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Automatic Matching of Multispectral Images Based
on Nonlinear Diffusion of Image Structures

Ruixiang Li , Haitao Zhao , Xiaoye Zhang, Xiaosan Ge, Zhanliang Yuan, and Qin Zou , Senior Member, IEEE

Abstract—Imaging with different spectrums often leads to sig-
nificant nonlinear differences in the intensity, which brings a great
challenge to the automatic matching of multispectral images. Con-
sidering that there are often limitations to only using intensity in-
formation, this article studies multispectral image matching based
on the structure consistency. First, an extended log-Gabor filter
is constructed to build phase congruency maps, which encodes the
structure information and provides rich and robust features. Then,
a nonlinear diffusion-based algorithm is developed to detect the
salient feature points on the phase congruency map, which are
expected to be illumination and contrast invariant. Finally, the
structure descriptors are built according to the orientation of the
maximum log-Gabor filter responses, and the image matching is
achieved by computing the correspondence. Extensive experiments
are carried out on various multispectral image datasets. The results
show that the proposed method holds a stable performance over the
nonlinear intensity variance across spectrums, and outperforms the
comparison methods in terms of the number of correct matches and
the matching precision.

Index Terms—Multispectral image matching, nonlinear
diffusion, phase congruency (PC), structural descriptor.

I. INTRODUCTION

MULTISPECTRAL imaging has attracted intensive re-
search interests in recent years as it captures richer scene

information than common visible-light imaging [1]. The fusion
of multispectral images can utilize complementary spectral in-
formation and increase the accuracy of image analysis. In image
fusion, a critical process is the image matching, which automat-
ically establishes the correspondences between two images. Im-
age matching is also a prerequisite step to integrate their spectral
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information for the subsequent multispectral image processing
and analysis tasks, e.g., object detection [2], environmental
surveillance [3], image registration [4], and image fusion and
classification [5], [6], etc. However, the spectral inconsistency
often leads to nonlinear intensity differences and local detail
discrepancies between multispectral images [7], [8], e.g., the
visible and infrared imageries, which makes the multispectral
image matching a challenging problem.

Generally, the multispectral image matching methods can be
divided into two categories: the intensity-based and the feature
based. The intensity-based methods use similarity metrics in
intensity to determine the correspondence between a pair of
images, and obtain the best result by maximizing a similar-
ity metric or minimizing an objective function[9]. Common
similarity metrics include the sum of squared differences, the
normalized cross-correlation, the mutual information (MI), etc.
Among these metrics, MI is considered to be robust to nonlinear
intensity differences, and has been successfully applied in mul-
tispectral or multisensor image matching [10]. In addition, some
intensity-based methods try to adapt to the nonlinear intensity
differences by improving the similarity measurement [11], [12].
These methods avoid the step of feature detection and generate
good results, but they are sensitive to geometric differences
and computationally expensive. Different from intensity-based
methods, feature-based methods first extract salient features,
e.g., points, edges, lines, contours, and region, etc., between
images [13]–[17], construct descriptors to depict the features
properties, and then use the similarity measure of the feature
descriptors to establish accurate correspondences. The feature-
based methods are widely used in image matching because of
their robustness to geometric and illumination variance, and
achieve remarkable performance. However, image intensities of
different spectral bands are in a nonlinear relationship, increas-
ing the difficulty of detection and matching identical feature
points in the two images [8], which makes it difficult to establish
a stable correspondence for the matching. Though numerous
feature-based methods have been proposed for multispectral
image matching in the past few decades [4], [7], [8], [18]–[23],
it is still a very challenging task.

Current feature-based multispectral image matching methods
encounter the following problems.

1) Due to the difference in imaging mechanism, there are
obvious intensity differences in the same scene content of
different spectrums [8], [18], which makes it difficult to
extract reliable common features from them, and seriously
affects the result of image matching. When the spectral
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Fig. 1. Detection results produced by SIFT detector. (a) Visible image. (b)
Infrared image. The detected features are shown as “+” and the repeated ones
as “o.”

difference of multispectral images increases, the common
information between multispectral images will decrease.
The feature points appear in one image may not present in
another image. Fig. 1 shows the detection results obtained
by the scale-invariant feature transform (SIFT) detector.
We can see there are few common features detected be-
tween the visible and infrared images.

2) The nonlinear grayscale difference between two spec-
trums can severely reduce the performance of image-
matching algorithms that are based on intensity and gra-
dient. In addition, the infrared images lacking contrast
and detail, as compared to visible images [20], would
make the situation even worse. These factors undermine
the robustness of feature descriptors and lead to unstable
image matching.

The gray distortion caused by the nonlinear intensity differ-
ence is a great challenge to the multispectral image matching.
Through research on image matching, some researchers found
that the geometric structure information between multispectral
images is more stable than gradients or intensities information
under nonlinear intensity variation in multispectral images [20],
[24], [25]. Based on this observation, feature points can be
detected based on the structure consistency of image, which
can be evaluated by calculating similarity metrics on structure
or shape descriptors. Phase congruency (PC) model has been
demonstrated to capture the structural information consistent
with human visual and is robust to illumination and contrast
differences [26]. Therefore, some algorithms based on image PC
are applied to multispectral or multimodal image matching [11],
[25]–[28]. However, PC has limits on itself as it holds the
following[26], [29].

1) PC is highly affected by noise since it mainly contains
edges structural.

2) The aliasing effect greatly affects the quality of images
and the detection accuracy of PC algorithms.

3) PC is not enough for feature description since most pixel
values in the PC maps are close to zero.

Motivated by the observation mentioned earlier, we propose
a multispectral image matching method based on structure con-
sistency (MMSC). First, the PC maps of the original images are
calculated. PC maps reflect the main structure consistency infor-
mation of the image, which can enhance the similarity between
multispectral images. Second, the nonlinear diffusion function,
which is insensitive to the nonlinear intensity differences, is

used to construct the multiscale space so as to detect the feature
points on PC maps. In order to reduce the impact of noncommon
feature points, structure consistency constraint is introduced to
eliminate noise points and retain salient feature points. Third,
we use the orientation of the multiorientation and multiscale
log-Gabor filters responses to represent the structure feature
of multispectral images. Structural descriptors are established
according to the orientation of the maximum mean log-Gabor
filter responses. Finally, feature correspondences are calculated
according to the distance of feature descriptors. The main con-
tributions of this article are as follows.

1) The log-Gabor filter is extended to construct the PC map.
The nonlinear scale space of PC maps is established by the
nonlinear diffusion filter, and extreme value is detected in
the nonlinear scale space, which makes the feature points
be invariant to illumination and contrast.

2) The noncommon feature points may reduce the matching
performance. A structure consistency constraint is intro-
duced to retain the salient feature points, which signifi-
cantly decreases the possibility of false matches.

3) Based on the log-Gabor filter responses, feature de-
scriptors were established according to the orientation
of the maximum mean log-Gabor responses. The pro-
posed method is more robust against nonlinear intensity
variation.

The remainder of this article is organized as follows.
Section II briefly reviews the related work. Section III presents
the proposed method in detail, including PC extraction, feature
point detection, and feature descriptor construction. Section IV
describes the experiments and results, and Section V concludes
this article.

II. RELATED WORK

This section briefly reviews the multispectral image matching
methods. In general, the research of local features involves the
feature detectors and feature descriptors. These feature-based
methods rely on extracting highly repeatable features between
images [30]. Noncommon feature points will result in the low
repeatability of detected features, which may lead to more
wrong matches. Typical feature point detection methods, such
as Harris [13], SIFT [14], and FAST [31], search the image
point locations with strong intensity or gradient variations.
However, these detectors usually have difficulty in detecting
highly repeatable feature points between multispectral images
for the difference of gradient, which substantially degrades the
matching performance [24]. Compared with the image gradi-
ent, PC model is more robust to changes in illumination and
contrast, many researchers have used PC detector [25]–[27] for
feature detection. Ye et al. [25] proposed a feature detector
(MMPC-Lap) and a feature descriptor named local histogram
of orientated PC for remote sensing image matching, which is
invariant to illumination and contrast variation. Ma et al. [27]
combine the frequency domain (PC) and the spatial domain
(SAR-SIFT operator) to detect image features. The extracted
features are robust because it depends on the image structure. Fan
et al. [32] proposed a uniform nonlinear diffusion-based Harris
feature extraction method using the multiscale Harris operator
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to improve the accuracy of detection and matching. In addition
to the nonlinear intensity difference of pixel intensity between
multispectral images, the lack of sufficient local texture details
will also reduce the repeatability of feature points [33]. Hence,
the detection of feature points need to fully consider the overall
structures of multispectral images.

Once feature points are detected, feature descriptions need
to be established for matching. Feature descriptors are numeric
vectors that encode the characteristics of the local region of the
feature points [34]. Traditional feature descriptors are formu-
lated on intensity or gradient domains, such as the SIFT [14],
speeded-up robust feature (SURF) [15], and binary robust
independent elementary feature [35], perform well on single
spectrum images, but they behave poorly when dealing with
multispectral data [18]. This is because the pixel values and
gradients between different multispectral images often have a
nonlinear relationship, which dampens the matching capability
of descriptors. To increase the robustness to significant nonlinear
intensity changes, research works have been done to improve
the performance of the descriptors designed for visible images
(e.g., SIFT, SURF) to encode multispectral images. Approaches,
such as the orientation-restricted SIFT [36] and multimodal
SURF [37], suggested modifications to SIFT or SURF for better
matching performance by imposing scale and orientation restric-
tions. To alleviate gradient magnitude discrepancy, normalized
gradient SIFT [23] and partial intensity invariant feature descrip-
tor (PIIFD) [38] normalize gradients to construct the feature
descriptors, a certain extent improved matching precision.

However, the feature changes caused by the discrepancies of
image local details dampen the ability of these gradient-based
methods, which represents a common feature. In addition, the
intensity mapping maybe linear, nonlinear, and erratic [4]. Some
methods [16], [39] attempted to describe the distributions of
straight line segments between visible and infrared images, but
these methods are not robust enough due to inaccurate line
detection accuracy. Edge feature has proven to be an effective
means of describing image features [40], [41]. Edge histogram
descriptor (EHD) [42] established feature descriptions by cal-
culating the edge orientation responses of multioriented Sobel
spatial filter. Edge-oriented histogram (EOH) [19] descriptor
uses the edge distribution of four directional edges and one
nondirectional edge to construct the feature description. Edge
features are detected by the Canny detector. However, it is
difficult to select an appropriate threshold to ensure that the
edges extracted from the multispectral image are the same. PC
edge histogram (PCEHD) [43] uses PC to detect feature points
and edges structure of infrared and visible images, and the edge
orientation histogram of feature points is calculated.

Some recent work attempts to solve the problem of nonlinear
distortion with image structural information. The PC image
embodies the image structure information, and a number of
researchers have proposed methods for similarity measures or
feature descriptors based on PC [11], [25]. The convolution
of the image by the log-Gabor filter can obtain the geometric
structure information [44], which is less sensitive to significant
intensity changes. Therefore, it is widely used in image feature
detection and visual information comprehension [45], [46]. The
log-Gabor histogram descriptor (LGHD) [20] uses multiscale

and multioriented log-Gabor filters to replace the EOH filters,
to deal with the problem of significant nonlinear intensity dif-
ferences in multispectral images. The LGHD can get richer and
more robust feature representation in multispectral images but
suffers from high dimensionality and low efficiency. Nunes and
Pádua [47] proposed the multispectral feature descriptor, which
leverage fewer log-Gabor filters to construct the descriptor, so its
computational efficiency is better than LGHD. Compared with
gradient-based methods, these descriptors are more robust for
multispectral image matching because they use image structure
instead of intensity information [48].

The data-driven deep learning (DL) schemes [49] have been
successfully applied to various remote sensing tasks, such as
hyperspectral image classification, change detection, object de-
tection, and image segmentation [50]–[53]. Since DL can auto-
matically learn high-level features in images, it has been applied
to remote sensing image matching recently. Most image match-
ing methods using DL are based on a Siamese network [54],
[55]. In addition, the GANs are applied to image matching and
registration [56], [57]. One key point of these methods is to
transform one image into another image by the trained GANs
to eliminate the significant differences between multispectral
images. Learning-based methods can cope with complex feature
matching satisfactorily. But when these learning-based methods
are applied to multispectral image matching, it need a large
number of training data to prevent overfitting. Also, it is dif-
ficult to train the network for matching due to the diversity of
multispectral data.

III. METHODOLOGY

The flowchart of the proposed method is presented in Fig. 2.
The proposed method mainly consists of following four steps.

1) The log-Gabor filter is extended to construct the PC maps.
2) Build the nonlinear scale space of PC maps by a nonlin-

ear diffusion filter, and extreme value is detected in the
nonlinear scale space to obtain the feature points with
invariant to illumination and contrast for multispectral
image matching.

3) Establish a structural descriptors using log-Gabor filters
convolution sequence to describe the feature points ob-
tained from the previous step.

4) SAD distance is used as a matching measure, and the
bilateral matching method is used to establish the feature
correspondences.

A. PC Based on the Log-Gabor Filter

PC model is a local energy-based model of feature perception,
which assumes that the perceived features are located at the
points where the Fourier components are maximal in phase. To
extend the PC algorithm to 2-D images, Kovesi [26] developed
a measure of PC via 2-D log-Gabor filters, which is robust to
noise. The 2-D log-Gabor filter [46] is constructed by using a
Gaussian function in multiple directions, as defined by

Ln,o (ω, θ) = exp

(
−(log(ω/ωn))

2

2(log(κ/ωn))
2

)
exp

(−(θ − θn,o)

2σ2
θ

)
(1)
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Fig. 2. Illustration of matching by using the proposed method.

where (ω, θ) denote the frequency and angle of the filter, n and
o are the scale and orientation of the log-Gabor filter, (ωn, θn,o)
are the center frequency and center orientation, κ is the width
parameter for the frequency, and σθ is the width parameter of
the angle.

The log-Gabor filter is a frequency domain filter, and its
corresponding spatial domain filter can be obtained by inverse
Fourier transform. In the spatial domain, a 2-D log-Gabor filter
can be represented as follows:

Ln,o(x, y) = Leven
n,o (x, y) + i · Lodd

n,o(x, y) (2)

where Leven
n,o (x, y) and Lodd

n,o(x, y) stand for the even-symmetric
(sine) and the odd-symmetric (cosine) log-Gabor filters on scale
n and orientation o, respectively. The symbol i is an imaginary
unit.

The input image is convolved with each log-Gabor filter to
generate responses under different scales and orientations, and
their response components are recorded to describe features in
the next step. The convolution is defined by

[En,o(x, y), On,o(x, y)]

=
[
I(x, y) ∗ Leven

n,o (x, y), I(x, y) ∗ Lodd
n,o(x, y)

]
(3)

where En,o(x, y) and On,o(x, y) are the convolution response
of Leven

n,o (x, y) and Lodd
n,o(x, y) at scale n and orientation o.

The amplitude response An,o(x, y) and the phase response
φn,o(x, y) of the image I(x, y) at scale n and orientation o are
given by

An,o(x, y) =

√
En,o(x, y)

2 +On,o(x, y)
2 (4)

φn,o(x, y) = arctan

(
En,o(x, y)

On,o(x, y)

)
. (5)

PC at point (x, y) is calculated as the ratio of weighted and
noise compensated local energy summed over all the orientations
to the total sum of filter response amplitudes overall orientations

and amplitudes, and are expressed as

PC(x, y) =

∑
n

∑
o W (x, y) �An,o(x, y)Δφn,o(x, y)− T �∑

n

∑
o An,o(x, y) + ε

(6)

Δφn,o(x, y)

= cos
(
φn,o(x, y)− φ(x, y)− ⌊sin (φn,o(x, y)− φ(x, y)

)⌋)
(7)

where PC(x, y) is the magnitude of the PC.Wo(x, y) is a weight
function. An,o(x, y) is the amplitude component at the filter
scale n and direction o at (x, y). φ(x, y) is the weighted mean
phase. T is a noise threshold and ε is a small constant to avoid
division by zero. The symbols �� denotes that the enclosed
quantity is equal to itself when its value is positive, or zero
otherwise. The value of PC is a dimensionless quantity within 0
and 1, enhance visualization to express structure features by the
following formula:

PC(x, y) =
(PC(x, y)−min (PC(x, y)))

max (PC(x, y))−min (PC(x, y))
. (8)

Using (6) and (8), we can achieve the PC map of images, and
are used to detect the feature points in Section III-B.

B. Salient Feature Point Detection

According to the principle of PC, edges structure features are
perceived at the point where the Fourier components are in phase
with each other. The PC map is more like the enhanced edges of
an image [29]. In view of the characteristic of the PC map, the
nonlinear diffusion function is used to construct the nonlinear
scale space of PC maps, and the extreme value is detected in the
nonlinear scale space to obtain the feature points with invariant to
illumination and contrast. Compared with the Gaussian function,
the nonlinear spread function has proven to preserve the edges
structure and details better, as well as improving the localization
accuracy of features while suppressing noise [28], [58]. The
nonlinear diffusion function can be expressed as

∂L

∂t
= div (c(x, y, t) · ∇L) (9)
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where div and ∇ are the divergence and gradient operators,
respectively. L is the luminance of an image, c(x, y, t) is the
conductivity function and t is the scale parameter. Through
setting proper c(x, y, t), we can make the diffusion adaptive to
the local structure. The function c(x, y, t) is defined as

c(x, y, t) = g (∇Lσ(x, y, t)) (10)

where ∇Lσ is the gradient of a Gaussian smoothed original
imageL and σ is representative of the amount of blur. In order to
preserve the edge of the image while ensuring a faster diffusion
rate [58], the following formula is selected as g:

g =
1

1 + |∇Lσ |2
κ2

(11)

where κ is the contrast factor that controls the level of diffusion.
The greater the κ value chosen, the less edge information will
be preserved.

Similar to SIFT [14], the constructed nonlinear scale space
is divided into O octaves, and each octave contains S sublevel.
The resolution of all layers in the scale space is the same as
the original image. The scale relationships among the layers are
described as follows:

σi(o, s) = σ02
o+ s

S

o ∈ [0, ..., O − 1], s ∈ [0, ..., S − 1], i ∈ [0, ..., N ]
(12)

where o and s represent the index of octave O and sublevel S,
respectively. σ0 is the initial value of the scale parameter. N
is the total number of nonlinearly filtered images. To capture
more salient feature points, the maximum octave is set to 6, the
number of sublevels per scale level is set to 4, and the control
factor κ is set to empirically be 0.0003. Having constructed the
nonlinear scale space, we calculate the scale-normalized Hessian
matrix in the scale space. The 2-D feature points are located by
calculating the local maximum of the 3 × 3 neighborhood in the
scale-normalized Hessian matrix.

Due to the nonlinear diffusion filters preserve more of the PC
maps information, the number of feature points obtained by this
method is much more than that of the traditional methods, which
get feature points on original gray images. This creates many
noncommon feature points, and matching of noncommon fea-
ture points of images can only bring in the wrong matches, these
unreliable matches will bring down the matching performance.
Considering PC not only describes the features of image, but
also reflects the significance of local structural features [48], we
have attempted to introduce PC to remove the noise or unreliable
feature points. If the PC information at a feature point (denoted
by Pi) is larger than a threshold, i.e., Pi ≥ th, then the point is
validated. If Pi is below th, then the point is rejected, where th
is a preset threshold, and empirical value of 0.05 is suggested.
In this way, many impossible matching points are eliminated to
avoid unnecessary calculations.

A simple comparison in Fig. 3 is conducted to illustrate the
robustness of the proposed method, whereas other methods are
used as contrast algorithms to detect the features. One can see
that the proposed method efficiently extracts a larger number of

Fig. 3. Feature points detection method comparison. (a) Image with nonlinear
intensity changes. (b) PC map. (c) MMSC. (d) SIFT. (e) FAST. (f) Harris. (g)
PC detector (PC minimum moment is 0.2).

distinctive feature points, which illustrates that our method is
more robust to nonlinear intensity changes.

C. Feature Descriptor Construction

Although the intensity difference is in the various spectral
band images, the overall structure and shape features of the
scenes maintain a certain degree of similarity. The proposed
method leverages the orientation of the maximum mean log-
Gabor response to establish feature descriptor based on the
global structure of images. The log-Gabor convolution response
was obtained in the PC maps calculation stage. The LGHD de-
scriptor leverages all scales and orientation log-Gabor response
to calculate the distribution histograms of 4 × 4 subregions to
describe the feature points. Different from their works, we use
the mean log-Gabor response of different scales in the same
direction to calculate the distribution to increase the distinctive-
ness and robustness of the feature descriptor against significant
intensity variations and decreases the computation complexities
of the subsequent processing tasks (e.g., feature matching).
For each orientation o, the mean magnitudes of all scales are
calculated as

Ao(x, y) =

(∑Ns

n=1 An,o(x, y)
)

Ns
(13)

where o = 1, 2, ..., No and s = 1, 2, ..., Ns stand for the number
of orientations and scales, respectively. Ao is defined as the
oriented amplitudes map of orientation o.

Among these different orientations of mean response map,
we use the index of the maximum mean response map instead
of the maximum mean response map value to create the feature
descriptor. Fig. 4 shows the process of constructing the feature
description. Concretely, for each feature point, we select a local
region with S × S pixels center at the feature. Based on the
MPEG-7 standard, the local area is divided into 5 × 5 subre-
gions, and build the block distribution histogram by statistics
the index value of maximum oriented amplitudes map in all
subregions. The feature descriptor is obtained by incorporating
the distribution histograms of every block and normalized to unit
length.
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Fig. 4. Process of descriptor construction. (a) Input local region. (b) Average
log-Gabor response map in multiple directions. (c) Generate the maximum
response orientation index map. (d) Spatial structure division base on the
MPEG-7 standard.

Fig. 5. Examples of multispectral images from different datasets. (a) VIS-NIR
dataset. (b) VIS-TIR dataset. (c) SAT dataset.

The matching process is achieved using the bilateral matching
based on the unilateral best-bin-first (BBF) method, regard the
feature point pairs with minimal SAD distance as potential
matches [38].

IV. EXPERIMENTAL RESULTS AND ANALYSES

A. Datasets and Evaluation Criteria

To verify the matching performance of the proposed method,
three different types of multispectral image datasets were se-
lected for qualitative and quantitative evaluation. Samples from
these datasets are shown in Fig. 5. Fig. 5(a) come from VIS-NIR
datasets [1]. This dataset consists of 477 visible and infrared
scene image pairs, which include 9 categories as follows: coun-
try, field, forest, mountain, old building, street, urban, and water.
In our experiments, we select 90 images for testing (top 10 per
category). Fig. 5(b) is from the VIS-TIR datasets [20]. This
dataset consists of 44 visible and thermal infrared outdoor image
pairs, with dimensions of 639× 431 pixels. The average spectral
distance is approximately 0.5μm for VIS-NIR datasets and 9μm

Fig. 6. Samples of the fourth dataset. (a) Dataset with different levels of
rotation changes. (b) Samples of multispectral image pairs in the fourth datasets.

for VIS-TIR datasets, which means VIS-TIR datasets are more
challenging than VIS-NIR datasets. Fig. 5(c) is from the SAT
dataset. The SAT dataset contains four pairs different spectral of
remote sensing satellite imagery. Each image pair was composed
of a reference and a sensed image of the same area, which
were, respectively, acquired from different spectra resulting in
relatively high-intensity changes. All the images were rectified
and aligned, so that matches could be obtained in horizontal
lines. There is no additional preprocessing or enhancement to
highlight features or increase in contrast.

In addition, the fourth dataset was used for experiments to
demonstrate the robustness of the proposed method under dif-
ferent interferences and the practicability of image registration.
This dataset consists of two group simulated images and six pairs
of multispectral/multisensor remote sensing images with dif-
ferent degrees geometric and radiometric variations, where the
two group simulated images are simulated images with different
levels of Rotation angle and scales, respectively. These images
are displayed in Fig. 6. For example, the simulated images for
different levels of applied rotation transformations are illustrated
in Fig. 6(a), and Fig. 6(b) presents illustrations of sample image
pairs from six pairs of multispectral/multisensor remote sensing
images. For better quantitative evaluation, we need to obtain
a ground truth geometric transformation between each image
pair. In the two group simulated images, the known predefined
projective model between image pairs is used for this purpose.
The six pairs multispectral/multisensor remote sensing images
affine transformation parameters were calculated by manually
selecting evenly distributed ten pairs of corresponding control
points. The source code of MMSC and these datasets along with
detailed data descriptions are available.1

The performance of the MMSC method is evaluated us-
ing four matching criteria named repeatability, precision, the
number of correct matches (NCM), and root-mean-square error
(RMSE).

Feature points repeatability depicts the percentage of repeat-
able features detected in reference and sensed images are used
to assess the performance of the detectors. It is defined as

Repeatability =
Correspondences
(n1 + n2) /2

(14)

where n1 and n1 are the number of feature points in the refer-
ence and sensed images, respectively. Correspondences are the

1[Online].Availabe: https://github.com/liruixiang00/mmsc.

https://github.com/liruixiang00/mmsc
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TABLE I
AVERAGE PRECISION AND NCM VALUES OF DIFFERENT PARAMETER Ns

TABLE II
AVERAGE PRECISION AND NCM VALUES OF DIFFERENT PARAMETER No

number of corresponding feature point pairs whose reprojection
error is less than three pixels. The reprojection error thre of two
feature points of x1 and x2 can be expressed by the following
equation:

‖x1 − Tx2‖ = thre (15)

where T is the geometric transformation parameters between
reference and sensed images. The definitions of precision and
NCM are given as follows [59]:

Precision =
NCM
NTM

(16)

where NCM and NTM are the NCMs and the total number of
matches in the matching results, respectively.

In addition to these measures, the RMSE was used to evaluate
the registration accuracy quantitatively, and is calculated as
follows:

RMSE =

√
1

N

∑N

i=1
(xi − x′′

i )
2 + (yi − y′′i )

2 (17)

where N is the number of final matches, which denotes the
matched points which have been filtered by fast sample con-
sensus (FSC) as inliers. (xi, yi) and (x′′

i , y
′′
i ) are the coordinates

of pixels in reference image and the transformed sensed image,
respectively.

B. Parameter Analysis

The proposed MMSC method has three key parameters: Ns,
No, and S. Parameters Ns and No are the number of scales
and orientations of the log-Gabor filter, respectively. The com-
bination of parameters of log-Gabor filters could influence the
performance of the proposed MMSC method. ParameterS is the
region size for feature description, which is a key factor in the
performance of the descriptor. We evaluate the performance of
MMSC when its three parameters are set to different values. For
evaluation, the values assigned to Ns parameter were changed
from 2 to 6 and the values assigned to No parameter were
changed from 3 to 7. For set S, two different combinations,
including 100 × 100 and 80 × 80 sets, were considered. For
each combination of three key parameters, the matching process
was performed on the VIS-TIR dataset and the average of the
precision and NCM values was estimated. The experimental
results are listed in Table I–Table III. From Table I, when Ns

reaches 4, the precision of MMSC reaches 32.02%. From Table
II, the results for each selected No indicate that the larger No

TABLE III
AVERAGE PRECISION AND NCM VALUES OF DIFFERENT PARAMETER S

TABLE IV
AVERAGE REPEATABILITY AND CORRESPONDENCES ACHIEVED BY

FEATURE POINT DETECTORS

Note: Rep = repeatability rate and Corr = the number of correspondences.

value untilNo = 6 provides better matching results. As shown in
Table III, When S = 80, MMSC achieves the best performance
in both precision and NCM metrics. Taking into consideration
matching performance and descriptor length, these parameters
are fixed to No = 6, Ns = 4, and S = 80 in the following
experiments. Thus, the dimension of the feature description
is 150, which decreases the computation complexities of the
subsequent matching.

C. Analysis of Detector performance

In this part, to evaluate the performance of the proposed
MMSC feature detection, a comparison of it with four feature
point detectors is made, which are Harris [13], SIFT [14],
SURF [15], and FAST [31]. We conduct our experiments on
three multispectral datasets shown in Table IV. Here, the evalu-
ation metrics used repeatability and correspondences. Table III
lists the comparison results. The mean column lists the average
values computed over all the evaluated datasets. The comparison
shows that the proposed MMSC detector obtains on average the
best performance. In the VIS-NIR dataset, FAST and Harris
have similar repetition rates, but FAST obtains more matching
correspondences. Since the thermal infrared images have less
common information than the near infrared images, all the
detectors have low repeatability on the VIS-TIR dataset. Harris
demonstrates better performance on VIS-NIR and VIS-TIR
dataset, whereas it performs lower to FAST and SURF on
SAT dataset. Compared with other methods, MMSC detector
achieves the best repeatability in this dataset, followed by the
FAST and Harris detector. This is because the PC is more robust
than gradient and intensity information to nonlinear intensity
differences. In addition, we introduce structure consistency con-
straint retain salient feature points to improve repeatability. SIFT
obtains overall the worst repeatability in the comparison.

D. Analysis of Matching Performance

To verify the matching performance of the proposed MMSC
method, we select three multispectral datasets for qualitative
and quantitative evaluation. We compare our MMSC algo-
rithm against five state-of-the-art algorithms, i.e., SIFT [14],
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Fig. 7. Comparison of matching performance by the related methods. (a) SIFT. (b) EHD. (c) PCEHD. (d) PIIFD. (e) LGHD. (f) MMSC.

EHD [42], PCEHD [43], PIIFD [38], and LGHD [20]. To be
specific, the EHD, PCEHD, and LGHD used the FAST detector
to detection feature point, the PIIFD used the SURF detector to
detection feature point, the SIFT leveraged the SIFT detector to
detection feature point, and then use their descriptor for feature
matching. We detected a total of 2500 points for each image of
multispectral images. However, image texture and scene content
will affect the number of feature points finally detected. The
bilateral BBF method was adopted and the threshold of the
nearest neighbor criterion of all the methods is set to 1 in this
article [38]. The greater the threshold value chosen, the more
the NCM will be preserved.

1) Qualitative Results: Fig. 7 shows the matching results of
SIFT, EHD, PCEHD, PIIFD, LGHD, and MMSC on different
multispectral datasets successively. Red lines indicate wrong
matches and yellow lines indicate the correct. The first two
columns are the NIR image pairs, which suffer from the large
nonlinear intensity change will cause some physical correspon-
dences that are not similar at all. The next two columns are the
TIR image pairs, they come from different sensors and during
the imaging process, will lose local texture information. The
last two columns, they are the SAT image pairs in which the
challenge is severe nonlinear intensity differences due to the
difference in imaging mechanism.

As shown in Fig 7(a), SIFT algorithm fails to match on the fifth
image pairs. Even if the matching is successful, the precision is
also low on the third, fourth, and sixth pairs of images. Although
PIIFD establishes symmetric feature descriptions to overcome
the gradient orientation reversal, nonlinear intensity change and

local detail discrepancies can also cause the dissimilarity of
feature descriptions. This shows that gradient-based descriptors
are more sensitive to nonlinear grayscale differences. The results
of EHD and PCEHD are similar, and they are better than the
results of the gradient-based descriptor. LGHD only obtains a
higher precision on the NIR image pair. In contrast, the proposed
MMSC algorithm has the best matching performance on all
six image pairs, whose precision is 78.21%, 63.91%, 32.70%,
61.88%, 35.79%, and 64.13% successively. The average preci-
sion of MMSC method for the six image pairs are 56.11%, which
is 7.30% higher than that of LGHD. The average precision of
MMSC is about 3.2 times that of SIFT. This is because the
MMSC uses PC instead of image intensity for feature point
detection, considers both the number and repeatability of feature
points. In addition, the MMSC is constructed from the log-Gabor
convolution sequence and is much more robust to nonlinear
intensity differences than traditional gradient map. Thus, MMSC
not only largely improves the stability of feature detection but
also overcomes the limitation of gradient information for feature
description.

2) Quantitative Results: The quantitative results of all meth-
ods on different multispectral datasets are shown in Table V. In
the VIS-NIR dataset, the spectra of the image pairs are close.
EHD and PCEHD use the responses of multioriented Sobel
filters, and they are better than the results of the SIFT and PIIFD.
The LGHD descriptor uses multiscales and multidirectional log-
Gabor filters to take the place of the five filters of EHD, which
can obtain more stable structural properties of multispectral
images than EHD. MMSC match precision is slightly higher
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Fig. 8. Matching results of different interferences to MMSC. (a) Rotation change. (b) Scale change.

TABLE V
MATCHING PERFORMANCE OF THE RELATED METHODS

than LGHD. The average NCM of MMSC method in this are
748.8, which is 118.8, 201.3 more than that of LGHD and
SIFT, respectively. This is because in the proposed algorithm,
the adoption of nonlinear feature points results in significant
improve of the number of correctly matched points and the
matching performance. In addition, the proposed descriptor
describes the feature vectors by the distribution of the maximum
mean log-Gabor response, which can capture the more robust
structure and shape characteristics of multispectral images.

Compared to NIR images in the VIS-NIR datasets, the TIR
images in the VIS-TIR dataset have greater spectral range while
losing local texture information with corresponding visible im-
ages. Hence, all matching method obtained lower precision.
However, the proposed MMSC method performs much better
than the other method. EHD leverage multioriented Sobel spatial
filter construction edge descriptors, which show better results
than gradient-based methods. Although the similarity of image
structures decreases as the spectral difference increases, image
structures still maintain better consistency than image inten-
sities and gradients. Because the log-Gabor filters are better
at retaining the oriented edge characteristics of multispectral
images, the LGHD can achieve better matching performance
than the EOH. When the local texture of the thermal infrared
image is losing, the structural information maintains a certain
degree of similarity in visible and thermal infrared images. Using
the structural consistency information of the image for feature
detection and description makes MMSC have the best matching
performance. Comparing our method with LGHD, it can be seen
that the precision improves from 28.86% to 32.02% and NCM
improves from 34.2 to 105.9.

The spectral ranges of the SAT dataset are much closer than
the visible and thermal infrared images of the VIS-TIR. Among

the other method, the LGHD and EHD descriptor performs much
better than the remaining descriptors, and present similar results.
Gradient-based descriptor, including SIFT and PIIFD, showed
similar results. They can process images pair with less differ-
ence, but cannot get correct matching for multispectral images
with great differences. Even if the matching is successful, the
NCMs are also small, as shown in Fig. 7(a) and (d). Although the
LGHD algorithm achieves second-best matching performance,
there are very few NCMs compared with the proposed method,
as shown in Fig. 7(e). In the MMSC method, a PC map instead of
image intensity for feature detection. Using nonlinear diffusion
to detect feature points on the PC maps can improve the repeata-
bility of feature points, much more correct matches can be ob-
tained. Furthermore, our method adopts the average log-Gabor
convolution sequence to construct the distribution histogram of
maximum log-Gabor response, which make the robustness to
intensity changes of the proposed matching method.

E. Influence of Different Interferences to MMSC

To investigate the influence of rotation and scale changes, we
test the proposed method on two group simulated images with
different scale factors and rotation angle. While the reference im-
age of Fig. 8(a) remains unchanged, the sensed image of Fig. 6(a)
is rotated from −20◦ to 20◦ with different levels of applied
rotation transformations. Similarly, the sensed image of Fig. 6(a)
is change from 0.5 to 1.5 scales with different levels of applied
scale transformations. Fig. 8 indicates the experiment results
in terms of precision and NCM values for MMSC in different
interferences. As can be seen, the capability of the proposed
method degraded with increasing in the geometric difference
level. Therefore, the proposed algorithm is not very effective in
directly matching images with large geometric changes. On the
other hand, it is shown that MMPC can tolerate rotation change
is less than 10◦, as shown in Fig. 8(a). It is also revealed that the
scale variations that can be tolerated are between 0.8 and 1.2, as
shown in Fig. 8(b).

F. Analysis of Registration Performance

In this part, to validate the proposed matching method in
image-registration applications, six pairs of images shown in
Fig. 6(b) are used for evaluation. We compare our MMSC
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Fig. 9. Detected matched features of the proposed method. (a)–(f) First to sixth pairs of multispectral images in the fourth dataset.

Fig. 10. Checkerboard mosaiced images of the proposed method. (a)–(f) First to sixth pairs of multispectral images in the fourth dataset.

Fig. 11. Registration results for different methods for six pair images in terms of (a) precision, (b) NCM, (c) RMSE, and (d) RT.

algorithm with SIFT, PIIFD, EHD, PCEHD, and LGHD. We
first perform feature matching on these image pairs. Then, we
use the FSC algorithm [60] to remove the outliers and to estimate
the transformation parameters.

The registration results obtained by the proposed method are
shown in Fig. 9. In addition, the checkerboard mosaiced images

are provided for visual inspection of the registration results
in Fig. 10. The comparative results for different descriptors,
and for all evaluation criteria, such as precision, the NCM, the
registration accuracy (RMSE), and run time (RT), are shown in
Fig. 11. As can be seen from Fig. 11(a) and (b), the proposed
method outperforms the other methods both in precision and
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NCM. This may be because the MMSC uses PC instead of
image intensity for feature point detection, and considers both
the number and repeatability of feature points. In addition, the
MMSC adopts the orientation of the maximum mean log-Gabor
filter responses, which are encoded to build feature descrip-
tors instead of simple gradients or similarity measures. LGHD
achieves the second-best matching precision. Similar to the
MMSC, the LGHD is also based on log-Gabor filters and is
robust against nonlinear intensity changes. However, the NCMs
by the MMSC algorithm are approximately twice. As can be seen
in Fig. 9, the matched features demonstrate the capability of the
proposed MMSC method in detecting a sufficient number match
point pairs even in multispectral image pairs with geometric
and significant nonlinear intensity differences. The RMSE of
the registration results of using different methods is given in
Fig. 11(c). We can see that the PCEHD algorithm failed in the
first and third image pairs, SIFT algorithm failed in the third
image pairs, and PIIFD algorithm failed in the sixth image pairs.
A possible reason is that they could not get enough correct
matched point correspondences. The NCMs obtained by our
method are from two to ten times as many as other methods.
The average RMSE of MMSC over all image pairs is 1.78
pixels. Experimental results show that our method is robust
against the nonlinear intensity differences, and outperforms the
comparison methods in terms of the NCM and registration
accuracy.

All comparative experiments are implemented on a laptop
with 1.8-GHz Intel Core i5 CPU, 8-GB RAM, and MATLAB,
and the running times required by the related methods for the six
image pairs are shown in Fig. 11(d). As can be seen, the MMSC
spends a moderate level of computation time among compared
methods, SIFT achieves the best performance, and LGHD is
featured with a high computation time. This is because the
LGHD descriptor uses all the scale and oriented magnitudes of
the log-Gabor filters to calculate the feature vectors. The MMSC
descriptor is composed of 150-dimensional vectors, which saves
a lot of time in the feature description and feature matching
process, as compared with LGHD.

V. CONCLUSION

In this article, a multispectral image MMSC was proposed.
First, the salient feature points were detected from PC maps
based on PC and nonlinear diffusion, which were invariant
to illumination and contrast. Subsequently, the orientation of
the maximum log-Gabor responses was used to represent the
structure features of multispectral images. Feature descriptors
were established according to the orientation of the maximum
log-Gabor responses. In the experimental part, three multispec-
tral datasets were employed for matching test and several state-
of-the-art methods were used for comparison. The experimental
results showed that our method obtained superior matching
performance over the others. However, when calculating the PC
maps, it requires relatively higher computation. In the future,
we will study how to reduce the algorithm complexity and the
eliminate outliers.
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