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Object Detection in Aerial Images Using a
Multiscale Keypoint Detection Network

Jinhe Su , JiaJia Liao, Dujuan Gu, Zongyue Wang , and Guorong Cai

Abstract—Automatic object detection in aerial imagery is being
increasingly adopted in many applications, such as traffic mon-
itoring, smart cities, and disaster assistance. In keypoint-based
detectors, the prediction modules are usually generated from a fixed
feature map scale. This configuration significantly limits the ability
to detect multiscale objects in aerial scenes. The corner selection
module in these detectors often ignores that a category in an aerial
image is relatively unitary. In this article, a novel network, called
the multiscale keypoint detection network (MKD-Net), is proposed
to address these challenges. MKD-Net fuses multiscale layers to
generate multiple feature maps for objects of different sizes. During
the inference phase, both feature maps can be exploited for predict-
ing corners. Moreover, a category attention module is designed to
reduce the channel noise for a single-category scene. Experiments
on benchmarks PASCAL VOC and DOTA show promising perfor-
mance of MKD-Net compared with the baseline network. The code
is available on https://github.com/jason-su/MKD-NET.

Index Terms—Attention network, convolutional neural
networks (CNNs), loss functions, object detection, unmanned
aerial vehicles.

I. INTRODUCTION

OBJECT detection is one of the fundamental tasks in com-
puter vision. Various deep convolutional neural network

(CNN) based detectors have been proposed for natural images.
Most of the current state-of-the-art methods use multiscale and
multiaspect-ratio anchor boxes. Those methods regress them to
the target size with supervision of ground-truth bounding boxes.

Many existing object detectors, such as faster region-based
CNNs (R-CNN) [1], You only look once v3 (YOLOv3), and
RetinaNet [2], have been widely used for aerial object detection.
They rely on predefined anchor boxes. This scheme has two
drawbacks: a very large number of anchor boxes are generated
and several hyperparameters and design choices are introduced
to satisfy objects with various sizes that typically need to be

Manuscript received September 24, 2020; revised November 30, 2020; ac-
cepted December 9, 2020. Date of publication December 14, 2020; date of
current version January 6, 2021. This work was supported in part by the Natural
Science Foundation of Fujian Province, China under Grant 2020J01701, in
part by the Scientific Research Foundation of Jimei University, China, under
Grant ZQ2019013, and in part by the Fujian Provincial Science and Technology
Program Project under Grants JAT190318. (Corresponding author: Guorong
Cai.)

Jinhe Su, JiaJia Liao, Zongyue Wang, and Guorong Cai are with the
School of Computer Engineering, Jimei University, Xiamen 361021, China
(e-mail: sujh@jmu.edu.cn; jiajialiao@jmu.edu.cn; wangzongyue@jmu.edu.cn;
guorongcai.jmu@gmail.com).

Dujuan Gu is with NSFOCUS Information Technology Company, Ltd.,
Beijing 100000, China (e-mail: gudujuan@sina.com).

Digital Object Identifier 10.1109/JSTARS.2020.3044733

carefully tuned in order to achieve good performance. Hence,
anchor-free frameworks have drawn much attention. One of the
most popular frameworks is keypoint detection, which aims at
extracting the corners of objects, then generates bounding boxes
as a pair of corners grouped together. CornerNet [3], the most
representative framework, predicts the top-left and bottom-right
corners of the bounding boxes, subsequently predictings the
heatmaps of the corners with associated embeddings to group
them. Nevertheless, the performance of CornerNet is still re-
stricted by its relatively weak ability to generate heatmaps. Most
of these keypoint-based detectors are vulnerable to problems
of distinct, dense, small objects and group relevant paired key
points under aerial scenes.

Compared with natural images, the sizes of objects in aerial
images vary greatly. As shown in Fig. 1, in the dataset for
Object detection in aerial images (DOTA) dataset, the areas
of objects range from 12 pixels to 640 000 pixels. More than
70% of objects have between 256 and 4096 pixels. We observe
that approximately 5% of the objects have an area of less than
four pixels, and more than 1% of objects have an area of more
than half of the feature map with an 8×-reduced resolution
compared to the original image. Scale variations have become a
challenging task in the field of aerial object detection. Generally,
it is unsuitable to generate key points based on a single-scale
feature map for all kinds of object sizes. Feature pyramids are
widely applied in anchor-based detectors, such as YOLOv3 [4],
feature pyramid networks (FPNs), because they can extract and
fuse rich semantics better from all levels. Thus, to obtain accurate
detection in key point-based detectors, we design a multiscale
fuse module to improve the feature extraction ability.

In CornerNet, there are two sets of multichannel heatmaps:
one heatmap for top-left corners, the other one heatmap for
bottom-right corners. Each channel of the heatmap corresponds
to the corner of a category. During the test, CornerNet selects
the top k corners from all the channels to generate bounding
boxes. However, more than 65% of the images contained fewer
than two types of objects in the DOTA dataset. As shown in
Fig. 2, there are only planes on the tarmac, ships in the port,
and small vehicles in the parking lot. Hence, an intuitive way
to improve detection efficiency is to reduce the disturbance of
irrelevant channels in feature maps. It can help the network better
selects corners from these channels where there are objects in
the corresponding category.

Inspired by these phenomena, we introduce the one-stage
multiscale keypoint detection network (MKD-Net) detector for
addressing the two aforementioned challenges, by adding a
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Fig. 1. Distribution of object sizes in the DOTA dataset.

Fig. 2. Three sample images from the DOTA dataset.

multiscale network and a category attention network. MKD-Net
can be considered a variant of CornerNet-squeeze [5] that detects
an object bounding box as a pair of key points in one network. In
MKD-Net, we add a multiconvolution module to fuse features
from different layers. During inference, we make predictions
from multiscale feature maps. We also add an attention network
to predict the categories of objects in an image to reduce the noise
in the background. In summary, the article has the following
contributions.

1) We propose a novel network (MKD-Net) to simultane-
ously address the challenges of large size variations and
small dense objects for object detection in aerial imagery.

2) We design an effective multiscale network to fuse pow-
erful features from the backbone and select corners from
the multiscale feature map.

3) We design a supervised attention network to reduce the
adverse impact of category noise during testing.

II. RELATED WORK

Recently, exciting breakthroughs have been made in object de-
tection using deep convolutional networks. Current mainstream
detector frameworks can be roughly categorized into two main
types: anchor-based detectors and anchor-free detectors.

Anchor-Based Detectors: Anchor-based detectors require
generating a set of bounding boxes along with their labels. The
most representative one is the R-CNN series and its variants
[1], [6], [7], [25], [26], which are two-stage detectors. In the
first stage, a region proposal network (RPN) that is based on
the sliding-window mechanism generates a large number of
candidate bounding boxes. In the second stage, feature maps
are extracted by region-of-interest pooling from each bounding
box for classification and bounding-box regression tasks. Li
et al. [25] introduced a local-contextual feature fusion network
based on Faster R-CNN. In contrast, the one-stage detectors,

such as the single-shot multibox detector [8], YOLOv3 [4],
and RetinaNet [2], directly regress the bounding boxes, which
leads to high efficiency while sacrificing accuracy. However,
a very large set of bounding boxes can be generated by the
anchor-based detector to ensure sufficient overlap with most
ground-truth boxes. As a result, those methods will face a large
class imbalance during training [2]. They also introduce several
hyperparameters for the design of anchor boxes [3]. Generally,
these anchor frames have two different representation methods.
One is that the anchor frame contains only the upper-left corner
and the lower-right corner, the other is to use the four points of
the anchor frame. In particular, the more popular representation
method in aerial imagery is to use four points to represent the
anchor frame because the four points can represent not only
a regular rectangular frame but also a quadrilateral frame or a
diamond frame, which better represent the target position in an
image.

Anchor-Free Detectors: With the advent of CornerNet [3]
and CenterNet [9], which replace bounding-box supervision
with keypoint supervision, anchor-free detectors have outper-
formed their anchor-based counterparts. The feature selective
anchor-free module for single-shot object detection [10], guided
anchoring [11], the fully convolutional one-stage object detector
[12] and FoveaBox [13] replace the bounding boxes with anchor
points and point-to-boundary distances. Those detectors have
required much more complicated post-processing. They have
been considered unsuitable for generic object detection due
to difficulty in handling overlapping bounding boxes and a
relatively low.

Object Detection in Aerial Images: Along with the publica-
tion of a few large-scale annotated datasets (i.e., DOTA [14],
VisDrone [15], DIOR [28] and the Northwestern Polytech-
nical University ten-class geospatial object detection dataset
(NWPU VHR-10) [16]) for object detection in aerial images,
many studies have attempted to transfer detectors for natural
images to aerial object detection. Deng et al. [17] proposed
coupled R-CNNs for aerial vehicle detection. Sommer et al.
[18] redesigned the anchor settings and backbone structure
based on Faster R-CNN to detect vehicles in aerial images. The
scale-adaptive proposal network [19] adds an RPN to shallow
feature maps to detect small objects in aerial images. The
rotational region CNN [20], a modification of Faster R-CNN,
extracts pooled features of bounding boxes with different pooled
sizes to detect arbitrarily oriented objects. Cheng et al. [27]
proposed to learn a rotation-invariant CNN model based on
R-CNN framework used for multiclass arbitrary orientation
object detection. ClusDet [23] proposed a method to extract a
large number of target slices using clustering, then performed
target detection based on the relatively sparse targets under
aerial photography. In addition, the small, cluttered and rotated
object detector (SCRDet) [21] fuses multilayer features with
effective anchor sampling, adds a supervised pixel attention
network and channel attention network for small and cluttered
object detection. In general, these aerial object detectors are
modified based on anchor-based detectors, which have the pre-
viously mentioned drawbacks. In this article, we propose a
multiscale keypoint aerial object detector based on CornerNet-
Squeeze.
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Fig. 3. Architecture of MKD-Net.

The multiscale detection algorithm needs only to set an image
to a fixed scale input to obtain an image pyramid, usually
generating a feature map of more than one scale, and perform
target detection on feature maps of diverse sizes. YOLOv3 [4],
RetinaNet [2], and FCOS [12] fed fixed-sized images into the
backbone, detected them in parallel at various scales by using
multiple detectors. A characteristic of multiscale detection is
that features of different scales can contain very rich semantic
information, which increases the accuracy. Generally, detectors
in the lower layers with larger resolution detect small targets.
Those in the upper layers with larger fields are more accessible
for identifying large objects. In addition, the special design
of the anchor size for each detector further strengthens this
guidance. However, because multiple levels of detectors operate
independently in parallel in each scale feature, there is no coop-
eration between them, resulting in a large amount of detection
redundancy. Moreover, the common design of anchors in these
detectors dramatically increases the number of outputs.

III. PROPOSED METHOD

A. Overview

The overall framework of the proposed MKD-Net is illus-
trated in Fig. 3. We designed a multiscale module that generated
two different scales of heatmaps following the backbone. Each
scale subnetwork has its own object location branch, which
consists of a corner pooling module, heatmaps, embeddings, and
an offset. We apply soft nonmaximum suppression (soft-NMS)
to remove duplicate boxes after we obtain the top bounding
boxes from each scale feature map. Regardless of the number
and size of objects in an image, the category attention network
predicts only whether a category of an object appears. Hence,
we added a unified category attention module for both scales of
heatmaps.

The hourglass network consists of two hourglass modules,
which is the same as CornerNet-Squeeze. We make minor
adjustments to reduce the number of parameters of the backbone

network. Before feeding the image into hourglass network, we
use a PRE module, which consists of three convolution layers
with stride 2, to reduce the image resolution.

B. Multiscale Fusion Module

Following an FPN, we detect different sizes of objects on
different levels of feature maps. Specifically, we make use of
two levels of feature maps defined as [C1, C2]. C1 is produced
by the backbone hourglass network’s feature maps followed by
a subsample convolutional layer with the multiconvolutional
layer (MCL) module, as shown in Fig. 3. The MCL module
consists of five convolution layers in series. The kernel sizes
of those layers are generated alternately by 1 ∗ 1 and 3 ∗ 3.
The outputs of feature maps from those layers have the same
resolution and change the number of channels with the input
feature map. Next, we take the feature map from the previous
layer and upsample it by 2×. We also concatenate a feature map
from earlier in the network and the upsampled feature map. The
combined feature map is transformed into the C2 layer by the
second MCL module. The fusion of layers at different depths
allows us to obtain more meaningful semantic information from
the upsampled features and finer-grained information from the
earlier feature map. Finally, C1 and C2 are fed into the corner
pooling layer for further processing.

We predict two sets of heatmaps for C1 and C2 separately,
one for the top-left corners and one for the bottom-right corners.
Each set has three heatmaps with the same width and height. The
first one has C channels, where C is the number of categories.
Each channel is a binary mask indicating the locations of the
corners for a class. The second one is a embedding vector for
grouping corners. The third one is used for slight adjusting the
corner coordinates.

C. Category Attention Module

As shown in Fig. 2, there are often a few kinds of objects in an
image. To determine if an object category appears in the image,
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we design a supervised category attention module to better select
the top k corners by coding explicit prior knowledge, as shown
in Fig. 3. Specifically, in the category attention network, the
feature map F1 passes through an MCL with different channels,
and then a one-dimensional (1-D) vector is learned through a
fully connected layer. Each value in the vector represents the
scores of a category that appear in a test image. Then, we
apply channel reduction operations for C1 and C2 by 1 × 1
convolutional layers and output three feature maps. The channel
numbers for these feature maps are 15, 1, and 1. The feature
map H1 and H2 have 15 channels, where each channel cor-
responds to the corner distribution of a category in an image.
The softmax operation is performed on the vector V. Then the
output is separately multiplied by H1 and H2. Finally, two new
information feature maps N1 and N2 are generated. To train the
network in this process, we adopt a supervised learning method.
First, we can easily obtain a binary map as a label according
to the ground truth. Second, we use the cross-entropy loss of
the binary map and the 1-D vector as the category attention
loss.

D. Loss Function

The loss of MKD-Net consists of the corner loss, offset loss,
push loss, pull loss, and category loss, defined as follows:

Loss = Σm
i=1

(
λ1L

i
det + λ2L

i
off + λ3L

i
push + λ4L

i
pull

)

+
λ5

Ncategory
Σ

Ncatetory

i=1 Lcategory (pi, gti) . (1)

The hyperparameters λ1, λ2, and λ3 control the tradeoff. We
set λ1 = 0.8, λ2 = 1, λ3 =λ4 = 0.1, λ5 = 5; m denotes the
number of feature maps, which is 4 in our experiment.

The first component Ldet is the focal loss of the predicted
heatmaps, which are used to detect the top-left and right-bottom
corners of the bounding boxes. The ground-truth heatmaps
have been augmented with unnormalized Gaussian distribution,
which could reduce the penalty given to negative locations
within a radius of the positive location.

As for CornerNet paper, etk has been used to denote the
embedding for the top-left corner of object k, ebk stands for
the bottom-right corner. We then use the “pull” loss to group the
corners and the “push” loss to separate the corners

Lpull =
1

N
ΣN

k = 1

[
(etk − ek)

2 + (ebk − ek)
2
]

(2)

Lpush =
1

N (N − 1)
ΣN

k = 1Σ
N
j = 1,j �=k max (0,Δ− |ek − ej |)

(3)

where ek = (etk + ebk)/2. The value of ek is between 0 and
1. The maximum distance is 1 for two corners from different
objects. Hence, we set Δ to be 1 in all our experiments. The
pull loss Lpull determines whether a pair comprising the top-left
corner and bottom-right corner is from the same bounding box
or not. The push loss Lpush aims at separating the corners from
different bounding boxes.

Given a network with downsampling layers, the coodinate (x,
y) in an image is been mapped to (� x

n�, � y
n�) in feature maps.

We use smooth L1 function to define the offset loss Loff , since
smooth L1 is widely used to slightly adjust the corner locations.
The category loss Lcategory is the softmax cross-entropy loss,
which is used to determine what kinds of objects exist in an
image.

IV. EXPERIMENTS

This section is divided by subheadings and provides a concise
and precise description of the experimental results, their inter-
pretation and the experimental conclusions that can be drawn.

A. Experimental Setup

Tests are implemented in PyTorch on a server with two
NVIDIA GeForce GTX 2080 Ti GPUs and 11 GB RAM. We
perform experiments on DOTA and VOC datasets to verify the
generalizability of our techniques.

1) Evaluation Metrics: The evaluation standard adopted in
this article is the average precision (AP), which is used to
evaluate the performance of our methods relative to other
benchmarks. The AP, which takes a value between 0 and
1, is the average of all ten intersection over union (IoU)
thresholds from a range of [0.50, 0.95] with a step size of
0.05. The IoU thresholds for calculating AP50 and AP75
are set to 0.5, and 0.75, respectively, for all the categories.
The mean AP (mAP) of all the categories refers to the
average value of the APs for each category.

2) DOTA Dataset and Preprocessing: The experiment per-
formed in this article uses the DOTA-V1.0 dataset, which
is a recently published large-scale open-access dataset for
benchmarking object detection in remote sensing imagery.
It is likely the largest and most diverse dataset for this
task. It contains 2806 aerial images that were captured
using different sensors and platforms where over 188 000
object instances were annotated using quadrilaterals. The
images from DOTA are diverse in size, ground sample
distance, sensor type, etc. The captured objects also exhibit
rich variation in terms of scale, shape, and orientation.
Fifteen categories of objects are annotated: plane (PL);
baseball diamond (BD); bridge (BR); ground track field
(GTF); small vehicle (SV); large vehicle (LV); ship (SH);
tennis court (TC); basketball court (BC); storage tank
(ST); soccer ball field (SBF); roundabout (RA); harbor
(HA); swimming pool (SP); and helicopter (HC). There
are two detection tasks for the DOTA dataset: horizontal
bounding boxes and oriented bounding boxes (OBBs).
This dataset is divided into three subsets for training (1/2),
validation (1/6), and testing (1/3), where the ground truth
of the test set is not publicly accessible.

Optical remote sensing images are often massive, e.g., the size
of DOTA images is usually between 800× 800 and 4000× 4000
pixels, but can be up to 6000 × 6000 pixels. These images
contain objects exhibiting a wide variety of scales, orientations,
and shapes. Because feature extraction networks based on CNNs
cannot be used directly to fit the hardware memory in the training
stage. Hence, we crop images into patches of size 600 × 600
pixels with an overlap of 150 pixels among neighboring patches.
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Fig 4. Number of categories contained in one image.

Finally, 20 690 images were used for training and 5341 images
were used for testing.

As shown in Fig. 4, after data preprocessing, 71.2% of images
in the DOTA aerial image set contain only one category of
objects, and 25.1% of images contain two categories of objects.

3) PASCAL VOC Dataset: We also evaluate our approach on
PASCAL VOC 2007 and 2012 [29]. Both dataset consist
of 20 categories. Pascal VOC 2007 contains a trainval set
of 5011 images and a test set of 4952 images, while VOC
2012 consists of 11 540 images as trainval set and 10 991
as test set. For fair comparisons, all methods are trained
on VOC 2007 trainval + VOC 2012 trainval, and tested
on VOC 2007 testset.

4) Training Details: The backbone network is randomly ini-
tialized under the default setting of PyTorch with no pre-
training on any external dataset. We adopt stochastic gradi-
ent descent with momentum for network optimization. No
other data augmentation is performed. During training, we
set the input resolution of the network to 511× 511, which
leads to the output resolutions of [32× 32, 64× 64], which
correspond to (C1, C2), respectively. Unless specified, the
input images are resized to 511 × 511. The batch size is
set to 12 images per GPU. We train the network on two
NVIDIA 2080 Ti GPUs with 11 GB memory. The model is
trained with 200 000 iterations, which takes approximately
70 h on the DOTA dataset, and the learning rate changes
during the 50 000 and 100 000 iterations from 5e-3 to 5e-5.

5) Inference Details: We forward the input image through
the network to obtain two feature maps. Only the original
image is used for testing, which means that the test data
are not augmented. For each feature map, we pick top
N corners from all channels in the top-left corner heat
map and bottom-right corner heat map, respectively. The
2∗N corners are paired off and generated N∗N candidate
bounding boxes. We remove the boxes with low scores
or position error, which is exactly the same operation in
CornerNet-Squeeze [5]. Then, we apply soft-NMS [22]
to suppress redundant detections to the overall bounding
boxes. We finally choose the top k (k = 100 in our exper-
iment) scores as the detection result from the remaining
boxes.

Unlike CornerNet-squeeze, which uses only the features from
the last layer of the whole network to make predictions, we use
the features from two different layers to make predictions. To

avoid high overlaps in the prediction results between different
layers, which may hurt the performance of the network, we
further limit the number of top corners and the number of
bounding boxes that can be generated by the layer.

B. Accuracy Evaluation

MKD-Net adds an extra layer based on CornerNet-Squeeze,
which means that they share the same backbone network and
have the same number of hyperparameters. Hence, we choose
CornerNet-Squeeze as the baseline. In addition, we also compare
our network with faster R-CNN, which is a two-stage object
detection framework. For fairness, all the experimental hyperpa-
rameter settings are strictly consistent. The CornerNet-squeeze-
128 and CornerNet-squeeze-128 multimodels are the variant of
CornerNet-squeeze and CornerNet-squeeze multi that removing
a downsampling layer before fed into the hourglass modules.
Hence, the resolution of feature map N2 is 128∗128. Table I
gives the performance of several models on the DOTA dataset.
It can be seen that the mAP of our MKD-Net algorithm is higher
than that of the other algorithms; the mAP of MKD-Net is 3.4%
higher than that of CornerNet-squeeze and 9.7% higher than that
of Faster R-CNN.

CornerNet-Squeeze multi and MKD-Net achieves much bet-
ter performance than CornerNet-Squeeze, on the SH, ST, SV,
and LV. As shown in Fig. 5, those categories of objects in
images are primarily small and medium-sized. The large-size
objects account for less 10% of each category. The performance
improving for small-size objects might have been due to the extra
feature map, N2 in Fig. 3, introduced by the multiscale module,
which has larger resolution that could beneficial to small objects
detect.

C. Ablation Study

We gradually add the multiscale module and category atten-
tion module to the baseline, CornerNet-squeeze, to investigate
the effectiveness of the proposed MKD-net on DOTA dataset.
We, first, apply the multiscale module to the head branch. As
shown in the second row of Table II, the module leads to a gain
of 2.8 on the AP on CornerNet-squeeze. We also see that the
improvement mainly occurs in the AP with a low threshold. The
improvement at a low IoU threshold is because the multiscale can
increase the density of the bounding boxes and can potentially
raise the chance of matching ground truth. This method could
maintain the predictions with both a high classification score
and localization.

Further study concerns the influence of category attention
module. We address the concern that the category attention
module might not provide a sufficiently good accuracy, and then
leads to missed detection of objects in the same category. The
third row in Table II gives that the detection performance was
reduced slightly by adding the category attention module. The
fourth row shows that adding the category attention module on
the multiscale branch boosts the performance from 28.0 to 31.8
on CornerNet-squeeze. In our experiments, the detector achieves
the best performance when using the multiscale module and
category attention module.
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TABLE I
PERFORMANCE EVALUATION ON THE DOTA DATASET. “MULTI” DENOTES A SQUEEZE NETWORK WITH A MULTISCALE MODULE AND

INFERENCE WITH “N1, N2” FEATURE MAPS

Fig 5. Proportion of small- (area<32∗32), medium- (32∗32<area<96∗96), and large-sized (area>96∗96) objects in each category.

TABLE II
ABLATION STUDIES ON THE MULTISCALE STRATEGY AND CATEGORY

ATTENTION ON CORNERNET-SQUEEZE

In Table III, we also analyze the impact of the multiscale
feature map during inference on DOTA dataset. To avoid the
influence of the category attention network, we conduct exper-
iments on CornerNet-Squeeze with a multiscale module. We
use the feature maps “N2” and “N1, N2”, which are shown in
Fig. 2, to make predictions. The feature map “N1” has half the
resolution of feature map “N2.” Table III gives that the detection
results of both methods have been improved for small and
medium object detection after adding multiscale feature maps.

The mAP increases by 4%–7%. It is reasonable that the extra
predicted layer costs approximately 8 ms of extra inference time
due to the doubled candidate corners and the larger number of
paired bounding boxes.

D. Evaluation on VOC Dataset

We also compare the performance on the PASCAL VOC
dataset, as given in Table IV. It can be seen that the MKD-Net
achieves the mAP of 44.8%, improving that of CornerNet-
Squeeze by 4.5%. This comparison clearly suggests that our
framework can also work better on natural scenes. However,
although the method has achieved the better performance, the
detection accuracy is still low. One of the possible reasons
is the characteristics of VOC dataset. The VOC dataset have
images that are not square. The resize operation before fed the
images into network could change the appearance features. The
other reason maybe that we focused on real time detector. We
modified the network based on CornerNet_squeeze, a variant
of CornerNet that sacrificing accuracy for inference speed.
There are three methods, CenterNet, CornerNet and CornerNet
Squeeze, that have similar network architectures. The accuracy



SU et al.: OBJECT DETECTION IN AERIAL IMAGES USING A MULTISCALE KEYPOINT DETECTION NETWORK 1395

TABLE III
ABLATION STUDIES ON THE INFERENCE WITH MULTIPLE FEATURE MAPS ON CORNERNET-SQUEEZE. “N2” AND “N1, N2” DENOTE THE

FEATURE MAPS USED TO MAKE THE PREDICTIONS

TABLE IV
CATEGORY PERFORMANCE COMPARISONS ON PASCAL VOC DATASET

Fig 6. Example results of the three detectors for very large objects in images.
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Fig 7. Example results of the three detectors for dense small objects in images.

of the three models decreases sequentially, and the inference
speed increases sequentially. All of them need to predict the
heat map for generating corners. Our modification mainly focus
on optimize the heat map. Therefore, we could surmise that our
modification is also suitable for CornerNet and CenterNet. Both
of them could achieve a higher mAP on VOC dataset.

E. Evaluation of the Different Categories

In general, large objects are easier to identify than small
objects. CornerNet-Squeeze often fails to detect some very large
objects. As shown in Fig. 6, there is only a large soccer ball
field in the first row and two large planes in the second row.

The backgrounds of these two images are not complicated, and
the outlines of these objects are clear. Intuitively, those objects
should be easy to detect. However, both CornerNet-Squeeze
and CornerNet-squeeze multifailed to detect them. MKD-Net
is effective in detecting such target objects, as it benefits from
the extra feature map with larger receptive fields for large
objects. The MKD-Net also benefits from the channel attention
network for reducing the channel noise in the single-category
situation.

The aerial images often contain small, dense objects in some
regions. In Fig. 7, each image has more than 100 ground-truth
boxes in the same category. During inference, there are plenty
of corners of the same category in an image. It is difficult to
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Fig 8. Example results of the three detectors for multiple categories in images.

group the irrelevant corners into an object. As a result, the
embedding module generates numerous paired keypoint errors.
Furthermore, CornerNet-squeeze computes the final feature map
with an 8×-reduced resolution compared to the original image.
The small objects have been subsampled to several pixels in
the last layer, leading to difficulty in distinguishing the paired
corners of an object. Due to the above two reasons, CornerNet-
squeeze missed a large proportion of ground-truth boxes. We
can see that CornerNet-squeeze multi and MKD-Net perform
better than CornerNet-squeeze. These two methods generate
bounding boxes from each feature map and select the top k boxes
separately before performing the NMS operation. It would be
helpful for the model to capture the information learned at each
feature map.

Fig. 8 shows a particular type of scene. Each image has two
categories of objects. One of these two categories occupies a
primary place with large quantities, such as the ship and tennis
court in the figure. Apart from the dominant category, they have
some small objects, such as swimming pools and small vehicles.
In this scene, a few small objects are detected by CornerNet-
squeeze and CornerNet-squeeze multi. Both of them miss the
two swimming pools in the first row. Only one small vehicle in
the second row is detected by those two methods.

Finally, we provide some visualization results in Fig. 9 to
show that MKD-Net indeed enjoys a strong ability to improve
the precision of detection. In the first row, both MKD-Net
and CornerNet-squeeze multi are able to accurately locate the
positions of bridges in a complex background. The other two
methods miss part of the harbor in the second row. Each method
misses one object in the third row. Only MKD-Net detects all
the ground-truth boxes in the last two rows.

Fig 9. Typical detection results of the three detectors.

V. CONCLUSION

In this article, we have presented an end-to-end multiscale
keypoint-based detector for objects in aerial images. Consider-
ing the size variability and dense small objects, a fusion module
with multiscale features was added. The module fused features
from different layers and generated two different feature map
resolutions. Both feature maps were used to generate bounding
boxes as a pair of corners. Moreover, we proposed a super-
vised category attention network to predict the probability of
a category of objects being contained in an image. The output
of the network was used as class weights to adjust the corner
distribution heat map value. In the case of a small number of
object categories in a test image, this module can weaken the in-
fluence of channel noise in feature maps and reduce misclassified
objects. The experimental results on the DOTA and PASCAL
VOC dataset demonstrate the competitive results of the method.
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