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Abstract—Convolutional neural networks (CNN) have achieved
excellent performance for the hyperspectral image (HSI) classifi-
cation problem due to better extracting spectral and spatial infor-
mation. However, CNN can only perform convolution calculations
on Euclidean datasets. To solve this problem, recently, the graph
convolutional neural network (GCN) is proposed, which can be
applied to the semisupervised HSI classification problem. However,
the GCN is a direct push learning method, which requires all nodes
to participate in the training process to get the node embedding.
This may bring great computational cost for the hyperspectral data
with a large number of pixels. Therefore, in this article, we propose
an inductive learning method to solve the problem. It constructs the
graph by sampling and aggregating (GraphSAGE) feature from
a node’s local neighborhood. This could greatly reduce the space
complexity. Moreover, to enhance the classification performance,
we also construct the graph using spectral and spatial information
(spectra–spatial GraphSAGE). Experiments on several hyperspec-
tral image datasets show that the proposed method can achieve
better classification performance compared with state-of-the-art
HSI classification methods.

Index Terms—GraphSAGE, hyperspectral image classification,
inductive learning method, spectral and spatial.

I. INTRODUCTION

IN RECENT years, various applications of hyperspectral
images in earth observation have aroused great interest.

Hyperspectral remote sensors capture images in different elec-
tromagnetic wave range and combine both spectral and spatial
information of ground objects. A hyperspectral image (HSI) nor-
mally contains tens or hundreds of bands, which can accurately
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identify and classify surface materials for feature extraction
and image classification. Therefore, HSI has been successfully
applied to agriculture [1], [2], mining [3], military [4], [5], and
other earth observation fields.

In the past decades, numerous machine learning methods
have been used for the hyperspectral classification problem,
such as distance classifier [6], K-nearest neighbor classifier [7],
support vector machine (SVM) [8], [9], Bayesian classifier [10],
Gaussian maximum likelihood [11], sparse representation [12],
[13], independent component discriminant (ICA) [14], kernel-
based method [15], [16], and logistic regression [17], [18].
The drawback of machine learning-based methods is that they
have to manually extract features [17], [19], [20], which may
involve experts experience and parameter setting and affect the
classification results.

Deep learning provides an ideal solution for feature extrac-
tion [21]–[26] for hyperspectral classification. Hu et al. [27]
used convolutional neural networks (CNN) to extract spectral
features for hyperspectral image classification. Mei et al. [28]
also discussed a similar CNN strategy with spectral–spatial
features. Lee and Kwon [29] proposed a scene depth CNN
(CD-CNN), which optimizes the upper scene interaction by
jointly using the local spectral–spatial relationship of adjacent
pixel vectors in the square window. Li et al. [22] used joint
representations based on different regions while simultaneously
using spectral information, and semantic situational awareness
information in each pixel. Hamida et al. [30] also introduced
the 3-D convolution operation into hyperspectral classification.
However, all these supervised deep learning methods usually
need large labeled dataset to train the network.

Semisupervised methods are used to solve the large unlabeled
data problem [31]. Yang et al. [32] proposed a semisuper-
vised hyperspectral classification method using spectral–spatial
Laplacian SVM. Tan et al. [33] presented a semisupervised
method by the spatial neighborhood information and classi-
fier combination. Andekah et al. [34] used the spectral–spatial
features and superpixel-based sparse codes for classification.
Recently, deep learning methods have also been used for semisu-
pervised classification. Kipf and Welling [35] proposed a fast-
approximate local convolution, which directly acts on graph
signals, called graph convolution network (GCN). CN can be
operated on a graph. It also can aggregate and transform features
from the neighbors of each node. The convolution of GCN is
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controlled by the neighborhood structure of a graph. Therefore,
GCN can be applied to the non-Euclidean data using the pre-
defined graph. Wan et al. [36] proposed a hyperspectral image
classification using multiscale dynamic GCN. It uses multiple
input graphs with different neighborhood scales to enhance
the performance. Qin et al. [37] also presented a GCN-based
hyperspectral classification method. It combines the intrinsic
information of labeled and unlabeled samples and uses spectral
and spatial information to achieve better results. Recently, Sell-
ars et al. [38] also proposed a graph-based learning method for
hyperspectral image classification using superpixels. However,
although the GCN can obtain the embedding of the vertices in
the graph, it is a direct push learning method, which requires
all nodes to participate in training to obtain node embedding.
Moreover, each node learned is the only certain embedding
for hyperspectral images. For the hyperspectral data, with tens
of thousands of pixels, if the nodes are directly embedded, it
requires large memory to compute the graph, which is difficult
to apply.

Inspired by the inductive method which constructs the graph
by sampling and aggregating (GraphSAGE) [39], a spectral–
spatial GraphSAGE (S2GraphSAGE) hyperspectral image clas-
sification algorithm is proposed. First, we compute the distance
between the nodes and the adjacency relation of the nodes ac-
cording to the spectral–spatial information of the hyperspectral
image. Then, inductive learning method is adopted to construct
the graph. In this way, we could fix the space and time complex-
ity. Therefore, our proposed method can be easily applied to HSI
classification systems. The main contributions of our article are
as follows. 1) We introduce GraphSage into hyperspectral image
classification problem. It means there is no need to establish
the adjacency matrix of hyperspectral image pixels in advance.
Moreover, for the proposed method the graph can be constructed
during the training process, which greatly reduces the cost of the
memory. 2) We use the spectral–spatial distance information
to determine the adjacency relationship of the pixels in the
hyperspectral image, which can enhance the performance.

The rest of this article is organized as follows. Section II
introduces the related work, and Section III describes the pro-
posed method S2graphSage. Section IV verifies S2graphSage
by comparing it with other state-of-the-art HSI classification
methods. Finally, Section V concludes this article.

II. RELATED WORK

In this section, we review the representative work on GCN,
because it is the fundamental work for our proposed method.
Although the CNN has achieved great performance for clas-
sification problem, it is a challenge for the graph-structured
non-Euclidean data. Therefore, the GCN [35] is proposed to
solve this problem. It has the ability to extract features from
graph data, which can be used to perform node classification,
graph classification, and link prediction on the graph data.

For the graph data, there are N nodes, and each node has
its characteristics. We set the characteristics of these nodes to
form an N ×D dimension matrix X, and then the relationship

between each node will also form an N ×N dimension matrix
A, also known as the adjacency matrix. X and A are the inputs
to our model. The GCN generally includes a two-layer network,
and the propagation formula

H(l+1) = σ(D̃−
1
2 ÃD̃−

1
2H(l)W(l)). (1)

Among them, A = Ã+ I is the adjacency matrix of the
undirected graph G plus self-connection (that is, each node and
itself plus an edge), I is the identity matrix, and D̃ is the degree
matrix; H is the characteristic of each layer. For the input layer,
H is the original data. For hyperspectral images, H here is each
pixel.

Due to high dimension of matrix X, the Huge phenomenon of-
ten occurs in the hyperspectral classification problem. Therefore,
the spatial information is always used to construct the adjacency
matrix A to enhance the performance [40].

III. METHODOLOGY

In this section, we introduce our proposed spectral–spatial
GraphSAGE (S2GraphSAGE) algorithm in detail. Fig. 1 shows
the framework of our proposed algorithm. It mainly contains two
parts: Spectral–spatial graph construction and S2GraphSAGE.
When we construct the graph, we combine the distance from
spectral and spatial domains and use K-nearest neighbor
(KNN) to find the nearest neighbors. Then with the graph,
S2GraphSAGE is applied for classification.

A. Spectral–Spatial Graph Construction

For the graph-based method, the first step is to construct the
adjacency relationship between pixels. Instead of the adjacency
matrix, in our proposed method, we should construct a list of
adjacency relationships, which is different from the GCN. For
the remote sensing hyperspectral images, the spatial homogene-
ity should be their character, which means that two adjacent
pixels in the spatial domain have a high probability of belonging
to the same class. Moreover, spectral domain also can provide
information for classification, which means the more similar
the spectral signature is the higher probability of belonging to
the same class. Therefore, to enhance the performance, we deter-
mine the adjacency relationship using spectral–spatial Euclidean
distance as following:

dist(i,j) = ω‖xi − xj‖2 + (1− ω)‖pi − pj‖2 (2)

where, the x and p represent the spectral signatures and spatial
coordinates of i and j pixels, respectively. ω is a parameter,
which controls the weights of the spectral and spatial domain.
According to (2), k nearest neighbors of node vi (excluding itself)
are selected to form a neighbor set (N)(i) = {j; (j, i) ∈ E}.

B. S2GraphSAGE

For the proposed S2GraphSAGE, instead of learning the em-
bedding of all nodes in a graph, it tries to generate an embedded
map for each node. Instead of training a separate embedding
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Fig. 1. Framework of S2GraphSAGE. (a) Hyperspectral image. (b) Spectral–spatial graph construction. (c) GraphSAGE. (d) Classification result.

Fig. 2. GraphSAGE embedding. (a) Sample neighborhood. (b) Aggregate the information of neighbor nodes. (c) Predict the information needed in the graph.

vector for each node, our proposed method trains a set of aggre-
gation functions that learn how to aggregate feature information
from the local neighbors of a node. Each aggregation function
aggregates information from a different search depth of a node.
During the testing, the trained network is used to generate
embedding for the vertices that have never been learned through
the learned aggregation function.

GraphSAGE consists of two processes: Graph sampling and
aggregate. Fig. 2 shows the process, taking the red target node
for an example, which can be divided into three steps.

Step 1: Sample the neighbors of each node in the graph. For
each node, for the efficiency, we set a fixed number of neighbors.
Fig. 2 shows the step. k represents the search depth from the
target node, k = 1 is the first-order neighbor node of the target
node, and k = 2 is the two-order neighbor node of the target
node.

Step 2: Aggregate the information of neighbor nodes accord-
ing to the aggregation function.

Step 3: Get the vector representation of each node in the graph
for the following tasks.

1) GraphSAGE Embedding: In this section, GraphSAGE’s
forward propagation algorithm (Algorithm 1) is as follows. For-
ward propagation describes how to use the aggregation function
to aggregate the neighbor information of the node to generate
the node embedding.

Algorithm 1 describes the process of generating embedding
on the entire graph, where G = (V; E) represents a graph. K
is the number of layers of the network, and also represents the
number of orders of adjacent nodes that each node can aggregate,

because each additional one layer, which can aggregate the in-
formation of the neighbor nodes of a further layer. {xv, ∀v ∈ V}
represents the feature vector of node v and serves as an input.
{hk−1

u , ∀u ∈ N (v)} represents the embedding of the neighbor
node u of node v in k− 1 layer. hk

N (v) represents the feature
representation of all neighbor nodes of node v in the k layer.
{hk

v , ∀v ∈ V} represents the feature representation of node v in
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the k layer. N (v) is defined as uniformly taken from a fixed
size in the set {u ∈ v : (u,V) ∈ E}, that is, the neighbors of
each node in GraphSAGE are sampled from the network of the
previous layer, not all neighbors participate, and the size of the
sampled neighbors is fixed. At each iteration, nodes aggregate
information from their local neighbor nodes, and as the process
iterates, nodes will obtain information from further and further
away.

2) Aggregate Function Selection: Then, we show the ag-
gregation strategy of the algorithm. For our proposed method,
we use two kinds of aggregation methods, one is the MEAN
aggregator, the other is the GCN aggregator.
Mean aggregator.
For the target node v in the k layer, the average value of each

dimension of all adjacent nodes u of the node v in the k− 1
layer is first taken, then the average value of the target node
v and its neighbor node is spliced, then the weight parameter
σ(Wk) is multiplied, and finally the nonlinear transformation
σ is performed. It aggregates the information of the node by
following equations:

hk
N (v) ←Mean(

{
hk−1
u , ∀u ∈ N (v)

}
) (3)

hk
v ← σ(Wk · CONCAT (hk−1

v ,hk
N (v))). (4)

In (3) and (4), {hk−1
u , ∀u ∈ N (v)} represents the embedding

of the neighbor node u of node v in the k− 1 layer; hk
N (v)

represents the feature representation of all neighbor nodes of
node v in the k layer; hk

v represents the feature representation of
node v in the k layer.

GCN aggregator.
GCN aggregation splices the vector representation of the

target node v in the k− 1 layer and the vector representation
of adjacent node u in the k− 1 layer. Then, the average value
of each dimension of the vector is calculated and multiplied
by the weight parameters, and the nonlinear transformation
σ is performed on the obtained results to generate the vector
representation of target node v in the k− 1 layer

hk
v ← σ(W ·MEAN(

{
hk−1
u

} ∪ {
hk−1
u , ∀u ∈ N (v)

}
)).

(5)
Original line 4 and 5 in algorithm 1 are as follows:

hk
N (v) ← AGGREGATEk(

{
hk−1
u , ∀u ∈ N (v)

}
) (6)

hk
v ← σ(Wk · CONCAT (hk−1

v ,hk
N (v))). (7)

In our proposed method, we use the GCN aggregator. We
replace the lines 4 and 5 in algorithm 1 using (5) for GCN
inductive deformation. The GCN aggregation is approximate
equivalent to transductive GCN framework. The difference be-
tween this convolutional aggregator and the other aggregators
is that it does not have the CONCAT operation in line 5 of the
algorithm 1. The convolutional aggregator does not concatenate
the representation of the previous layer of vertices hk−1

u with
the neighbor vector of the aggregation hk

N (v).
3) Definition of Neighbors: For the construction of the graph,

the definition of the neighbors could affect the performance. For
our proposed method, we set a fixed value, that is the same
number of neighbor nodes is selected for each node. Each time

Fig. 3. Definition of neighbor.

a neighbor node is selected, a fixed number of neighbor nodes
are sampled uniformly from the immediate neighbor nodes (first-
order neighbor nodes). Although only first-order neighbor nodes
information is aggregated in each aggregation, the first-order
neighbor nodes of the target node also aggregates its neighbor
nodes (second-order neighbor nodes) information. Therefore,
as the iteration progresses, the nodes gradually extract more
information, as shown in Fig. 3.

To show the process of the construction graph, we take two
neighbor nodes as an example. In Fig. 3 (for the sake of brevity
of the figure, it is assumed that only two neighbor nodes are
randomly aggregated), it can be seen that the information of
the first-order neighbor nodes is indeed aggregated between the
layers. In the “layer 1,” node v aggregates the information of the
two neighbor nodes of “layer 0,” and the neighbor node u of v
also aggregates the information of the two neighbor nodes of
“layer 0”. At “layer 2,” you can see that node v has expanded
to the second-order neighbor node of “layer 0” through node
u of “layer 1.” Therefore, during aggregation, k times can be
extended to k-order neighbors. In the practice of GraphSAGE,
when k = 2, it can get excellent performance. The influence
of the number of neighbor nodes, we will discuss it in the
experiments.

4) Learning the Parameters of S2GraphSAGE: In our ex-
periment, we use a supervised learning method for parameter
learning. So the cross-entropy loss function is our objective
function

� = −
∑

s∈Ylabeled

C∑
c=1

YsclnZsc (8)

whereYsc is the label of the training data and C is the number of
object classes. The embedding Zsc of node s is obtained through
forward propagation, and then the gradient descent method (the
Adam optimizer) is used to perform back propagation to opti-
mize the parameters Wk and the parameters in the aggregation
function.

IV. EXPERIMENTAL RESULTS

In this section, we conducted experiments to verify the effec-
tiveness of the proposed S2GraphSage method. Three metrics
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TABLE I
TRAINING,VALIDATION, AND TESTING NUMBERS IN THE

INDIAN PINES DATASET

TABLE II
TRAINING,VALIDATION, AND TESTING NUMBERS IN THE PAVIA

UNIVERSITY DATASET

are used to measure the accuracy of the results, including overall
accuracy (OA), average accuracy (AA), and kappa coefficient
(Kappa).

A. Dataset

The performance of the proposed S2GraphSAGE is evaluated
on three datasets, i.e., the Indian Pines, the Pavia University, and
the Kennedy Space Center.

1) Indian Pines: The Indian Pines dataset was collected by
airborne visible/infrared imaging spectrometer sensor in 1992,
which records north-western India. It consists of 145× 145 pix-
els with a spatial resolution of 20 × 20 m and has 220 spectral
channels covering the range from 0.4 to 2.5 μm. As a usual step,
20 water absorption and noisy bands are removed, and 200 bands
are reserved. The original ground truth includes 16 land-cover
classes. The amounts of labeled and unlabeled pixels of various
classes are listed in Table I.

2) Pavia University: The Pavia University dataset captured
the Pavia University in Italy with the ROSIS sensor in 2001. It
consists of 610 × 340 pixels with a spatial resolution of 1.3 ×
1.3 m and has 103 spectral channels in the wavelength range from
0.43 to 0.86 m after removing noisy bands. This dataset includes

TABLE III
TRAINING,VALIDATION, AND TESTING NUMBERS IN THE KENNEDY SPACE

CENTER DATASET

9 land-cover classes. Table II lists the amounts of labeled and
unlabeled pixels of each class.

3) Kennedy Space Center: The Kennedy Space Center
dataset was taken by AVIRIS sensor over Florida with a spectral
coverage ranging from 0.4 to 2.5 μm. This dataset contains 224
bands and 614 × 512 pixels with a spatial resolution of 18 m.
After removing water absorption and noisy bands, the remaining
176 bands of the image have been preserved. The Kennedy Space
Center dataset includes 13 land-cover classes. The numbers of
labeled and unlabeled pixels of different classes are listed in
Table III.

B. Experimental Setting

In our experiments, the proposed algorithm is implemented
via Pytorch with Adam optimizer. For all the three datasets, 30
labeled pixels are randomly selected in each class for training,
while 15 labeled examples are chosen for validating. Especially,
for the Indian Pines dataset, only 15 labeled examples are chosen
if the corresponding class has less than 30 examples and 5 or
15 labeled examples are chosen in each class for validating.
Meanwhile, all the unlabeled examples are used as the test set
to evaluate the classification performance. Besides, the learning
rate and the number of training epochs are set to 0.001 and
5000, respectively. And the learning rate drops by 10% every
200 rounds.

C. Impact of Spectral–Spatial Euclidean Distance

For our proposed method, the parameter of ω controls the
weight between the spectral and spatial domain, which may
affect the results. To evaluate the ω, we change the ω from 0.5 to
0.1. The results are shown in Fig. 4. From the results, we can see
that when ω is 0.4, we can get the best performance. Therefore,
in all our experiments, we set ω = 0.4.

D. Impact of the Number of Neighbor Nodes

When we construct the graph, the number of neighbor nodes
could also affect the results. Therefore, we change the number
of first-order neighbor nodes from 5 to 25 with an interval
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Fig. 4. OA result of different spectral–spatial Euclidean distance.

Fig. 5. OA result of different number of neighbors.

of 5. Second-order neighbor nodes have less impact on the
classification effect than first-order neighbor nodes. Under the
condition that the minimum value of first-order neighbor nodes
is 5, set the number of second-order neighbor nodes to a fixed
value of 5. The results are shown in Fig. 5. From the results,
we can see when the number of neighbor nodes is small, the
graph may neglect the structure information, which could lead
to poor performance. On the other hand, when the number of
neighbor nodes is large, the graph may contain the structure
information different from the target node and get low OA.
Therefore we set the number of first-order neighbor nodes as 15
and the number of second-order neighbor nodes as 5 for all the
experiments.

E. Impact of the Aggregator

For our proposed method, we use two aggregation methods,
i.e., mean aggregator and GCN aggregator. To evaluate the
aggregation methods, as mentioned above, we set the number
of first-order neighbor nodes as 15, the number of second-order
neighbor nodes as 5, and the values of ω as 0.4. The results
on three datasets are shown in Table IV. As can be seen from
Table IV, the GCN aggregator can get better results. Therefore,
we use GCN aggregator for all the experiments.

TABLE IV
OA, AA, AND KAPPA COEFFICIENT ACHIEVED BY DIFFERENT AGGREGATOR

Bold entities are the best results.

F. Classification Results

To illustrate the effectiveness of our proposed method,
S2 GraphSAGE is compared with several different hyper-
spectral image classification methods: Multilayer Perception
(MLP), SVM based on RBF kernel [41], 3D-CNN [42], DR-
CNN [22], multiscale-CNN [43], GCN [35], S2 GCN [37],
spectral-GraphSAGE and spatial-GraphSAGE. For the spectral-
graphSAGE method, we only use spectral distance to construct
the graph, while for the spatial-GraphSAGE method we use
spatial distance. All the classification methods were tuned to
the best settings. The training, validation, and testing data are
divided the same as Tables I–III.

1) Results on the Indian Pines Dataset: The quantitative
results of the Indian Pines dataset are shown in Table V. From
the table, we can see deep learning methods perform relatively
better than traditional methods due to better extracting spectral
and spatial information. The results of the spectral-graphSAGE
method are not as good as the spectral-graphSAGE. This indi-
cates that the spatial information is more important than the spec-
tral information. For our proposed method, we combine both
spectral and spatial information. Therefore, it can outperform
other methods. Fig. 6 exhibits a visual comparison of the classifi-
cation results generated by different methods on the Indian Pines
dataset.

2) Results on the Pavia University Dataset: Table VI
presents the results of different methods on the Pavia University
dataset. Compared with the Indian Pines dataset, the distribution
of the Pavia University dataset is relatively uniform. Moreover,
the number of different types of pixels is similar to each other.
Therefore, the results have been slightly improved. According to
[36], the GCN method needs large memory, it may not be suitable
for the large dataset such as Pavia University. Therefore, we only
display other HSI classification methods. From Table VI, we can
see that our proposed method also gets the best performance.
Fig. 7 exhibits a visual comparison of the classification results
generated by different methods on the Pavia University dataset.

3) Results on the Kennedy Space Center Dataset: At last,
we conduct the experiments on Kennedy Space Center dataset.
The results are shown in Table VII. For the dataset, the spatial
resolution is higher than the other two datasets. Therefore, the
results are better than the other two datasets. The performance
of the S2GraphSAGE method we proposed is still the best.
Fig. 8 exhibits a visual comparison of the classification results
generated by different methods on the Kennedy Space Center
dataset.
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TABLE V
CLASSIFICATION RESULTS OF DIFFERENT METHODS FOR THE INDIAN PINES DATASET

Bold entities are the best results.

Fig. 6. Classification maps obtained by different methods on INDIAN PINES datasets. (a) False color image. (b) Ground truth. (c) MLP. (d) SVM. (e) 3D-CNN.
(f) DR-CNN. (g) Multi-Scale-CNN. (h) GCN. (i) S2 GCN. (j) Spectral-GraphSAGE. (k) Spatial-GraphSAGE. (l)S2GraphSAGE.

TABLE VI
CLASSIFICATION RESULTS OF DIFFERENT METHODS FOR THE PAVIA UNIVERSITY DATASET

Bold entities are the best results.
TABLE VII

CLASSIFICATION RESULTS OF DIFFERENT METHODS FOR THE KENNEDY SPACE CENTER DATASET

Bold entities are the best results.
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Fig. 7. Classification maps obtained by different methods on Pavia University dataset. (a) False color image. (b) Ground truth. (c) MLP. (d) SVM. (e) 3D-CNN.
(g) DR-CNN. (f) Multi-Scale-CNN. (h) Spectral-GraphSAGE. (i) Spatial-GraphSAGE. (j) S2GraphSAGE.

Fig. 8. Classification maps obtained by different methods on Kennedy Space Center dataset. (a) False color image. (b) Ground truth. (c) MLP. (d) SVM. (e)
3D-CNN. (f) DR-CNN. (g) Multi-Scale-CNN. (h) GCN. (i) S2 CNN. (j) Spectral-GraphSAGE. (k) Spatial-GraphSAGE. (l) S2GraphSAGE.

G. Running Time and Memory Consumption Analysis

Table VIII reports the running time of deep models in-
cluding 3D-CNN [42], DR-CNN [22], Multi-Scale-CNN [43],
GCN [35], S2 GCN [37], and the proposed S2GraphSAGE on
three datasets. The codes for all methods are written in Python,
and run on a desktop computer with a 2.90-GHz Intel Xeon
W-2102 CPU with 16 GB of RAM and a GTX 1660 GPU.
From Table VIII, we can see that the CNN-based methods
consume massive computation time since they need to train
a large number of parameters. In contrast, GCN employs a
fixed graph for convolution with the first-order neighbor nodes,

and thus the number of parameters is greatly reduced, which
leads to fast running. However, the GCN constructs the graph
only on the first-order neighbor nodes, it may not extract the
information well. For our proposed method, S2GraphSAGE can
aggregate multi-order neighbor nodes, which takes more time,
but improves accuracy. As a result, they need less computational
time than CNN-based methods.

The drawback of the GCN method is that it needs to construct
the whole graph, which needs large memory. Take Pavia Uni-
versity Dataset for an example, the GCN method directly con-
structs the adjacency matrix using the nonbackground samples,
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TABLE VIII
RUNNING TIME COMPARISON (IN SECONDS) OF DIFFERENT METHODS

IP denotes Indian Pines Dataset, PAVIAU denotes University of Pavia Dataset, and KSC denotes Kennedy Space
Center Dataset.

and needs the double space for storage. It needs about 13.6-G
memory to save the graph and more memory for convolution.
Therefore, for the Pavia University Dataset, it always gets the
error of memory stack overflow. Our proposed method solves
this problem by constructing the graph using the inductive
method. The memory consumption for Pavia University Dataset
is about 334 M, which is greatly reduced compared with the GCN
method.

V. CONCLUSION

In this article, we propose a novel hyperspectral image classifi-
cation method with the spectral-spatial graph using the inductive
representation learning network (S2GraphSAGE). The proposed
classification method mainly includes two parts: Constructing
a spectral–spatial graph and introducing inductive learning.
Constructing a spectral–spatial graph can aggregate more appro-
priate neighbor nodes information. Therefore, the spectral and
spatial information can be extracted to enhance performance.
Introducing inductive learning overcomes the disadvantage of
using large memory. Moreover, S2GraphSAGE can aggregate
multi-order neighbor nodes information, which also leads to
better performance. The classification results show the effec-
tiveness of the proposed methods.
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