing
model were used to parameterize the Dubois model and transfer
soil dielectric constant to soil moisture, respectively. Desirable
results were achieved with R equal to 0.64 and 0.68, RMSE
equal to 9.2 vol.% and 8.2 vol.% at HH and VV polarization,
respectively. These results are comparable with the soil moisture
retrieval result reported in [24], which combined model-based
polarimetric decomposition and Oh model to retrieval soil mois-
ture and achieved an RMSE no more than 7.4 vol.%. Our
proposed method can greatly reduce the dependence on prior sur-
face roughness parameters and vegetation indices. Besides, soil
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moisture was also retrieved without applying deorientation pro-
cess with RMSE equal to 9.7 vol.% and 9.3 vol.% at HH and VV
polarization, respectively, demonstrating that the introduction
of the deorientation process does benefit soil moisture retrieval
through polarimetric decomposition. These results demonstrate
that the proposed method is capable of estimating soil moisture
in soybean fields during the growing season.
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