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Fusion of Panchromatic and Multispectral Images
Using Multiscale Convolution Sparse Decomposition

Kai Zhang , Feng Zhang, Zhixi Feng , Jiande Sun , and Quanyuan Wu

Abstract—In this article, we proposed a novel image fusion
method based on multiscale convolution sparse decomposition
(MCSD). A unified framework based on MCSD is first utilized to
decompose panchromatic (PAN) image and the spatial component
of upsampled low spatial resolution multispectral (LR MS) images,
which can produce the corresponding low frequencies and feature
maps. By combining convolution sparse decomposition with mul-
tiscale analysis, MCSD can efficiently approximate the spatial and
spectral information in images. Next, a binary map generated from
gradient information is utilized to integrate the low frequencies of
LR MS and PAN images. For feature maps, the fusion gain for
each pixel is calculated according to the similarity between the local
patches from them. Finally, the fused image is reconstructed by the
sum of fused low frequency and feature maps. Some experiments
are conducted on QuickBird and GeoEye-1 satellite datasets. Com-
pared with other methods, the proposed method performs better
in visual and numerical evaluations.

Index Terms—Convolution sparse representation (SR), image
fusion, multiscale decomposition, multispectral (MS) image,
panchromatic (PAN) image.

I. INTRODUCTION

IN RECENT years, with the rapid development of imaging
techniques, a series of remote sensing satellites have been

launched to achieve more comprehensive earth observation. So
more and more remote sensing images have been widely used on
many fields for scene interpretation, such as object detection [1],
classification [2], and change detection [3]. However, there is a
fundamental tradeoff between spatial and spectral resolution for
remote sensing images due to the limitation of signal-noise ratio.
For instance, for multispectral (MS) image, its spatial resolution
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is lower than that of panchromatic (PAN) image, but MS image
contains abundant spectral information when compared with
PAN image composed of only one channel. Hyperspectral image
provides more rich spectral signatures but spatial resolution
is also low. Therefore, image fusion techniques [4]–[7] are
proposed to improve the spatial and spectral resolution of remote
sensing images.

Over the past two decades, a variety of methods are proposed
for the fusion of PAN and MS images and achieved satisfactory
fusion results, which can be separated as four types: component
substitution based methods, multiresolution analysis (MRA)
[8] based methods, spatial–spectral degradation model-based
methods and deep neural network (DNN) based methods. For
the first kind of methods, the observed low spatial resolution MS
(LR MS) image is interpolated to match the size of PAN image.
Then, some transforms are adopted to estimate the component
which contains most of the spatial information in LR MS im-
age. PAN image is used to substitute the spatial component.
Finally, the corresponding inverse transform is implemented
on the synthesized spatial component and other components to
obtain the fused HR MS image. According to the framework,
Intensity-Hue-Saturation transform [9], principal component
analysis (PCA) [9] and Gram–Schmidt (GS) transform [10] are
considered to fuse PAN and LR MS images. These methods are
widely used because of the simple principle and high efficiency.
However, spectral distortion can be always found in the fusion
results due to the spectral response range differences between
LR MS and PAN images. Thus, some methods [11]–[13] are
proposed to alleviate the issue. For example, Kim et al. [11] em-
ployed spatial PCA to obtain more reasonable spatial structures
from the bands of LR MS image.

For the second kind of methods, they assume that the missing
spatial details in LR MS image can be found in PAN image,
which is denoted as Amélioration de la Résolution Spatiale par
Injection de Structures (ARSIS) [14]. Then, MRA methods are
utilized to extract the spatial details from PAN image, which
are injected into the interpolated LR MS image. For example,
Otazu et al. [15] took the physical electromagnetic spectrum
responses into consideration and estimated more reasonable
spatial details using wavelet transform. Alparone et al. [16]
demonstrated that MRA-based pansharpening is described by
a separable low-pass filter derived from modulation transfer
function (MTF) of MS images. Vivone et al. [17]–[19] exploited
deeply different regression models to calculate more accurate
injection coefficients for the spatial information enhancement
of MS images. Besides, Zheng et al. [20] developed the support
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value transform (SVT) to realize the fusion of PAN and LR MS
images. Subsequently, Yang et al. [21] further obtained better
fusion results by combining SVT with adaptive PCA. These
methods can better preserve the spectral information in HR MS
image. But some spatial artifacts are caused by the excessive
injection of spatial details from PAN image.

For the third kind of fusion methods, it is supposed that the
acquired PAN and LR MS images are the degraded results of
HR MS images in spatial and spectral domains, respectively.
Then, the fusion of PAN and LR MS images is conducted by
the degradation model with reasonable regularized priors. For
example, Li et al. [22] considered the sparse prior and proposed
a new pansharpening technique based on compressive sensing
theory [23]. Besides, some improved versions [24]–[25] are
presented to generate better fusion results and make the model
more practical. For example, Wang et al. [24] introduced local
autoregressive model into the model to improve the spatial struc-
tures of HR MS image. Besides, other efficient priors [26]–[31],
such as total-variation [26], non-negativity [27], and low-rank
property [28]–[29], are further considered. For example, Yang
et al. [28] formulated LR MS image as the sum of HR MS
image and two different images, in which low-rank prior is
utilized to capture the spatial and spectral similarity in HR MS
image. Besides, sparsity-induced priors are also considered in
[32]–[34] for pansharpening. These methods behave well in
spectral preservation and spatial enhancement. However, high
computational complexity cannot be ignored.

Besides, motivated by the great achievements in remote sens-
ing target detection and classification [35]–[37] of DNN, many
image fusion methods based on DNN gradually appear. For
example, Huang et al. [38] first considered modified sparse
denoising autoencoder to model the relationship between HR
and LR images for fusion of LR MS and PAN images. Then,
Masi et al. [39] adopted convolution neural network (CNN) to
fuse LR MS and PAN images. Subsequently, a target-adaptive
CNN [40] was designed to further improve the reconstruction
accuracy of fused image. Moreover, Shao et al. [41] also used
CNN and designed two CNNs with different architectures to
extract the spatial and spectral information in PAN and LR
MS images. In [42], high frequencies are inferred from DNN
and then injected into the upsampled LR MS image, which
follows the concept of ARSIS. Wei et al. [43]–[44] proposed
a deep residual pansharpening neural network (DRPNN) to
boost the accuracy of the fusion results. Besides, Wang et al.
[45] introduced dense blocks into CNN and residual learning is
considered for spatial resolution enhancement.

Recently, convolution sparse decomposition (CSD) [46]–[47]
is gaining much attention for fusion of PAN and LR MS im-
ages because of global representation and better reconstruction
performance compared with sparse representation (SR). For
example, Zhang et al. [48] combined CSD with spatial–spectral
degradation model and introduced structural sparse prior to
capture the spectral correlation in the bands of MS image. In
[49], CSD was employed to decompose the high frequencies of
source images and the corresponding feature maps are fused.
Fei et al. [50] adopted the filter sharing strategy in different dic-
tionaries to synthesize the spatial details which are injected into

Fig. 1. Reconstruction performance with different scales. (a) Original PAN
image. (b) Reconstructed PAN image by 10 filters with size 5 × 5. (c) Recon-
structed PAN image by 10 filters with size 9 × 9. (d) Reconstructed PAN image
by five filters with size 5× 5 and five filters with size 9× 9. (e)–(g) Error images
of (b), (c), (d), respectively.

fused images. Although some good fusion results are achieved,
these methods only use filters with the same scale to analyze
the spatial details in PAN and MS images, which ignore the
multiscale property in these images. Thus, some subtle or finer
spatial features cannot be decomposed well by the filters with the
same scale [51]. Fig. 1 shows the reconstruction performance of
single-scale and multiscale filters for the given PAN image with
size 256 × 256 from QuickBird satellite. Although, we can see
that the PAN image can be reconstructed well by single-scale and
multiscale filters in Fig. 1(b)–(c), it can be found that multiscale
filters can more accurately approximate to the original image
in spatial details from the error images in Fig. 1(e)–(g). Thus,
compared with the single-scale CSD, multiscale convolution
sparse decomposition (MCSD) should be further explored to
more accurately represent the images. Besides, due to statistical
characteristic differences with different scales, the same fusion
rule for feature maps from different scales will result in some
spatial and spectral distortions. So specific fusion rule should be
designed for different scales.

Taking the above two issues into consideration, an image
fusion method based on MCSD is developed by combining
the elaborate feature map fusion rules for different scales. In
the fusion method, GS transform is carried out on LR MS
image to obtain the spatial component. Then, we establish a
unified framework to simultaneously achieve the high and low
frequency separation and MCSD of high frequency for PAN
image or the spatial component from LR MS image. CSD is
extended to MCSD to approximate the images to be fused for
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Fig. 2. Flowchart of the proposed method based on MCSD.

effective spatial information representation, which is solved by
alternating direction method of multipliers (ADMM) [52]. Next,
different fusion rules are designed for low frequencies and the
feature maps from high frequencies. For low frequencies of PAN
image and the spatial component of LR MS image, a binary
map is inferred from the gradient and intensity information to
guide the fusion of low frequencies, which can further enhance
the spatial details in the fused image. For the feature maps on
different scales, local similarity is calculated as a combination
weight for each pixel by considering the scale differences.
Finally, the fused image can be produced by combining low and
high frequencies after reconstruction of the fused feature maps.
Experiments on full-resolution and reduced-resolution datasets
demonstrate that the proposed method provides better visual and
numerical performance. Some parameters about MCSD are also
investigated to analyze the influences on the fusion results. The
contributions of this article are listed as the following two points.

1) By combining multiscale analysis with CSD, MCSD is
developed and then a unified framework is established to
separate the low and high frequencies of LR MS and PAN
images, where MCSD is employed to decompose the high
frequencies more accurately.

2) Considering the spatial information differences among
different feature maps from different scales, the injection
gain for each pixel is computed from the similarity be-
tween the local patches from LR MS and PAN images,
which avoids the spectral distortions caused by global
gain.

The remainder of the article is organized as follows. The
image fusion framework based on MCSD is introduced in
Section II. Section III describes MCSD and the optimization
algorithm in detail. In Section IV, experimental results and
comparisons on full-resolution and reduced-resolution datasets
are presented. Conclusions are described in Section V.

II. PAN AND LR MS IMAGE FUSION BASED ON MCSD

In this section, we apply MCSD on PAN and LR MS images
and integrate them to obtain HR MS image. In the proposed
method, GS transform is first implemented on the LR MS
image to obtain the first component GS1 ∈ Rh×w. h and w
are the height and width of images. For GS1 and PAN image, a
unified approximation is next designed to achieve the high- and

low-frequency separation and fine-grained feature map esti-
mation of high frequencies. Then, the corresponding feature
maps of high frequencies are merged by different fusion rules
derived from multiscale property. Low frequencies of GS1 and
PAN image are fused by combining their gradient information.
Subsequently, the fused spatial component GSF

1 ∈ Rh×w is
synthesized by combining the reconstructed high frequency
from the fused feature maps and the fused low frequency. Finally,
the HR MS image is generated through inverse GS transform.
The flowchart of the proposed method based on MCSD is shown
in Fig. 2 and the detailed procedures are introduced in the
following parts.

A. High-/Low-Frequency Separation and Feature Map
Decomposition

Generally, the spatial details also termed as high frequencies
from PAN image are injected into the obtained first component
GS1 after GS transform. The high- and low-frequency separa-
tion of the image has an effect on the spectral distortions in the
final fused results because the spectral information is generally
influenced by low-frequency component. Besides, high frequen-
cies contain some obvious edges, curves, and textures. In order to
estimate the smoothing component, the L2 norm on gradient of
the low frequency is constrained. For the high frequency, direct
fusion on high frequency PH ∈ Rh×w of PAN image and high
frequency GSH

1 ∈ Rh×w of the first GS component also can
enhance the spatial information in LR MS image, which will
lead to some spectral distortions in the fused image. Compared
with the fusion on original coarse scale, decomposed feature
maps on finer scales can provide a more accurate representation.
Thus, MCSD is implemented on PH and GSH

1 to compute the
feature maps on different filter size.

Then, by integrating MCSD, a unified framework is estab-
lished to simultaneously achieve the separation of high/low
frequencies and multiscale feature map decomposition. With
PAN image P ∈ Rh×w as the example, the unified framework
is formulated as

argmin
PL,ZP

l,k

1

2

∥∥∥∥∥P−PL −
L∑

l=1

Kl∑
k=1

Fl,k ∗ ZP
l,k

∥∥∥∥∥
2

F

+
α

2

∥∥∇PL
∥∥
2
+ β

L∑
l=1

Kl∑
k=1

∥∥ZP
l,k

∥∥
1

(1)
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where the high-frequency PH of PAN image equals to∑L
l=1

∑Kl

k=1 Fl,k ∗ ZP
l,k. L and Kl stand for the number of

scales and the number of filters in the lth scale, respectively.
So ZP

l,k ∈ Rh×w denotes the kth feature map in the lth scale
and Fl,k ∈ Rsl×sl is the corresponding filter. sl × sl is the size
of Fl,k in the lth scale. For different scales, the filter size is
different. More clearly, if a multiscale filter bank is composed
of three filters with size 7× 7, five filters with size 9× 9, and
eight filters with size 11× 11, the bank contains 3 scales and 16
filters.PL ∈ Rh×w denotes the low frequency of PAN image.∇
stands for the gradient operator. ∗ is the convolution operation.
α and β are the tradeoff parameters. It is straightforward to
adopt alternate iterative optimization algorithm to solve (1) by
ADMM. After introducing an auxiliary variable XP

l,k ∈ Rh×w

for ZP
l,k, the augmented Lagrange function is written as

argmin
PL,ZP

l,k,X
P
l,k

1
2

∥∥∥∥P−PL −
L∑

l=1

Kl∑
k=1

Fl,k

∗XP
l,k

∥∥∥2
F
+ α

2

∥∥∇PL
∥∥
2
+ β

L∑
l=1

Kl∑
k=1

∥∥∥ZP
l,k

∥∥∥
1

+μ
2

L∑
l=1

Kl∑
k=1

∥∥∥XP
l,k − ZP

l,k +
YP

l,k

μ

∥∥∥2
2

(2)

where YP
l,k ∈ Rh×w is a Lagrange multiplier. Then, ZP

l,k, XP
l,k,

and PL are updated in sequence.
For ZP

l,k, the subfunction is

FZP
l,k

=β

L∑
l=1

Kl∑
k=1

∥∥ZP
l,k

∥∥
1
+

μ

2

L∑
l=1

Kl∑
k=1

∥∥∥∥∥ZP
l,k −

(
XP

l,k +
YP

l,k

μ

)∥∥∥∥∥
2

2

.

(3)

Then, ZP
l,k is updated by the soft-thresholding shrinkage

operator [55] as shown below.

ZP
l,k = S β

μ

(
RP

l,k

)
(4)

where RP
l,k = XP

l,k +YP
l,k/μ , r is the element in RP

l,k and

S β
μ
(r) = sign(r) ·max(0, |r| − β

μ ).

For XP
l,k , its subfunction is

FXP
l,k

=
1

2

∥∥∥∥∥P−PL −
L∑

l=1

Kl∑
k=1

Fl,k ∗XP
l,k

∥∥∥∥∥
2

F

+
μ

2

L∑
l=1

Kl∑
k=1

∥∥∥∥∥XP
l,k − ZP

l,k +
YP

l,k

μ

∥∥∥∥∥
2

2

. (5)

Equation (5) is optimized after FT owing to convolution oper-
ation and the subfunction about XP

l,k in frequency domain can
be defined as

Fx̂ =
1

2

∥∥∥∥∥p̂−
L∑

l=1

Kl∑
k=1

Hl,kx̂
P
l,k

∥∥∥∥∥
2

2

+
μ

2

L∑
l=1

Kl∑
k=1

∥∥x̂P
l,k − t̂Pl,k

∥∥2
2

(6)

where p̂ ∈ Rhw, x̂P
l,k ∈ Rhw, and t̂Pl,k ∈ Rhw are the vec-

torization versions of P−PL, XP
l,k, and TP

l,k after Fourier
Transform (FT), respectively. TP

l,k equals to ZP
l,k −YP

l,k/μ.
Hl,k ∈ Rhw×hw is a diagonal matrix, whose diagonal elements
are made up of the result of Fl,k after FT. By rearranging all
feature maps into one vector, (6) is reformulated as

Fx̂ =
1

2

∥∥p̂−Hx̂P
∥∥2
2
+

μ

2

∥∥x̂P − t̂P
∥∥2
2

(7)

where t̂P ∈ Rhw(K1+···+KL) and x̂P ∈ Rhw(K1+···+KL) are
the cascaded results of all t̂Pl,k and all x̂P

l,k, respectively. H =

[H1,1, . . . ,Hl,k, . . . ,HL,KL
] ∈ Rhw×hw(K1+···+KL). It is ob-

vious that there is a closed-form solution for x̂P . The derivative
of (7) with respect to x̂P is

∂Fx̂P

∂x̂P
= HHHx̂P −HH p̂+ μx̂P − μt̂P (8)

where the complex conjugate transpose is denoted by H . So the
optimal value of x̂P is obtained by setting (8) to zero, which
can be efficiently computed by Sherman–Morrison operation
proposed in [47].

For PL, the subfunction is

FPL =
1

2

∥∥∥∥∥P−PL −
L∑

l=1

Kl∑
k=1

Fl,k ∗XP
l,k

∥∥∥∥∥
2

F

+
α

2

∥∥∇PL
∥∥
2
.

(9)
So a closed-form solution for the quadratic problem can be

obtained after FT

PL = F−1

⎛
⎝ Ĝ

α
(
F(∇h)

HF (∇h) + F(∇v)
HF (∇v)

)
+ 1

⎞
⎠

(10)
where Ĝ = F(P−∑L

l=1

∑Kl

k=1 Fl,k ∗XP
l,k) ∈ Rh×w. F de-

notes FT and F−1 is the corresponding inverse transform of
FT. ∇h and ∇v stand for the gradient operators in horizontal
and vertical directions. Finally, YP

l,k is updated. When the
maximum iteration number or minimum reconstruction error is
achieved, PL and ZP

l,k are obtained. Similarly, the feature map

ZG
l,k ∈ Rh×w ofGSH

1 andGSL
1 ∈ Rh×w of the first component

GS1 also can be estimated according to (1).

B. Feature Map Fusion

For the fused result, the fusion rule on feature maps has a
significant influence on spatial information. Because the spatial
information in different scales has different statistical properties,
the feature maps corresponding to filters with different size have
great differences. Thus, the same fusion rule will lead to some
spatial distortions in feature maps from different scales. Besides,
the injection gain is generally calculated globally for the images
to be fused, which ignores the local similarity among the pixels.
Thus, some spectral distortions are introduced. In this section,
taking the influence of different filter sizes on feature maps and
local similarity into consideration, a more proper fusion rule is
adopted, which is designed as
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ZF
l,k (i, j) = (1−Cl,k (i, j)) · ZP

l,k (i, j)

+Cl,k (i, j) · ZG
l,k (i, j) (11)

Cl,k (i, j) =
σPG

σPσG
· 2μPμG

μ2
P + μ2

G

· 2σPσG

σ2
P + σ2

G

(12)

where ZF
l,k ∈ Rh×w is the fused feature map. (i, j) is the posi-

tion of pixel. Cl,k(i, j) is the correlation between the patches
Ui,j

l,k ∈ Rsl×sl and Vi,j
l,k ∈ Rsl×sl from ZP

l,k and ZG
l,k, which

is defined by universal image quality index (UIQI) [61]. Both
patches Ui,j

l,k and Vi,j
l,k are centered on (i, j). For feature maps

with larger filter size, the sparsity is more obvious than that with
smaller filter size, so larger patch is needed to capture the local
information. For convenience, the patch sizes of Ui,j

l,k and Vi,j
l,k

are directly set as the size of filter Fl,k corresponding to the
feature maps ZP

l,k and ZG
l,k. For example, if the size of filter

Fl,k is 3× 3, then the sizes of Ui,j
l,k and Vi,j

l,k are set as 3× 3.
σPG is the covariance of the two patches. σP and μP are the
standard variance and the mean of Ui,j

l,k, respectively. Similarly,

the standard variance and the mean of Vi,j
l,k are σG and μG.

By (11), the statistical properties in different feature maps are
fully considered and the spatial information in ZP

l,k and ZG
l,k is

efficiently combined.

C. Low-Frequency Fusion

Generally, the extraction of low frequencies from P and GS1

has a significant influence on the fusion results. However, the
separation of high and low frequencies is very difficult, espe-
cially PAN image containing abundant spatial details. Because
the high and low frequencies cannot be separated efficiently
and accurately in (1), low frequency PL of P often contains
some spatial details, which results in some spectral distortions
and spatial blur effects in the fused images. Thus, a binary map
B ∈ Rh×w is derived by combining the gradient information of
PL and GSL

1 , which is calculated by

B (i, j) =

{
1, ifMP (i, j) > MGS (i, j)
0, otherwise

(13)

MP (i, j)=

√
∇hPL(i, j)2 +∇vPL(i, j)2 (14)

MGS (i, j)=

√
∇hGSL

1 (i, j)
2 +∇vGSL

1 (i, j)
2. (15)

Then, the fused low frequency GSLF
1 ∈ Rh×w is computed

by

GSLF
1 = B�PL + (1−B)�GSL

1 (16)

where � denotes elementwise multiplication. Because the re-
gions with large gradient magnitude contain rich spatial infor-
mation, the spatial details in PL are also further injected into
GSL

1 through (16), which can better enhance the spatial details
and preserve the spectral information in the fused image.

D. Fused Image Reconstruction

When the feature maps ofPH andGSH
1 are fused by (11), the

fused high frequency GSHF
1 can be reconstructed recursively

by

GSHF
1 =

L∑
l=1

Kl∑
k=1

Fl,k ∗ ZF
l,k. (17)

Then, the fused first component GSF
1 can be computed by

GSF
1 = GSLF

1 +GSHF
1 . (18)

Finally, the fused HR MS image is obtained by the inverse
GS transform on GSF

1 and other GS components.

III. DETAILS FOR MCSD

A. CSD

CSD [46]–[47] assumes that a given image E ∈ Rh×w can
be decomposed into a series of feature maps {Zk}k=1,2,...,K ∈
Rh×w with corresponding filters {Fk}k=1,2,...,K ∈ Rs×s. The
size of filter Fk is s× s. K is the number of filters or feature
maps. Similar to SR [23], sparsity is imposed on feature maps
for a reasonable solution. Then, CSD is formulated as

argmin
{Zk}

1

2

∥∥∥∥∥E−
K∑

k=1

Fk ∗ Zk

∥∥∥∥∥
2

2

+ λ

K∑
k=1

‖Zk‖1 (19)

where λ is a tradeoff parameter and ‖ · ‖1 denotes the sum of
absolute values for all elements inZk. Due to avoiding the image
partition, CSD can locally form a more efficient representation
for a global image compared with SR [53]. Thus, CSD can
achieve more accurate image reconstruction than SR. However,
it is difficult to optimize (1) because of the involved convolution.
Zeiler et al. [46] designed an optimization approach in spatial
domain, whose computation complexity is non-negligible and
reconstruction performance is limited. Subsequently, some op-
timization algorithms [54] are introduced by ADMM approach,
which solve a large linear system after FT.

B. MCSD

Obviously, the filters with the same size in (19) are employed
to reconstruct the image. So it is difficult to well represent
the multiscale details by single-scale filters, as demonstrated in
Fig. 1. In order to improve the representation capacity, multiscale
filters are considered to achieve the decomposition of the image.
Then, the MCSD model can be formulated as

E =

L∑
l=1

Kl∑
k=1

Fl,k ∗ Zl,k +N (20)

where Zl,k ∈ Rh×w is the kth feature map in the lth scale. N ∈
Rh×w is the additive white Gaussian noise. Then, sparsity is
imposed on feature maps to regularize the solution space, whose
formulation can be molded as

argmin
{Zl,k}

1

2

∥∥∥∥∥E−
L∑

l=1

Kl∑
k=1

Fl,k ∗ Zl,k

∥∥∥∥∥
2

2

+ λ

L∑
l=1

Kl∑
k=1

‖Zl,k‖1
(21)

where λ is a tradeoff parameter. Considering the coupling of
Zl,k, an auxiliary variable Xl,k ∈ Rh×w associating with Zl,k
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is introduced to optimize (21) alternatively. Then, (21) can be
rewritten as

argmin
{Zl,k}

1

2

∥∥∥∥∥E−
L∑

l=1

Kl∑
k=1

Fl,k ∗Xl,k

∥∥∥∥∥
2

2

+ λ

L∑
l=1

Kl∑
k=1

‖Zl,k‖1.

s.t.Xl,k = Zl,k (22)

ADMM is derived to solve (22) and the augmented Lagrange
function can be written as

F =
1

2

∥∥∥∥∥E−
L∑

l=1

Kl∑
k=1

Fl,k ∗Xl,k

∥∥∥∥∥
2

2

+ λ

L∑
l=1

Kl∑
k=1

‖Zl,k‖1

+
μ

2

L∑
l=1

Kl∑
k=1

‖Xl,k − Zl,k‖22 + μ

L∑
l=1

Kl∑
k=1

〈Yl,k,Xl,k − Zl,k〉

(23)

whereYl,k ∈ Rh×w is the Lagrange multiplier andμ is a penalty
parameter. According to the framework of ADMM, Xl,k, Zl,k,
and Yl,k are alternatively updated. For Zl,k and Xl,k, similar
solutions with (3) and (6) can be derived.

Finally, the multiplier is computed by

Yl,k = Yl,k + μ (Xl,k − Zl,k) . (24)

By alternative and iterative update above, the feature maps
corresponding to multiscale filters can be estimated efficiently.

In (21), it is assumed that the multiscale filters are known.
In order to learn more compact and representative filters, a
multiscale filter learning model is established. For N training
images, the multiscale filter learning task can be defined as

argmin
{Fl,k},{Zn

l,k}
1

2

N∑
n=1

∥∥∥∥∥En −
L∑

l=1

Kl∑
k=1

Fl,k

∗Zn
l,k

∥∥2
2
+ γ

N∑
n=1

L∑
l=1

Kl∑
k=1

∥∥Zn
l,k

∥∥
1

s.t. ‖Fl,k‖2 = 1∀l, ∀k (25)

where γ is a weighting parameter. In (25), filters and feature
maps are alternatively calculated, whose detailed optimization
algorithm can be found in [47]. By (25), some essential and
intrinsic multiscale filters can be learned from many images,
which are then adopted by MCSD.

IV. EXPERIMENTAL RESULTS AND COMPARISONS

In this section, experimental settings are introduced in details.
Then, experimental results on different datasets are presented
and analyzed, which demonstrate the performance of the pro-
posed method. Finally, parameter analysis and running time
comparison are comprehensively investigated for the proposed
method.

A. Experiment Setup

In the following parts, the fusion experiments are conducted
on four pairs of 64 × 64 LR MS image and 256 × 256 PAN

image from QuickBird and GeoEye-1 satellites, which are dis-
played in Fig. 3. QuickBird satellite can produce PAN image and
LR MS image, whose corresponding resolutions are 0.61 and
2.44 m at nadir. For GeoEye-1 satellite, the resolutions of PAN
and LR MS images are 0.41 and 1.64 m at nadir, respectively.
The image pairs in Fig. 3(a)–(b) and (e)–(f) are captured from
Sundarbans, India on November 21, 2002 by QuickBird satellite.
The reduced-resolution PAN and LR MS images in Fig. 3(a) and
(b) are produced by blurring and downsampling with rate 4, and
then the fused image of them is compared with the original MS
image, also named as reference image. For reduced-resolution
dataset, blurring operation is achieved by MTF filter, whose
frequency response is approximately Gaussian shaped. The
shapes of filters for different bands are slightly different and
their gains at Nyquist cutoff frequency can be found in [56].
GeoEye-1 satellite provides the reduced-resolution images in
Fig. 3(c) and (d) and the full-resolution images in Fig. 3(g)
and (h). The reduced-resolution images in Fig. 3(c) and (d) are
generated in the same way as that for the images in Fig. 3(a) and
(b) and the fusion result is compared with their corresponding
reference image. In order to analyze the fusion results of the
proposed method, some related methods, such as variational
pansharpening with local gradient constraints (VPLGC) [57],
proportional additive wavelet LHS (AWLP) [15], SVT [20],
two-step sparse coding with patch normalization (PN-TSSC)
[58] are employed. Besides, some methods based on CSD, such
as convolution structure sparse coding (CSSC) [48], convolu-
tional sparse representation fusion (CSRF) [49], and convolu-
tional sparse representation of injected details (CSR-D) [50] are
also considered for visual and numerical evaluations. Moreover,
CNN-based method in [39] and DRPNN [43] are also compared.
In reduced-resolution cases, four indexes, Q4 [59], spectral angle
mapper (SAM) [60], UIQI [61], and Erreur Relative Globale
Adimensionnelle de Synthèse (ERGAS) [62] are utilized for
quantitative evaluation.Dλ,DS , and quality no reference (QNR)
proposed in [63] are also employed for the assessment of the
full-resolution images because there are no reference images
for comparison.

B. Parameter Settings

In the proposed method, the filter number and scale number
are 12 and 3, respectively. The three scales are 3 × 3, 7 × 7, and
11 × 11, respectively. Each scale involves four filters. For the
tradeoff parameters, α and β are set as 25 and 1, respectively.
The maximum iteration number is set as 200 to solve (1). The
minimum relative reconstruction error is 10−5. The elements
of variables to be solved in (1) are initialized by 0. Moreover,
the penalty parameter μ is set as 0.5 in the first iteration and
then increases by multiplying a small gain ρ = 1.3 in each
iteration. Besides, the multiscale filters are trained by SPORCO
toolbox [47] in which 50 full-resolution PAN images with size
256 × 256 are used as training images and they are collected
from QuickBird and GeoEye-1 satellites. In order to obtain
finer filters, the low frequencies of the training images are
subtracted, which are produced by convolving training images
to a 9 × 9 Gaussian kernel with standard derivation 10. Then, the



432 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

Fig. 3. Image pairs to be fused. (a) Reduced-resolution LR MS image 1. (b) Reduced-resolution PAN image 1. (c) Reduced-resolution LR MS image 2.
(d) Reduced-resolution PAN image 2. (e) Full-resolution LR MS image 1. (f) Full-resolution PAN image 1. (g) Full-resolution LR MS image 2. (h) Full-resolution
PAN image 2.

corresponding high frequencies are employed for filter training.
For the sparsity constraint of feature maps, γ is 0.5 for training
data.

C. Experiments on Reduced-Resolution Dataset

In this part, the experiments are conducted on two pairs of
reduced-resolution images, which are displayed in Fig. 3(a)–(d).
The fusion results of all methods are illustrated in Fig. 4 and
some local regions are selected and amplified for direct analysis,
which are circled by a red rectangle. Besides, the error maps
between fused images and reference image are also displayed.
The first image in Fig. 4(a) is the reference image and then the
fused images are directly compared with the reference image.
The result in Fig. 4(b) is from VPLGC [57] and we can see
that some spatial blurring effects appear especially in building
regions. Although the spatial details are enhanced well, spectral
distortions can be found in Fig. 4(c) and (d). The result of SVT
[20] in Fig. 4(e) preserves the spectral features. In Fig. 4(f), the
result also suffers from the spectral distortions. On the contrary,
some blurring effects arise in the upper-right regions in Fig. 4(g),
which may be caused by improper filters. For CSRF [49], the
color of trees looks unnatural. In Fig. 4(i), the spatial details
are sharp but some spectral differences can be found. For the
proposed method, it can be found that the spectral features in
Fig. 4(k) are more consistent with those of the reference image.
Besides, we can see that the spatial details in local regions
are very close to the reference image for different methods.
But some spectral differences appear. For example, the local
region in the result of PNN [39] is more colorful than those
in the other results. However, the color in the local region of
PNN [39] looks unnatural when compared with the reference
local region. Besides, we also illustrate the error maps of the
fused images from all methods and the red band is selected for
comparison. From the error maps, it can be observed that the

reconstructed errors of VPLGC [57], CSR-D [50], and PNN [39]
are considerable. The error of the proposed method is smaller
when compared with other methods visually.

The quantitative values of all fused results in Fig. 4 are listed
in Table I, where the best result for each index is labeled in
bold. It can be observed that the best values of SAM, UIQI, and
ERGAS are generated by the proposed method MCSD. ERGAS
measures the whole spectral distortions in the fused images. So
the best ERGAS for Fig. 4(k) means that MCSD performs well
in spectral preservation. Besides, SVT [20] provides the best
Q4. But the difference between Q4 of MCSD and that of SVT
[20] is small.

Fig. 5 shows the results of all methods on reduced-resolution
GeoEye-1 satellite dataset, where the reference image is given
in Fig. 5(a). A local region is also chosen and enlarged for
comparison, whose location is labeled by a red rectangle. Similar
to the result in Fig. 4, the result of VPLGC [57] also contains
some bluring effects when compared with the reference image
in Fig. 5(a). Some spectral distortions can be found in the result
of DRPNN [43]. AWLP [15] and SVT [20] belong to the same
category, but the result of SVT [20] has a better performance than
that of AWLP [15] visually. For PN-TSSC [58], there are great
color differences in the building regions compared with Fig. 5(a).
The spatial information is enhanced well in the results of CSSC
[48] and CSR-D [50], but the spectral information is distorted in
Fig. 5(i). The fused image in Fig. 5(h) lacks many spatial edges
or textures in some buildings. The proposed method MCSD
behaves well in spatial details and the spectral information is also
preserved better than the other fused images. From the enlarged
areas, it can be found there are some spectral differences on the
roof for different methods when compared with the reference
image. The color of local area in PNN [39] is closer to that of
reference image. However, its reconstruction error is obvious.
Besides, we can see spatial details appear in some error maps,
such as CSRF [49] and PNN [39]. In addition, we also present
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Fig. 4. Fusion results and error maps of images from QuickBird. The error maps in the second row and fourth row correspond the images in the first row and
third row, respectively. (a) Reference image. (b) VPLGC [57]. (c) DRPNN [43]. (d) AWLP [15]. (e) SVT [20]. (f) PN-TSSC [58]. (g) CSSC [48]. (h) CSRF [49].
(i) CSR-D [50]. (j) PNN [39]. (k) MCSD.

TABLE I
NUMERICAL EVALUATION OF FUSED RESULTS ON REDUCED-RESOLUTION QUICKBIRD DATASET

the error maps of all methods in Fig. 5. In the error map of
the proposed method, some differences in low frequency can be
observed, which may be caused by the excessive information
introduction of PAN image through low frequency fusion rule.

Table II lists the quality assessment results of all methods. We
can see that PN-TSSC [58] provides the best Q4. However, the
proposed method MCSD gives the best values for SAM, UIQI,
and ERGAS. Therefore, the overall quality of MCSD is better
than other methods in numerical comparison.

D. Experiments on Full-Resolution Dataset

In this experiment, QuickBird and GeoEye-1 satellites pro-
vide two pairs of real images for qualitative and quantitative
evaluation. Fig. 6 reports the fusion results of all methods on

QuickBird dataset and an interesting area circled by red line
is selected for analysis. For a full-resolution dataset, there is
no reference image and error maps for direct comparison. It
can be observed that VPLGC [57] can provide better spectral
information but spatial details are smoothed in the fused image.
In the fusion results of AWLP [15] and SVT [20], the spectral
information is preserved better. Some spatial overlapping ef-
fects are visible in the result of PN-TSSC [58], which may be
caused by image partition. In Fig. 6(f), the spatial information is
enhanced well because CSSC [48] models the image globally.
However, obvious spectral distortion can be seen in the result
of CSRF [49]. For CSR-D [50], we can see some details in
building regions are blurred. In Fig. 6(h), the spectral features
for the building in the top right corner are distorted. However,
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Fig. 5. Fusion results and error maps of images from GeoEye-1. The error maps in the second row and fourth row correspond the images in the first row and
third row, respectively. (a) Reference image. (b) VPLGC [57]. (c) DRPNN [43]. (d) AWLP [15]. (e) SVT [20]. (f) PN-TSSC [58]. (g) CSSC [48]. (h) CSRF [49].
(i) CSR-D [50]. (j) PNN [39]. (k) MCSD.

TABLE II
NUMERICAL EVALUATION OF FUSED RESULTS ON REDUCED-RESOLUTION GEOEYE-1 DATASET

the color in the same position is maintained better in Fig. 6(j).
Moreover, the spatial details in Fig. 6(j) look clearer than other
fused images. From the amplified local region, some spectral
distortions arise in Fig. 6(d) and (i) and blurring effects can be
seen in Fig. 6(g). The result in Fig. 6(j) looks better.

Table III provides the values of DS , Dλ, and QNR for numer-
ical comparison, in which the best results are labeled in bold.
It can be found that the numerical values are consistent with
the visual analysis in Fig. 6. PNN [39] provides the best Ds.
However, the best values of Dλ and QNR are from the proposed
method MCSD.

Besides, Fig. 7 displays the fusion images of all methods
on GeoEye-1 dataset. Meanwhile, some local regions are also
enlarged and put in the bottom right corner of the fused image
for comparison. In Fig. 7, we can also see that the spatial effects
appear in Fig. 7(a). The result in Fig. 7(b) performs better in
spectral signatures. Fig. 7(d) has a similar visual performance
with Fig. 7(f), in which some regions containing vegetation

become dark-grey. In Fig. 7(g), the spatial information loss can
be found and there are some spectral differences among them.
For MCSD, the spatial details in Fig. 7(j) are enhanced well.
In the local region of PNN [39], some spectral artifacts can be
seen. The details in the local region of Fig. 7(g) are blurry. In
the selected area, the color in Fig. 7(j) is natural.

The numerical values of all indexes are calculated and listed
in Table IV. The best Ds is from CSRF [49], which is followed
by the proposed method. VPLGC [57] provides the best Dλ. As
an overall evaluation index, the best QNR is from the proposed
method and the QNR of PNN [39] is the second-best.

E. Investigation on Multiscale Filters

In this part, we investigate the performance of the proposed
method with different multiscale filters on reduced-resolution
GeoEye-1 dataset, which is shown in Fig. 3(c) and (d). In order
to analyze the influences of the number of scales, we consider
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Fig. 6. Fusion results of images from QuickBird. (a) VPLGC [57]. (b) DRPNN [43]. (c) AWLP [15]. (d) SVT [20]. (e) PN-TSSC [58]. (f) CSSC [48]. (g) CSRF
[49]. (h) CSR-D [50]. (i) PNN [39]. (j) MCSD.

TABLE III
NUMERICAL EVALUATION OF FUSED RESULTS ON FULL-RESOLUTION QUICKBIRD DATASET

Fig. 7. Fusion results of images from GeoEye-1. (a) VPLGC [57]. (b) DRPNN [43]. (c) AWLP [15]. (d) SVT [20]. (e) PN-TSSC [58]. (f) CSSC [48]. (g) CSRF
[49]. (h) CSR-D [50]. (i) PNN [39]. (j) MCSD.
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TABLE IV
NUMERICAL EVALUATION OF FUSED RESULTS ON FULL-RESOLUTION GEOEYE-1 DATASET

TABLE V
NUMERICAL EVALUATION OF FUSED RESULTS WITH DIFFERENT

SCALES OF FILTERS

TABLE VI
NUMERICAL EVALUATION OF FUSED RESULTS WITH DIFFERENT

NUMBER OF FILTERS

different combinations with different filter sizes, as shown in the
first line in Table V. For different combinations, the total number
of filters is 12. With the same number of filters, the filter size
varies from 3 × 3 to 15 × 15. From Table V, it can be observed
that the numerical values vary with different scale filters. For
single scale 7× 7× 12, the fusion result has a poor performance
in SAM, UIQI, and ERGAS. Although the best Q4 is from the
single scale, the fusion result from three scales behaves better in
the other three indexes. In Table V, the proposed method with
four scales cannot produce satisfactory results, probably because
the filters with larger size cannot efficiently exploit the spatial
details of the images in Fig. 3(c) and (d).

Besides, the influences of number of filters on the fusion
results are also conducted for a more comprehensive analysis.
The total number of all filters increases from 3 to 48. The detailed
settings about filters are listed in the first line of Table VI. We
can find that the best values of UIQI and ERGAS are achieved
when the number of filters is 12. Although the best SAM is
produced by the setting with three filters, the other indexes are
poor. Moreover, with the increasing of the number of filters, the
implementation time also increases because more feature maps
need to be estimated. Thus, the setting with 12 filters is utilized
in the proposed method.

Fig. 8. Multiscale filters learned by the proposed method.

Fig. 9. Influences of α and β on fusion result of the proposed method on
reduced-resolution GeoEye-1 dataset.

With the same setting in the third column of Table VI, the
learned filters by the proposed method are demonstrated in
Fig. 8. In the first line of Fig. 8, the filter size is 3 × 3. The
filter sizes in the second and last lines are 7 × 7 and 11 × 11,
respectively. In Fig. 8, filters with different orientations can
effectively approximate the spatial textures and the filters with
smaller size are used to model finer spatial details. Therefore,
the images to be fused can be decomposed well by these filters.

F. Investigation on Parameters

In this part, we analyze the influences of parameters α and
β on the fusion results of the image pair in Fig. 3(c) and (d). α
varies from 2−2 to 27 with step size 1 on the power. Besides, β
increases from 1 to 21 with step size 2. In Fig. 9, the coordinates
in the horizontal and vertical axises equal the log base 2 ofα and
β, respectively. We can see that better Q4, UIQI, and ERGAS
can be obtained with increasing α. But the result of SAM is
worse. Besides, satisfactory values are produced with smaller
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TABLE VII
TIME COMPARISON OF ALL METHODS (S)

β. Through comprehensive consideration, α and β are finally
set as 25 and 1.

G. Time Analysis

In this part, we analyze the running time of all methods on
64 × 64 LR MS and 256 × 256 PAN image pair. The experi-
ments are performed by MATLAB R2017a on the same device
with Core i7-6700/3.4GHz/16G. Table VII lists the runtime of
different methods, in which the time is measured in second.
From Table VII, it can be found that CSSC [48] is the most
time-consuming method, because more filters, about 70 filters,
are used to represent the images to be fused. Besides, CSR-D
[50] also spends a lot of time to obtain the fusion result. In
CSR-D [50], the same decomposition procedure about CSD is
implemented four times because MS images are made up of four
bands. Compared with the methods based on CS or MRA, CSD
based methods are time-consuming. The proposed method is
more efficient when compared with CSSC [48] and CSR-D [50]
due to rapid convergence and fewer filters in MCSD.

V. CONCLUSION

In this article, we proposed an efficient pansharpening method
based on MCSD. For LR MS and PAN images, the multiscale
feature maps and low frequencies of them are simultaneously
obtained by a unified MCSD framework, which can better model
the multiscale spatial and spectral information in LR MS and
PAN images. For the feature maps from LR MS and PAN images,
the fusion rule is designed by calculating the local similarity
among them, which further exploits the multiscale information
in feature maps. Besides, in order to take full advantage of
the spatial information in the low frequency of PAN image, a
binary map is estimated by comparing the gradient magnitudes
to fuse the low frequencies because the regions containing
abundant spatial details generally have larger gradient magni-
tudes. Finally, the fused image is generated after reconstruction
of fused low frequencies and feature maps. Compared with
VPLGC [57], DRPNN [43], AWLP [15], SVT [20], PN-TSSC
[58], CSSC [48], CSRF [49], CSR-D [50], and PNN [39], the
proposed method demonstrates a better performance in objective
and subjective evaluations. Due to the introduction of multi-
scale property, the proposed method can effectively enhance

the spatial details and preserve the spectral information in the
fused images. For future work, more proper transform will be
employed or reasonable fusion rules are designed to obtain better
fusion results.
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