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Applications of Deep Learning-Based
Super-Resolution for Sea Surface
Temperature Reconstruction

Bo Ping

Abstract—Deep learning-based super-resolution (SR) methods
have been widely used in natural images; however, their appli-
cations in satellite-derived sea surface temperature (SST) have
not yet been fully discussed. Hence, it is necessary to analyze the
validity of deep learning-based SR methods in SST reconstruction.
In this study, an SR model, including multiscale feature extraction
and multireceptive field mapping, was first proposed. Then, the
proposed model and four other existing SR models were applied to
SST reconstruction and analyzed. First, compared with the bicubic
interpolation method, the SR models can improve the reconstruc-
tion accuracy. Compared with four other SR models, the proposed
model can achieve the lowest mean squared error (MAE) in the
East China Sea (ECS), in the northwest Pacific (NWP) and in
the west Atlantic (WA), the second-lowest MAE in the southeast
Pacific (SEP); the lowest root mean squared error (RMSE) in ECS
and WA, the second-lowest RMSE in NWP and SEP. Additionally,
ODRE model can acquire the highest or the second-highest peak
single-to-noise ratio and structural similarity index in ECS, NWP,
and SEP. Moreover, the number of missing pixels and SST variety
are two essential factors in the SR performance. The proposed mul-
tiscale feature extraction process can enhance the SR performance,
especially for small regions and stable SST regions. Finally, while
a deeper network can be helpful in achieving SR performance,
the approach of simply adding more dilation convolutions may not
enhance the reconstruction accuracy.

Index Terms—Advanced microwave scanning radiometer
2 (AMSR2), deep learning, moderate-resolution imaging
spectroradiometer (MODIS), sea surface temperature,
super-resolution.

1. INTRODUCTION

EA surface temperature (SST) is a significant parameter for
analyzing the exchange of energy, momentum, and moisture
between the oceans and the atmosphere [1], [2]. With the devel-
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opment of remote sensing techniques, satellite-derived SST data,
including microwave-based SST data and infrared-based SST
data, have become an effective way to monitor the global SST.
While microwave-based SST data have a lower resolution than
infrared-based SST data (25 km for microwave-based SST data
compared to 1-4 km for infrared-based SST data), they have
relatively complete coverage since microwaves can penetrate
clouds. Consequently, taking advantages of these two types of
SST data to synthesize SST with high spatial resolution and
complete coverage is significant for the long-term monitoring
of oceanic features in detail.

The missing data reconstruction methods [3]—[5] that mainly
use the spatial information and spatio-temporal correlation are
commonly applied for infrared-based SST reconstruction. Re-
cently, some statistical methods have been used for fusing
microwave-based and infrared-based SST data. Guan and Kawa-
mura [6] blended multisource SST data including Advanced
Very high resolution radiometer (AVHRR), stretched-visible in-
frared spin scan radiometer, tropical rainfall measuring mission,
microwave imager, and visible and infrared scanner to generate
0.05° daily cloud-free SST products by using an objective anal-
ysis method, and Wang et al. [7] used a Kalman filter to combine
infrared-based and microwave-based SST data, while Li et al. [8]
combined the moderate-resolution imaging spectroradiometer
(MODIS) and the advanced microwave scanning radiometer for
EOS (AMSR-E) SST data to synthesize 8d average and spa-
tially continuous SST products by using the Bayesian maximum
entropy method. Reynolds and Smith [9] analyzed in situ and
corrected satellite-derived SST data both weekly and daily by
using the optimal interpolation (OI) method on a 1° latitude and
longitude spatial grid. Then, Reynolds et al. [10] proposed an
enhanced version of the OI analysis to reduce the satellite bias.
Moreover, Reynolds et al. [11] developed two high-resolution
SST analysis products based on AVHRR and AMSR data by
using the OI method. However, some limits still exist in most of
these methods. For example, the Kalman filter method needs a
large number of calculations that can reduce its efficiency and
the objective analysis method may generate singular values [12].
While the OI method has fewer calculations than the Kalman
filter method and has been widely used in SST fusion, it also
needs a priori knowledge, such as background field informa-
tion, which can increase its calculation complexity. Currently, a
number of SST products based on SST fusion methods have been
developed, such as the US National Oceanic and Atmospheric
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Administration (NOAA) OISST products [11], NOAA RTF-
HR products [13], the Japan Meteorological Agency merged
SST dataset [14] and the Met Office’s Operational Sea Surface
Temperature and Sea Ice Analysis products [15]. Generally, the
spatial resolution of these SST products ranges from 0.05° to
0.25° and is coarser than that of original infrared-based SST
data. Therefore, synthesizing high resolution SST products with
complete coverage at low complexity based on infrared-based
and microwave-based SST data is necessary.

Due to the similar spatial distributions of SST in low- and
high-resolution maps, the super-resolution (SR) may be a new
way to generate high spatial resolution SST maps with complete
coverage based on infrared-based and microwave-based SST
datasets. In the computer vision community, many SR methods
have been proposed, such as neighbor embedding [16], [17],
sparse coding [18], [19], and random forests [20]. With the
renaissance of the neural network, deep learning methods have
exhibited their superior performance in SR and are more rec-
ognized. Dong et al. [21] first introduced a deep learning-based
SR method called SRCNN containing only three convolution
layers. The relationship between SRCNN and sparse coding SR
methods was also discussed. Because the input of the SRCNN
is a bicubic-interpolated image that enhances the computational
cost and time, Dong et al. [22] proposed the FSRCNN method
that uses the deconvolution layer to reduce the computational
cost. Kim et al. [23] proposed the very deep SR network
(VDSR) method that contains 20 weight layers to improve the
SR performance. Two conclusions can be drawn from the VDSR
method: 1) the capacity of deep learning-based SR can benefit
from deeper networks; and 2) the residual learning framework
[24] can be useful in solving the gradient explosion/vanishing
problem. Compared to the shallow CNN-based SR methods,
such as SRCNN, a deeper architecture can enhance the re-
ceptive field, which means more information can be used for
SR. However, a deeper architecture will boost the number of
learnable parameters and may cause an overfitting problem. To
solve this problem, Kim et al. [25] proposed the deeply recursive
convolutional network method, which employs the recursive
network and weight sharing strategy to enhance the receptive
field and subsequently decrease the number of learnable param-
eters. Tai et al. [26] proposed the deep recursive residual network
(DRRN) method that employs global and local residual learning
to alleviate the difficulty of training the deep architecture and
explores recursive learning to increase the receptive field while
limiting the model parameters. Chang and Luo [27] incorpo-
rated the bidirectional long short term memory (LSTM) into a
recursive network for remote sensing image SR. In addition to
the recursive network, dilation convolution is another effective
way to enhance the receptive field. Zhang et al. [28] presented
symmetrical dilated residual convolution network (FDSR) that
uses the dilation convolution to enhance the receptive field
while employing the symmetrical skip connection to alleviate
the gradient vanishing problem. The dilation convolution and
symmetrical skip connection are also verified in stripe and
cloud recovery for remote sensing images [29]. Additionally,
the convolutional encoder-decoder network with symmetric skip
connections (RED-Net) proposed by Mao et al. [30] uses the
convolutional encoder layers to extract the features and eliminate

the noises and explores the corresponding decoder layers to
recover the details. The encoder layers and their corresponding
decoder layers are linked using symmetric skip connections. A
similar architecture is also used for skin cloud elimination for
remote sensing images [31].

Despite that many SR networks have been proposed and
applied to natural images and remote sensing images, they
are not fully analyzed for satellite-derived SST. Moreover, in
contrast to the training process in the traditional SR networks,
the low- and high-resolution data used in SST SR are obtained
from microwave-based and infrared-based SST datasets instead
of downscaling the high-resolution images to acquire the corre-
sponding low-resolution images. Hence, the correlation between
low- and high-resolution data is relatively low. To verify the
validity of SR models in SST reconstruction and to analyze the
main factors in SR performance for SST reconstruction, in this
study, an SR network is proposed for SST data, called the oceanic
data reconstruction (ODRE) network, which takes advantage of
the existing SR networks. Then, the validity of the proposed net-
work and four other remarkable SR networks including FDSR,
DRRN, SRCNN, and VDSR is discussed. Finally, some details
about the proposed network are also analyzed. The proposed SR
model may become a new way for SST reconstruction.

In the remainder of this article, the experimental data will be
introduced in Section II; then the proposed ODRE SR model
will be described in Section III; the experimental results will
be analyzed in Section IV; the details of ODRE model will be
discussed in Section V; finally Section VI concludes this article.

II. DATA

The 3-day averaged 0.25° x 0.25°grid advanced microwave
scanning radiometer 2 (AMSR?2) and daily 4-km L3 mapped
MODIS Terra SST data from 01/01/2013 to 12/31/2019 were
selected as low- and high-resolution maps. These two datasets
can be downloaded from remote sensing systems' and NASA
OceanColor Web.> The averaged AMSR2 data were selected
to reduce the influence of missing data caused by rain, bad
observations and navigation gaps. To keep temporal and spatial
consistency, the daily MODIS data were first transformed into
3-day averaged data using data two days before target data and
target data itself; and then a median filtering was used to reduce
the influence of possible abnormal SST values. In this study, the
SST data from 2013 to 2018 were used to train the proposed
and other four SR models and the data in 2019 were explored
to assess the trained models. The AMSR2 and MODIS data
on the same day can be deemed as a low- and high-resolution
image pair. The total number of image pairs for training the
models is 2 181 due to the nonexistence of AMSR2 data from
05/11/2013 to 05/13/2013 and MODIS data from 02/19/2016
to 02/24/2016 and 12/15/2016. The number of image pairs for
testing the models is 365.

The AMSR?2 data values between 0 and 250 can be transferred
into meaningful SST values and the MODIS data can acquire the
SST values directly. Hence, the AMSR?2 data values larger than
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Fig. 1. Four selected study areas including the ECS, NWP, WA, and SEP. The
sea surface temperature map is monthly MODIS Terra SST product in January
2020.
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250 and MODIS data with Nan values were deemed as missing
data or land pixels in this study. There are two preprocesses
including: 1) the scale factor between AMSR?2 and MODIS data
is 6, so the AMSR2 data were upscaled to the same size of
MODIS data using the bicubic interpolation method; and 2)
there is a spatial offset of 180° in longitude between AMSR2
and MODIS data, so the MODIS data were shifted 180° in
longitude. Training image pairs were split into 40 by 40 patches
with a stride of 40 and the patches with missing data were
excluded, so the total number of training patches is 408 536.
All the training patches and testing images were normalized
into [0 1] to follow the requirements of Caffe. The total training
patches were divided by 9:1 into training set and validation set,
so the number of patches in the training set and validation set is
367 680 and 40 856, respectively.

At the test stage, as shown in Fig. 1, four study areas
were selected to assess the proposed and other four trained
models. The first one is in the East China Sea, ranging from
123.27°-126.48°E, 27.77°-32.73°N, which is a marginal sea
east of China; the second one is in the northwest Pacific NWP),
ranging from 149.77°-169.98°E, 25.02°-45.23°N; the third one
is in the west Atlantic (WA), ranging from 40.77°-63.73°W,
28.77°-43.73°N; the last one is in the southeast Pacific (SEP),
ranging from 87.52°-102.73°W, 22.27°-34.98°S. The NWP and
WA were selected because of their relatively large SST varieties,
and moreover the marginal sea area (ECS) and area covered by
stable SST (SEP) were also selected to evaluate the trained SR
models. Due to the probable missing pixels in the AMSR2 data,
the linear interpolation method was used first to complete the
AMSR2 SST.

Fig. 2 shows the distributions of percentages of missing data in
the four selected study areas. Overall, the average percentages
of missing data of AMSR2 and MODIS datasets are approx-
imately 1.18% and 47.40%, respectively. In ECS, the average
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Fig. 2.
areas.

Distributions of percentages of missing data in the four selected study

percentages of missing data of AMSR2 and MODIS datasets are
approximately 2.26% and 46.90%; in NWP, these two values
are 0.89% and 54.19%; in WA, these two values are 0.94%
and 46.74%; in SEP, these two values are 0.61% and 41.77%.
Because of the influence of microwave radiation from the land,
in the marginal sea area, such as ECS, more missing pixels
can be found in the AMSR2 SST data, which may affect the
performance of the SR model.

III. ODRE NETWORK
A. Fundamental Theory of CNNs

The CNN, one of the most popular networks in deep learning,
has been widely employed in many remote sensing research
fields, such as image classification [32], [33] and image fusion
[34]-[38]. Three important architecture ideas including the local
receptive field, weight sharing and subsampling, enable CNNs to
achieve shift, scale and distortion invariant properties [34]. How-
ever, these three ideas are not all helpful in SR. The subsampling
that is often fulfilled by using a pooling function is harmful to
SR [39], so the subsampling is not discussed in this study. It is
time-consuming, even impractical, to calculate a neuron value
within the objective layer based on all neurons from its previous
layer, so in CNNSs, the neuron value is computed only using its
neighboring neuron values from its previous layer. Therefore, the
local receptive field is introduced and defined as the region in the
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Fig. 3.  Two examples of a dilated filter. (a) Single dilated convolution with a
dilation factor of 2. (b) Two dilated convolutions with the same dilation factor
of 2.

input space that a particular feature is affected by. In addition,
weight sharing means the weights of a convolution kernel are
unchanged for feature map generation at a certain layer, which
can seriously reduce the number of learnable parameters. After
each convolution operation, a nonlinear activation function is
generally employed. Mathematically, a single convolution oper-
ation can be expressed as follows:

fP=a <Z w®D 4 m@ 4 b(p)> (1)

where 7 and m? are the pth generated feature map of a convo-
lution layer and the gth input feature map, w'”*%) represents the
weights in the convolution kernel, s is the size of local receptive
field, b represents the bias, the symbol * means the convolution
operator, and a denotes the nonlinear activation function. In this
study, the rectified linear unit (ReLU) layer was used as the
nonlinear activation function as follows:

a(h) = max(0, h) )

where max stands for the maximum value.

B. Receptive Field Calculation

It has been proven that a large receptive field can be helpful for
SR performance [23], [28]. Generally, three ways are commonly
used to enlarge the receptive field: 1) enlarge the convolution
kernel; 2) deepen the network; 3) employ dilated convolution.
The first two ways can definitely add more learnable parameters,
while the third one can enhance the receptive field and maintain
the number of learnable parameters. Hence, the dilated convo-
lution was adopted in this study. A dilated filter with dilation
factor d can be deemed as a sparse filter of size (2d+1) x
(2d+1). However, a single dilated filter cannot fully use all
pixels covered by the receptive field. For example, as shown
in Fig. 3(a). Theoretically, the local receptive field is 5 x 5 by
using the dilated filter with a dilation factor of 2, but the number
of valid pixels for feature computation is only 9. Moreover, if all
layers have the same dilation factor, as shown in Fig. 3(b), the
final receptive field is still not complete and resembles a checker-
board, which can also lose several instances of information.
Wang et al. [40] proposed a hybrid dilated convolution method
to deal with this “gridding” problem, which uses a group of
dilated convolution layers with different dilation factors. Hence,
in practice, a series of dilated convolutions with different dilation
factors are commonly used in combination.

Here, the size of the local receptive field and the requirement
of a dilated convolution combination are discussed. First, the
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Fig. 4. Proposed ODRE network. d and s represent the dilation factor and
stride, respectively.

total receptive field of a dilated convolution combination can be
calculated as follows:

n—1

T_sn = (In l)xdn+1+2x;fl( 5 )

3)
where T _s,, is the size of the total receptive field in the nth
convolution layer, /,, is the size of convolution kernel in the nth
layer, d,, is the corresponding dilation factor, and the fI function
returns the value of a number rounded downward to the nearest
integer. Generally, the kernel size is often set to an odd number,
ie. l,=3,5,7, ..., which means (/;-1) X d; is an even number,
so the sum value can be rewritten as 2?2‘11 (l’fl# Hence, the
receptive field can be calculated as

n—1
T sp=1+(n—1)xdn+ Y (Ii—1)xd;
=1

=14+ (Li—1)xd;. )
=1

A large receptive field size cannot guarantee that more infor-
mation is included (see Fig. 3). To avoid the “gridding” problem
and to effectively use all pixels in the receptive field, Wang et al.
[40] defined the maximum dilation factor as

0; = max(0i+1—2di, —0;41+2d;, di)On =d,. ()

When O, < Iy, the final receptive field size of a series
of dilated convolutions can cover a complete square region.
Additionally, the dilation factor within a group should not have
a common factor relationship, such as 3, 6, and 9; otherwise,
the “gridding” problem will still exist. For a more detailed
description about the maximum dilation factor definition, see
[40].

C. Architecture of ODRE Network

1) Multiscale Feature Extraction.: The first part of the
ODRE network is the multiscale feature extraction (see Fig. 4).
The distributions of SST in low- and high-resolution maps are
similar, so contextual information in different scales may supply
the SR procedure with many useful spatial features. Therefore,



PING et al.: APPLICATIONS OF DEEP LEARNING-BASED SUPER-RESOLUTION FOR SEA SURFACE TEMPERATURE RECONSTRUCTION 891

three convolution operations of 3 x 3, 5 x 5, and 7 x 7
kernel sizes were first conducted simultaneously on the input
data, and each convolution operation can generate a single-
scale 64-channel feature map. A nonlinear activation ReL.U was
followed after each convolution. Then, the three feature maps
were concatenated to produce a multiscale feature map and to
reduce the computational load, a 1 x 1 convolution layer and
an ReLU layer were used to decrease the number of channels
to 64. The final multiscale 64-channel feature map containing
the contexture information with different scales can be used for
posterior processing.

2) Multireceptive Field Mapping: The second part of ODRE
is a series of dilated convolutions with skip connections. The
dilation factors in the dilated convolution group increase from
1 to 4 and symmetrically decrease from 4 to 1. The kernel size
of all layers is 3 x 3 with a stride of 1 pixel. According to (4),
the receptive field of each layer is 3, 7, 13, 21, 27, 31, and 33.
We found that “the larger the receptive field is, the better the SR
performance” is not always valid in SST SR. The influence of
the number of dilated convolution layers for SR performance is
discussed in Section V.

Skip connections have been successfully used in semantic seg-
mentation [41], SR [23], and missing data removal [29]. With the
deepening of the network, a number of image details may be lost,
causing blurring of the outputs of the SR model. Hence, putting
more details obtained from the previous layers into the posterior
layers by using skip connections can enhance the recovery
accuracy. On the other hand, the vanishing gradient problem
is harmful for SR. It has been proven that skip connections can
effectively decrease the influence of gradient vanishing problem.
Additionally, details from the previous convolution layers can
be better preserved by using the symmetrical structure. Li et
al. [31] proposed a symmetrical concatenation network for thin
cloud removal and the symmetrical structure, which resembles
the process of information complementation, was used to better
preserve details in cloud-free regions. Therefore, in this study,
two corresponding dilated convolution layers were linked by
using the skip connections (see Fig. 4).

3) Network Training: Because of the similarities between
microwave-based and infrared-based SST, instead of directly
using the MODIS SST as labels to calculate the loss function,
the residual images between upscaled AMSR2 and MODIS SST
were employed as labels to train the ODRE network. In the
test part, by adding the residual images to the corresponding
upscaled AMSR2 SST maps, the simulated high-resolution SST
can be generated. The average mean squared error (MAE) was
used as the loss function

1 N
Loss = NZHQ(%') — (y; — )| (6)
j=1

where x and y present the upscaled AMSR2 and MODIS SST, re-
spectively, g indicates the SR model, N is the number of patches
in a mini-batch for stochastic gradient descent, and in this study,
N is set to 64. The mini-batch gradient descent algorithm with
back propagation was used to optimize the loss function. Except
for the ODRE model, the other four SR models were also trained

based on the same datasets in this study to validate SR methods
for SST reconstruction and to make a comparison with the
proposed ODRE model. The codes of SRCNN, VDSR, and
DRRN models can be downloaded from GitHub? and the code
of the FDSR model was achieved according to the published
manuscript. The learning rate and the momentum were fixed to
le-6 and 0.9, respectively. The models were trained for up to
40 epochs and all the convolutional filters were initialized by
using “MSRA” [39]. The proposed network and the other four
networks employing the Caffe framework were trained using an
NVIDIA GeForce GTX 1050Ti GPU.

D. Quantitative Evaluation

To validate the SR models for SST reconstruction and to
make a comparison between the ODRE model and the other
four remarkable SR models, three indices including MAE, root-
mean-squared error (RMSE), and signal-to-noise ratio (SNR),
were used. The actual MODIS SST values and the corresponding
SST values obtained from SR methods at the existing points were
evaluated by using these three statistical parameters. Similar to
the previous studies [43], [44], the SNR used in this study is
defined as the ratio of the standard deviation of the simulated
values and the standard deviation of the difference between
actual values and simulated values for the existing data points.
For clarification, the smaller MAE and RMSE and the higher
SNR values indicate better SR performance. In addition, the
peak SNR (PSNR) and the structural similarity index (SSIM)
that have been commonly used in SR evaluation were also used
to analyze the performance of ODRE. The MAE, RMSE, SNR,
PSNR, and SSIM can be calculated as follows:

Y |k(ep) —r(ep)
MAE = {ep}

— \/ S [k(ep) — r(ep))?
{ep}
std[k(ep)]
std(|k(ep) — r(ep)l]
max(max[k(ep)], Inax[T(ep)];)2 x {ep}

> [k(ep) —r(ep)]

SNR =

PSNR = 10 x log;,

SSIM =

(2 x k(ep) x r(ep) + C1) x (2 x cov(k(ep),r(ep)) + C2)

(k(ep)” +7(ep)” + Ch) x (std(k(ep)), std(r(ep)) + Cs) o

where k and r present the simulated SST obtained from SR
models and the actual MODIS SST, ep stands for the existing
pixels, std, cov, and max indicate the standard deviation value,
the covariance value and the maximum value, k(ep) is the mean
value of the simulated existing SST pixels, C;, Cy are two small
constants to avoid outliers, and they are both equal to 0.001 in
this study, and {} is the number of elements in a set.

3[Online]. Available: https://github.com/
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Fig. 5.
(c) output from the ODRE model in ECS on April 2, 2019.
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Fig. 6. (a) Illustrations of MODIS SST, (b) original AMSR2 SST, and
(c) output from the ODRE model in NWP on September 27, 2019. A subarea
marked in black in MODIS SST is used to present the details.

W oswew " W e

-

2 wwW QW W W
10 12 14 16 18 20 22 24 26 28 °C 30

Fig. 7. (a) Illustrations of MODIS SST, (b) original AMSR2 SST, (c) and the
output from the ODRE model in WA on July 6, 2019. A subarea marked in black
in MODIS SST is used to present the details.

IV. RESULTS
A. Validation of ODRE

First, the validity of the ODRE model on SST reconstruction
is discussed. Figs. 5-8 show the illustrations of the original
MODIS SST, AMSR2 SST and the corresponding SR SST ob-
tained in ECS, NWP, WA, and SEP. Three subareas marked in the
original MODIS SST were also selected to present the details.
As a whole, the SST distributions of MODIS and AMSR?2 data
are similar, but due to the lower resolution, the details cannot be
perfectly reflected in the AMSR2 SST, especially in the selected
subareas. In addition, the AMSR2 SST data in these four study
areas are relatively complete, while the MODIS SST data suffer

(a) Tlustrations of MODIS SST, (b) original AMSR2 SST, and

Fig. 8. (a) Illustrations of MODIS SST, (b) original AMSR2 SST, and
(c) output from the ODRE model in SEP on September 6, 2019. A subarea
marked in black in MODIS SST is used to present the details.
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Fig. 9. Distributions of MAEs in the four selected study areas in 2019.

from the serious missing pixels that are randomly distributed in
these four study areas.

The outputs from the ODRE model can obtain smooth SST
structures that are similar to the actual MODIS SST, and some
spatial details can also be found in the reconstructed results. All
of these visual results can qualitatively prove that the ODRE
model can be effectively used in SST SR. In addition, compared
to the output in ECS, the spatial details are better reconstructed in
NWP, WA, and SEP, which means the reconstruction accuracy in
ECS is relatively low. The reason is likely that the zero padding
was used for each layer to keep the same size of the feature
maps in each convolution layer, which may cause some errors
in boundary regions. The ECS is the smallest region in the four
selected study areas, so the border effects may have a more
obvious influence on the SR performance.

B. Distributions of MAE and PSNR

The distributions of MAEs and PSNRs obtained from the
ODRE model for the four selected study areas were analyzed.
As shown in Fig. 9, the MAEs in ECS are generally larger
than those in the other three study areas, which corresponds to
the conclusion in Section V-A. The large MAEs in ECS may be
attributed to the greater amount of missing pixels in the marginal
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Fig. 10.  Distributions of PSNRs in the four selected study areas in 2019.

sea area and the border effects. On the other hand, except for
ECS, the MAEs in the other three areas are much smaller.
Relatively, the MAEs in SEP are the smallest, which means the
ODRE model can achieve better performance in areas covered
by stable SST. Furthermore, the distributions of MAEs in NWP
and WA are similar. Therefore, in addition to the influence of the
missing data, the SST variety is another factor that affects the
SR performance. Generally, the more obvious the SSR variety
is, the larger the MAEs that can be obtained.

Similar to the conclusions drawn from the MAE distributions,
the PSNRs in ECS are the lowest in the four selected study areas.
However, in summer, compared with other seasons, the PSNRs
are relatively large in ECS. In winter, the PSNRs in SEP have
the largest values, while in summer and autumn, especially from
July to early November, the distributions of PSNRs in NWP, WA,
and SEP are comparable. According to the PSNR formula [see
(7)], the maximum values of reconstructed SST and MODIS SST
are essential for the final PSNR value. In summer and autumn,
the maximum SST in NWP, WA, and SEP are similar, while
in winter, the SST in SEP are more stable and higher than that
in NWP and WA. In addition, similar to the MAE calculation,
the average difference between the simulated SST and MODIS
SST at the existing pixels (denominator in the PSNR formula)
is relatively smaller in SEP. Therefore, the PSNRs in SEP are
relatively larger than those in NWP and WA in winter, while
with the enhancement of SST, the PSNRs become similar in
these three regions.

In addition, we can see that in ECS, there are top three peak
MAE:S and bottom three peak PSNRs on February 10, April 11,
and May 16, 2019. We took April 11, 2019 as an example to
explain these peaks. Because the SR models are trained based
on multilevel structure information, the difference in structure
between input scene and objective scene can significantly affect
the SR performance. Instead of downscaling the high-resolution
image to simulate low-resolution image, which is commonly
applied in natural image SR, the high- and low-resolution
SSTs are obtained from different sensors in this study, so the
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Fig.11. Illustrations of original AMSR2 SST, (b) output from the ODRE
model, and (¢) MODIS SST in ECS on April 11, 2019.

difference in spatial structure of high- and low-resolution SSTs
may introduce errors. As shown in Fig. 11, we can see that
due to large difference in spatial structure between the original
AMSR?2 SST and the corresponding MODIS SST, the MAE of
the reconstructive SST becomes relatively large.

C. Comparisons With Other Super-Resolution Methods

In this section, the performance of the proposed ODRE model,
bicubic interpolation and the other four remarkable SR models in
SST reconstruction is discussed. As shown in Table I, compared
to the statistical results obtained using bicubic interpolation,
most SR models can obtain lower MAE and RMSE values and
higher SNR, PSNR, and SSIM values in the four selected study
areas. Because the SR models used in this study all need a bicubic
interpolation preprocess before training and the trained models
are implemented based on the bicubic interpolated AMSR2 SST
data, we can deduce that the SR methods can enhance the SST
reconstruction performance.

The proposed ODRE model can achieve the lowest MAESs in
ECS, NWP, and WA, the second-lowest MAE in SEP; the lowest
RMSE:s in ECS and WA, the second-lowest RMSEs in NWP
and SEP. Additionally, ODRE model can acquire the highest
or the second-highest PSNRs and SSIMs in ECS, NWP, and
SEP. As a whole, the ODRE, FDSR, and DRRN models can
achieve relatively better statistical values than the other two SR
models, while the SRCNN model acquires the worst results,
likely because of its relatively shallow network. Hence, “the
deeper, the better” is also correct in SST reconstruction.

Furthermore, the most suitable SR model for various regions
is different. For example, in ECS, the ODRE model is the best
choice for reconstruction, while in SEP, even though the dif-
ference between the statistical results obtained from the ODRE
model and the FDSR model is not obvious, the best option is the
FDSR model. Because the models are trained globally in this
study, one single model may not be the best one for all sea areas.
In addition, similar to previous research [45], we can deduce that
models trained specifically for the objective region can achieve
a higher accuracy than models trained globally.

Finally, even though the proposed ODRE model cannot
achieve all of the best statistical values in the four selected study
areas, it is still a suitable option for SST reconstruction.

As shown in Fig. 12, the density scatterplots of MODIS and
simulated SST values in ECS, NWP, WA, and SEP obtained
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TABLE I
COMPARISONS BETWEEN ODRE, BICUBIC INTERPOLATION AND THE OTHER
FOUR REMARKABLE SR MODELS FOR RECONSTRUCTING SST IN THE FOUR

SELECTED STUDY AREAS. RED AND BLUE INDICATE THE BEST AND THE
SECOND-BEST PERFORMANCE, RESPECTIVELY

ODRE Bicubic FDSR DRRN VDSR SRCNN

ECS MAE 0.6262 0.6919 0.6382 0.6395 0.6487 0.6644

RMSE 0.9286 1.0104 0.9474 0.9718 0.9631 0.9820

SNR 7.2306 6.9745 7.1366 6.9217 7.0203 6.9248

PSNR 31.9961 31.3620 31.8630 | 34.1671 31.6546 31.3862

SSIM 0.9837 0.9828 0.9832 0.9827 0.9833 0.9827

NWP MAE 0.4745 0.5134 0.4775 0.4768 0.4747 0.5335

RMSE 0.6694 0.7089 0.6692 0.6722 0.6724 0.8245

SNR 12.0481 12.0489 12.1805 12.2870 12.0608 8.9181

PSNR 34.0100 33.5611 33.9532 34.8473 33.9143 32.0945

SSIM 0.9932 0.9930 0.9932 0.9933 0.9933 0.9898

WA MAE 0.4436 0.5173 0.4437 0.4670 0.4680 0.4922

RMSE 0.6590 0.7208 0.6601 0.6775 0.6786 0.7597

SNR 8.3592 8.4256 8.3904 8.4860 8.3671 6.9374

PSNR 34.5563 33.8616 34.5231 35.8273 34.2612 33.2363

SSIM 0.9872 0.9869 0.9871 0.9872 0.9873 0.9836

SEP MAE 0.2886 0.3143 0.2885 0.2949 0.3240 0.3087

RMSE 0.4104 0.4399 0.4091 0.4192 0.4504 0.4379

SNR 7.4608 7.3157 7.523 7.5539 7.0374 7.0890

PSNR 36.3977 35.9616 36.4437 36.5633 35.6781 359118

SSIM 0.9845 0.9854 0.9842 0.9854 0.9846 0.9839
TABLE I

COMPARISONS BETWEEN THE ODRE MODEL WITH AND WITHOUT

MULTISCALE FEATURE EXTRACTION IN THE FOUR SELECTED STUDY AREAS.

RED INDICATES THE BEST PERFORMANCE

ECS NWP
With Without With Without
MAE 0.6262 0.6683 0.4745 0.4858
RMSE 0.9286 0.9803 0.6694 0.6865
SNR 7.2306 6.9453 12.0481 11.7813
PSNR 31.9961 31.5632 34.0100 33.7851
SSIM 0.9837 0.9832 0.9932 0.9932
WA SEP
With Without With Without
MAE 0.4436 0.4739 0.2886 0.3197
RMSE 0.6590 0.6833 0.4104 0.4459
SNR 8.3592 8.3218 7.4608 7.0537
PSNR 34.5563 34.2471 36.3977 35.7782
SSIM 0.9872 0.9873 0.9845 0.9844
TABLE III

COMPARISONS BETWEEN THE ODRE MODEL WITH DIFFERENT NUMBERS OF

DILATED CONVOLUTIONS IN THE FOUR SELECTED STUDY AREAS. RED
INDICATES THE BEST PERFORMANCE

dilation =~ MAE RMSE SNR PSNR SSIM

factor
ECS 3 0.6251 0.9132 7.4459 31.8880 0.9844
4 0.6262  0.9286 7.2306 31.9961 0.9837
5 0.6517  0.9629 7.0265 31.7005 0.9832
NWP 3 0.4763  0.6715 12.0292 33.7812 0.9932
4 0.4745  0.6694 12.0481 34.0100 0.9932
5 0.4808  0.6797 11.8927 33.8610 0.9932
WA 3 0.4522  0.6734 8.1691 34.1518 0.9868
4 0.4436  0.6590 8.3592 34.5563 0.9872
5 0.4657  0.6782 8.3196 34.3160 0.9872
SWP 3 02899  0.4123 7.4316 36.2433 0.9849
4 0.2886  0.4104 7.4608 36.3977 0.9845
5 0.3143  0.4400 7.1074 35.8352 0.9844

from (a) ODRE, (b) bicubic (c) DRRN (d) FDSR (e) SRCNN,
and (f) VDSR methods are similar in general, which means the
SR model can effectively fulfill the SST reconstruction. In detail,
the simulated SST may be slightly higher than the MODIS SST
by using the DRRN model in the regions covered by high SST in
ECS, NWP, and WA, while the simulated SST is lower by using
the SRCNN model in the low SST regions in NWP and WA.
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Fig. 12.  Density scatterplots of MODIS and simulated SST values in ECS,
NWP, WA, and SEP obtained by using (a) ODRE, (b) bicubic, (c) DRRN,
(d) FDSR, (e) SRCNN, and (f) VDSR, where the line is the 1:1 line.

Generally, the simulated SST has relatively large errors in ECS,
while small errors appear in SEP. Hence, the missing pixels in
the original AMSR2 SST data and the variety of SSTs are two
key factors in SR SST reconstruction.

V. DISCUSSION
A. Validation of Feature Extraction

The ODRE network has two constituents the so-called multi-
scale feature extraction and multireceptive field mapping. Here,
the necessity of feature extraction was discussed. As shown in
Table II, in the four selected study areas, the ODRE network
with the multiscale feature extraction part can obtain lower
MAEs and RMSEs while obtaining higher SNRs, PSNRs, and
SSIMs, which means the multiscale feature extraction part is
beneficial to the SST reconstruction. In the four areas, the
decreases of MAEs and RMSEs are 0.0421 °C, 0.0113 °C,
0.0303 °C, 0.0311 °C and 0.0517 °C, 0.0171 °C, 0.0243 °C,
0.0355 °C, respectively, and the enhancements of SNRs and
PSNRs are 0.2853, 0.2668, 0.0374, 0.4071 and 0.4329, 0.2249,
0.3092, 0.6195. The differences of SSIMs are not obvious in the
four study areas. Hence, the incorporation of multiscale feature
extraction can be more useful for ECS and SEP regions, likely
because more extracted features can add more information from
the small region (ECS) and the stable region (SEP) into the SR
process.
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B. Number of Dilated Convolutions

The number of dilated convolutions in the multireceptive field
mapping part can also have an influence on the SR performance.
Here, we constructed three networks with different numbers of
dilated convolutions, and the dilation factor was used to indicate
the number of dilated convolutions. For example, if the dilation
factor is 3, the network will have 5 dilation convolution layers
with dilation factors of 1, 2, 3, 2, and 1, and the skip connections
are also added between two corresponding dilated convolution
layers.

As shown in Table III, first, compared to the network with a
dilation factor of 3, the network with a dilation factor of 4 can
achieve better statistical results, except for ECS, which means
a larger receptive field can enhance the SR performance, likely
because more spatial information can be used in the SR process.
Moreover, the network with a dilation factor of 5 acquires the
worst results. A larger receptive field means more zero-paddings
are implemented at the boundary regions, which may introduce
some errors. Similarly, in ECS, when the dilation factor is set to
3, the SR reconstruction can achieve the best statistical values.
On the other hand, more dilation convolutions can carry more
information in the SR model, but this approach may also intro-
duce some unnecessary information that is irrelevant to the local
spatial structure and may cause an overfitting problem. Hence,
simply adding more dilation convolutions may not enhance the
SR performance.

VI. CONCLUSION

Deep learning-based SR models have been proposed in recent
years and widely used in natural images and remote sensing
images. However, their applications in satellite-derived SST are
not fully discussed. Additionally, the low- and high-resolution
data used in SST SR are obtained from microwave-based and
infrared-based SST datasets instead of downscaling the high-
resolution images to acquire the corresponding low-resolution
images. Hence, the correlation between low- and high-resolution
data is relatively low. In this study, an SR model called ODRE
that includes multiscale feature extraction and multireceptive
field mapping was proposed. The validity of ODRE and the other
four remarkable deep learning SR models on SST reconstruction
was analyzed. Finally, some details of ODRE were discussed.
Overall, the major conclusions can be summarized as follows.

1) Compared with bicubic interpolation, the results from SR
models have lower MAE and RMSE values and higher
SNR, PSNR, and SSIM values in the four selected study
areas.

2) Compared with four other SR models, the proposed ODRE
model can achieve the lowest MAEs in ECS, NWP, and
WA, the second-lowest MAE in SEP; the lowest RMSEs
in ECS and WA, the second-lowest RMSEs in NWP and
SEP. Additionally, ODRE model can acquire the highest
or the second-highest PSNRs and SSIMs in ECS, NWP,
and SEP.

3) The SR performance in the marginal sea areas is relatively
poor because of the missing pixels, and in the regions
covered by stable SST, the SR can acquire better recon-
struction results. In addition, models trained specifically

for the objective region can achieve a higher accuracy than
models trained globally.

4) A multiscale feature extraction process can enhance the
SR performance, especially for the small region (ECS)
and the stable SST region (SEP).

5) Finally, while a deeper network can be helpful for the SR
performance, simply adding more dilation convolutions
may not enhance the SR performance.
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